NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties (EX 6.5) Exercise 6.5

Mathematics requires constant practice. Students are expected not only to practise questions and problems provided as a part of their prescribed NCERT textbooks for Mathematics. They are also strongly recommended that they  seek out other sources like past years’ question papers, meticulously crafted sample question papers and other kinds of well-designed practise assessments. Practising with the aid of a wide variety of academic resources would have an evident positive effect on the academic performance of students. It would also give them the advantage of familiarising themselves with the pattern of questions which could appear in the examinations.  Once they have mastered this level of reading comprehension, they will be able to determine the best course of action to take when faced with specific types of problems.The system of examinations which is prevalent in the national education system established, regulated, and monitored by the NCERT is a thorough and complex one. A distinct schema of mark distribution characterises the question papers, and students are expected to frame their answers while keeping this scheme in mind.

Students can gain several advantages by using the PDF of Extramarks’ NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. All the questions have been addressed to help students easily understand all the concepts. Students will undoubtedly benefit from practising with the help of these NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 to prepare for exams and score well. Students can understand complex topics more clearly and simply with the help of NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. Extramarks’ NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 will benefit the students by clarifying their doubts. Extramarks provides simple explanations while compiling the solutions to help as many students as possible.

The solutions for Class 7 Maths Chapter 6 Exercise 6.5 have been created for students who feel intimidated by Mathematics and require a thorough study resource to prepare for their exams. The solutions for Maths Class 7 Chapter 6 Exercise 6.5 are compiled by Extramarks’ experts while considering each student’s requirements. Students can download the PDF of NCERT Class 7 Maths Chapter 6 Exercise 6.5, to gain a firm understanding of the material.

Extramarks is one of the best learning platforms where students can access various learning tools like the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. Students can also download the PDFs of these study materials to study offline. Moreover, students can also use the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 to understand the chapter deeply. Students can also study offline with the help of the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. The NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 are created using simple and easy language. Students can also recheck their answers with the help of NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5.

NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties (EX 6.5) Exercise 6.5 

The NCERT Solutions For Class 7 Maths Chapter 6 Exercise 6.5 contains two important formulas that students must remember. One is that a Triangle’s Interior Angles add up to 180 degrees, and the other is the Pythagorean theorem, which states that the square of the Hypotenuse is equal to the sum of the Squares of the Base and Perpendicular of a Right-Angled Triangle.

There is a thorough explanation of Right-Angled Triangles and the Pythagorean theorem in   NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. A very helpful theorem in Mathematics is the Pythagoras theorem. This exercise consists of 8 questions, 5 of which are fairly simple, 2 of medium difficulty, and 1 for which students will need some time to gather the information. Students can take help from the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 to understand the chapter deeply.

When studying shapes in earlier classes, students must have learned about Triangles. Students can learn about Triangles in this lesson, including their types, angles, and characteristics. Triangles can be divided into two groups according to their sides and angles. Equilateral, Scalene, and Isosceles are three of them. These are based on Triangles with Sides and Triangles with Acute, Obtuse, and Right Angles. To learn about a Triangle’s Altitudes, students must ascertain the Triangle’s height. It is possible to define the Altitude as a Line Segment with two ends—one at a Vertex and the other at the line on the other side. For better understanding, students might need to work through some problems based on these.

The Pythagoras theorem application and proof should be conceptually clear to the students. Moreover, one must remember that the Triangle is right-angled if the Pythagoras theorem is accurate.

Students can easily remember and recall questions and concepts when they are presented to them in visually appealing ways or when they are depicted in pictures. Therefore, students should spend a lot of time practising with the diagrams in the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 as these will help them understand the question, particularly in this chapter.

To ensure accuracy in their calculations and logic, students should be well-versed in the Pythagoras Theorem and practice the solved examples independently. Students will excel in their understanding of Chapter 6 if they consistently review the facts and theorems in the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5.

Access NCERT Solutions for Class 7 Chapter 6- Triangles and its Properties

When three lines come together, the Triangle is the first and most basic geometrical figure that results. The NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 focuses on the characteristics of Triangles. In order for students to have a solid understanding of the Sides and Angles of a Triangle in their minds, as well as the classification that these side lengths and angle measurements give to the Triangles, it is necessary to start by describing the fundamental components of Triangles.

For example, Triangles are categorized as Scalene, Isosceles, and Equilateral based on their various side measurements. Triangles are divided into Acute-Angled, Right-Angled, and Obtuse-Angled categories based on the angles. The NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 discusses examples from the practice of the ideas of Median, Altitude, Angle Sum Property, and the Pythagoras theorem.

Students should focus on the Properties of Triangles and how they differ from one another, as well as the crucial fact that the sum of any given Triangle’s angles is 180 degrees, which is covered in NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. This will be very beneficial for resolving the exercise questions that can be downloaded in PDF format.

The explanations in the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5, about Triangle and its Properties, will help deepen the student’s understanding of triangles.

Due to a clearly defined geometrical feature, Triangles can be used as templates for other shapes, such as Hexagons and Quadrilaterals. Therefore, understanding Triangles will provide a solid foundation for further Geometry study. The NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5, should be used by the students to strengthen their foundational knowledge. Triangles and their various components, categorising Triangles according to their side lengths, and angle measurements are the topics that the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. Additionally, the terms Median, Altitude, Angle Sum Theorem, and Pythagoras theorem are defined with pertinent examples.

NCERT Solutions For Class 7 Maths Chapter 6 The Triangle and its Properties Exercise 6.5

When it comes to exam preparation, choosing the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 is the best choice for CBSE students. Numerous exercises are included in this chapter. Extramarks provides the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 in PDF format. Students can study these solutions directly from Extramarks’ website or mobile application or download it as needed. The problems and questions from the exercise have been meticulously solved by subject-matter experts while adhering to all CBSE guidelines.

The NCERT Solutions for Class 7 Maths Ch 6 Ex 6.5 and all chapter exercises compiled in one location, prepared by expert teachers following NCERT (CBSE) Book guidelines, are available for free PDF download. The solutions for Class 7th Maths Chapter 6 Exercise 6.5 will assist students in reviewing the entire syllabus and earning higher marks. Students can register to receive emails with all the exercise solutions. To make studying easy and engaging, the NCERT solution is offered. If students can access the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 their preparation will become simple.

Any student in Class 7 who is thorough with all the ideas from the Mathematics textbook and knowledgeable about all the exercises can easily score the highest marks on the final exam. Students can learn the pattern of questions that may be asked in the exam from this chapter and the chapter’s weightage with the help of these NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 so that they can adequately prepare for the final exam.

Numerous exercises in this chapter include numerous questions in addition to the ones mentioned in the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5. Understanding all of the textbook concepts and completing the exercises provided next to the students is crucial for achieving the highest grade possible in the exams.

From Extramarks’ website, students can download the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 for better exam preparation. Students can also download the same with the Extramarks application installed on their phones. The best feature of the NCERT Solutions Class 7 Maths Chapter 6 Exercise 6.5 is that they can be used offline and online.

Q.1

PQR is a triangle right angled at P. If PQ =10 cm and PR=24cm,find QR.

Ans.

By applying Pythagoras theorem in ΔPQR to get

(PQ)2 + (PR)2 = (QR)2
102 + 242 = QR2
100
+ 576 = QR2

676
= QR2

QR
=

676

= 26cm

Q.2

ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.

Ans.

By Pythagoras theorem in ΔABC, we get ( AC ) 2 + ( BC ) 2 = ( AB ) 2 ( BC ) 2 = ( AB ) 2 ( AC ) 2 = 24 2 7 2 =62549=576 BC=24cm

Q.3

A15m long ladder reached a window 12m high from the ground on placing it against a wall at a distancea‘. Find the distance of the foot of the ladder from the wall.

Ans.

By Pythagoras theorem ( 15 ) 2 = ( 12 ) 2 + a 2 225144= a 2 81= a 2 a=9cm Therefore, the distance of the foot of the ladder from the wall is 9 cm.

Q.4

Which of the following can be the sides of a right triangle?i2.5cm,6.5cm,6cm.ii2cm,2cm,5cm.iii1.5cm,2cm,2.5cm

Ans.

( i ) 2.5 cm, 6.5 cm, 6 cm. 2.5 2 =6.25, 6.5 2 =42.25 and 6 2 =36 Here, 2 .5 2 + 6 2 = 6.5 2 So, the square of the length of one side is the sum of the squares of the lengths of remaining two sides. Hence, these are the sides of a rightangled triangle. ( ii ) 2 cm, 2 cm, 5 cm. 2 2 =4, 2 2 =4 and 5 2 =25 Here, 2 2 + 2 2 5 2 So, the square of the length of one side is not the sum of the squares of the lengths of remaining two sides. Hence, these are not the sides of a rightangled triangle. ( iii )1.5 cm, 2cm, 2.5 cm 1.5 2 =2.25, 2 2 =4 and 2 .5 2 =6.25 Here, 1 .5 2 + 2 2 = 2.5 2 So, the square of the length of one side is the sum of the squares of the lengths of remaining two sides. Hence, these are the sides of a rightangled triangle. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabMgaaiaawIcacaGLPaaa caqGGaGaaeOmaiaac6cacaqG1aGaaeiiaiaabogacaqGTbGaaiilai aabccacaqG2aGaaiOlaiaabwdacaqGGaGaae4yaiaab2gacaGGSaGa aeiiaiaabAdacaqGGaGaae4yaiaab2gacaGGUaaabaGaaGOmaiaac6 cacaaI1aWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGOnaiaac6ca caaIYaGaaGynaiaacYcacaaI2aGaaiOlaiaaiwdadaahaaWcbeqaai aaikdaaaGccqGH9aqpcaaI0aGaaGOmaiaac6cacaaIYaGaaGynaiaa bccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOnamaaCaaaleqabaGaaG Omaaaakiabg2da9iaaiodacaaI2aaabaGaaeisaiaabwgacaqGYbGa aeyzaiaabYcacaqGGaGaaeOmaiaab6cacaqG1aWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGOnamaaCaaaleqabaGaaGOmaaaakiabg2da 9iaaiAdacaGGUaGaaGynamaaCaaaleqabaGaaGOmaaaaaOqaaiaabo facaqGVbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4C aiaabghacaqG1bGaaeyyaiaabkhacaqGLbGaaeiiaiaab+gacaqGMb GaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGSbGaaeyzaiaab6ga caqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaae4Bai aab6gacaqGLbGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGGaGa aeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohaca qG1bGaaeyBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaa bwgaaeaacaqGZbGaaeyCaiaabwhacaqGHbGaaeOCaiaabwgacaqGZb Gaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabcca caqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGZbGaaeiiai aab+gacaqGMbGaaeiiaiaabkhacaqGLbGaaeyBaiaabggacaqGPbGa aeOBaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaae4Daiaab+gaca qGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGUaaabaGaaeis aiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGOb GaaeyzaiaabohacaqGLbGaaeiiaiaabggacaqGYbGaaeyzaiaabcca caqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzai aabohacaqGGaGaae4BaiaabAgacaqGGaGaaeyyaiaabccacaqGYbGa aeyAaiaabEgacaqGObGaaeiDaiabgkHiTiaabggacaqGUbGaae4zai aabYgacaqGLbGaaeizaiaabccacaqG0bGaaeOCaiaabMgacaqGHbGa aeOBaiaabEgacaqGSbGaaeyzaiaab6caaeaadaqadaqaaiaabMgaca qGPbaacaGLOaGaayzkaaGaaeiiaiaabkdacaqGGaGaae4yaiaab2ga caGGSaGaaeiiaiaabkdacaqGGaGaae4yaiaab2gacaGGSaGaaeiiai aabwdacaqGGaGaae4yaiaab2gacaGGUaaabaGaaGOmamaaCaaaleqa baGaaGOmaaaakiabg2da9iaaisdacaGGSaGaaGOmamaaCaaaleqaba GaaGOmaaaakiabg2da9iaaisdacaqGGaGaaeyyaiaab6gacaqGKbGa aeiiaiaabwdadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIYaGaaG ynaaqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaeiiaiaabkda daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaWaaWbaaSqabeaaca aIYaaaaOGaeyiyIKRaaGynamaaCaaaleqabaGaaGOmaaaaaOqaaiaa bofacaqGVbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae 4CaiaabghacaqG1bGaaeyyaiaabkhacaqGLbGaaeiiaiaab+gacaqG MbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGSbGaaeyzaiaab6 gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaae4B aiaab6gacaqGLbGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGGa GaaeyAaiaabohacaqGGaGaaeOBaiaab+gacaqG0bGaaeiiaiaabsha caqGObGaaeyzaiaabccacaqGZbGaaeyDaiaab2gacaqGGaGaae4Bai aabAgacaqGGaGaaeiDaiaabIgacaqGLbaabaGaae4CaiaabghacaqG 1bGaaeyyaiaabkhacaqGLbGaae4CaiaabccacaqGVbGaaeOzaiaabc cacaqG0bGaaeiAaiaabwgacaqGGaGaaeiBaiaabwgacaqGUbGaae4z aiaabshacaqGObGaae4CaiaabccacaqGVbGaaeOzaiaabccacaqGYb Gaaeyzaiaab2gacaqGHbGaaeyAaiaab6gacaqGPbGaaeOBaiaabEga caqGGaGaaeiDaiaabEhacaqGVbGaaeiiaiaabohacaqGPbGaaeizai aabwgacaqGZbGaaeOlaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqG LbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGZbGaaeyzaiaabc cacaqGHbGaaeOCaiaabwgacaqGGaGaaeOBaiaab+gacaqG0bGaaeii aiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeyAaiaabsgacaqGLb Gaae4CaiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiiaiaabkha caqGPbGaae4zaiaabIgacaqG0bGaeyOeI0Iaaeyyaiaab6gacaqGNb GaaeiBaiaabwgacaqGKbGaaeiiaiaabshacaqGYbGaaeyAaiaabgga caqGUbGaae4zaiaabYgacaqGLbGaaeOlaaqaamaabmaabaGaaeyAai aabMgacaqGPbaacaGLOaGaayzkaaGaaeymaiaac6cacaqG1aGaaeii aiaabogacaqGTbGaaiilaiaabccacaqGYaGaae4yaiaab2gacaGGSa GaaeiiaiaabkdacaGGUaGaaeynaiaabccacaqGJbGaaeyBaaqaaiaa igdacaGGUaGaaGynamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaik dacaGGUaGaaGOmaiaaiwdacaGGSaGaaGOmamaaCaaaleqabaGaaGOm aaaakiabg2da9iaaisdacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiai aabkdacaqGUaGaaeynamaaCaaaleqabaGaaGOmaaaakiabg2da9iaa iAdacaGGUaGaaGOmaiaaiwdaaeaacaqGibGaaeyzaiaabkhacaqGLb GaaeilaiaabccacaqGXaGaaeOlaiaabwdadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaG Omaiaac6cacaaI1aWaaWbaaSqabeaacaaIYaaaaaGcbaGaae4uaiaa b+gacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae yCaiaabwhacaqGHbGaaeOCaiaabwgacaqGGaGaae4BaiaabAgacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaabYgacaqGLbGaaeOBaiaabE gacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccacaqGVbGaaeOB aiaabwgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabccacaqGPb Gaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaabwha caqGTbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaa qaaiaabohacaqGXbGaaeyDaiaabggacaqGYbGaaeyzaiaabohacaqG GaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabY gacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabohacaqGGaGaae4B aiaabAgacaqGGaGaaeOCaiaabwgacaqGTbGaaeyyaiaabMgacaqGUb GaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqG3bGaae4Baiaabcca caqGZbGaaeyAaiaabsgacaqGLbGaae4Caiaab6caaeaacaqGibGaae yzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqG ZbGaaeyzaiaabohacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaabs hacaqGObGaaeyzaiaabccacaqGZbGaaeyAaiaabsgacaqGLbGaae4C aiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiiaiaabkhacaqGPb Gaae4zaiaabIgacaqG0bGaeyOeI0Iaaeyyaiaab6gacaqGNbGaaeiB aiaabwgacaqGKbGaaeiiaiaabshacaqGYbGaaeyAaiaabggacaqGUb Gaae4zaiaabYgacaqGLbGaaeOlaaaaaa@7F47@

Q.5

A tree is broken at a height of 5 m from the ground and itstop touches the ground at a distance of 12 m from theBase of the tree.Find the original height of the tree.

Ans.

In above figure, BC represents the unbroken part of the tree. Point C represents the point where the tree broke and CA represents the broken part of the tree. Triangle ABC thus formed is a right-angled triangle. So, applying Pythagoras theorewm to get AC 2 = AB 2 + BC 2 = 12 2 + 5 2 =144+25 =169=13cm Thus,the original height of the tree is=AC+CB =13 cm+5 cm = 18 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGjbGaaeOBaiaabccacaqGHbGaaeOy aiaab+gacaqG2bGaaeyzaiaabccacaqGMbGaaeyAaiaabEgacaqG1b GaaeOCaiaabwgacaqGSaGaaeiiaiaabkeacaqGdbGaaeiiaiaabkha caqGLbGaaeiCaiaabkhacaqGLbGaae4CaiaabwgacaqGUbGaaeiDai aabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabwhacaqGUbGa aeOyaiaabkhacaqGVbGaae4AaiaabwgacaqGUbGaaeiiaiaabchaca qGHbGaaeOCaiaabshacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaa bIgacaqGLbGaaeiiaiaabshacaqGYbGaaeyzaiaabwgacaqGUaaaba Gaaeiuaiaab+gacaqGPbGaaeOBaiaabshacaqGGaGaae4qaiaabcca caqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBai aabshacaqGZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGWbGa ae4BaiaabMgacaqGUbGaaeiDaiaabccacaqG3bGaaeiAaiaabwgaca qGYbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaa bkhacaqGLbGaaeyzaiaabccacaqGIbGaaeOCaiaab+gacaqGRbGaae yzaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaae4qaiaabgeaaeaa caqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBai aabshacaqGZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIbGa aeOCaiaab+gacaqGRbGaaeyzaiaab6gacaqGGaGaaeiCaiaabggaca qGYbGaaeiDaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaaeiDaiaabkhacaqGLbGaaeyzaiaab6caaeaacaqGub GaaeOCaiaabMgacaqGHbGaaeOBaiaabEgacaqGSbGaaeyzaiaabcca caqGbbGaaeOqaiaaboeacaqGGaGaaeiDaiaabIgacaqG1bGaae4Cai aabccacaqGMbGaae4BaiaabkhacaqGTbGaaeyzaiaabsgacaqGGaGa aeyAaiaabohacaqGGaGaaeyyaiaabccacaqGYbGaaeyAaiaabEgaca qGObGaaeiDaiaab2cacaqGHbGaaeOBaiaabEgacaqGSbGaaeyzaiaa bsgacaqGGaGaaeiDaiaabkhacaqGPbGaaeyyaiaab6gacaqGNbGaae iBaiaabwgacaqGUaaabaGaae4uaiaab+gacaqGSaGaaeiiaiaabgga caqGWbGaaeiCaiaabYgacaqG5bGaaeyAaiaab6gacaqGNbGaaeiiai aabcfacaqG5bGaaeiDaiaabIgacaqGHbGaae4zaiaab+gacaqGYbGa aeyyaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaae4Baiaabkhaca qGLbGaae4Daiaab2gacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaa bwgacaqG0baabaGaaeyqaiaaboeadaahaaWcbeqaaiaaikdaaaGccq GH9aqpcaqGbbGaaeOqamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa bkeacaqGdbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacqGH9aqpcaaIXaGaaGOmamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaiwdadaahaaWcbeqaaiaaikdaaaaakeaaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiabg2da9iaaigdacaaI0aGa aGinaiabgUcaRiaaikdacaaI1aaabaGaaeiiaiaabccacaqGGaGaae iiaiaabccacqGH9aqpcaaIXaGaaGOnaiaaiMdacqGH9aqpcaaIXaGa aG4maiaaysW7caqGJbGaaeyBaaqaaiaabsfacaqGObGaaeyDaiaabo hacaqGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaab+gacaqGYbGaaeyA aiaabEgacaqGPbGaaeOBaiaabggacaqGSbGaaeiiaiaabIgacaqGLb GaaeyAaiaabEgacaqGObGaaeiDaiaabccacaqGVbGaaeOzaiaabcca caqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaabkhacaqGLbGaaeyzai aabccacaqGPbGaae4Caiabg2da9iaabgeacaqGdbGaey4kaSIaae4q aiaabkeaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaaca WLjaGaaCzcaiaaysW7caaMe8Uaeyypa0JaaeymaiaabodacaqGGaGa ae4yaiaab2gacqGHRaWkcaqG1aGaaeiiaiaabogacaqGTbaabaGaaC zcaiaaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaacaaM e8UaaGjbVlabg2da9maaL4babaGaaeymaiaabIdacaqGGaGaae4yai aab2gaaaaaaaa@82B5@

Q.6

Angles Q and R of a ΔPQR are 25º and 65º.Write which of the following is true:iPQ2+QR2=RP2iiPQ2+RP2=QR2iiiRP2+QR2=PQ2

Ans.

Since, the sum of all interior angle is 180°. So, 25° + 65°+QPR=180° QPR=180°90° =90° Therefore, ΔPQR is a rigfht angled triangle at P. Thus, PQ 2 + RP 2 = QR 2 So, (ii) is true. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGtbGaaeyAaiaab6gacaqGJbGaaeyz aiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1b GaaeyBaiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiBaiaabYga caqGGaGaaeyAaiaab6gacaqG0bGaaeyzaiaabkhacaqGPbGaae4Bai aabkhacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBaiaabwgacaqGGaGa aeyAaiaabohacaqGGaGaaeymaiaabIdacaqGWaGaeyiSaaRaaeOlaa qaaiaabofacaqGVbGaaeilaiaabccacaqGYaGaaeynaiabgclaWkaa bccacaqGRaGaaeiiaiaabAdacaqG1aGaeyiSaaRaey4kaSIaeyiiIa TaaeyuaiaabcfacaqGsbGaeyypa0JaaGymaiaaiIdacaaIWaGaeyiS aalabaGaeyiiIaTaaeyuaiaabcfacaqGsbGaeyypa0JaaGymaiaaiI dacaaIWaGaeyiSaaRaeyOeI0IaaGyoaiaaicdacqGHWcaSaeaacaWL jaGaaGjbVlaaysW7cqGH9aqpcaaI5aGaaGimaiabgclaWcqaaiaabs facaqGObGaaeyzaiaabkhacaqGLbGaaeOzaiaab+gacaqGYbGaaeyz aiaabYcacaqGGaGaeyiLdqKaaeiuaiaabgfacaqGsbGaaeiiaiaabM gacaqGZbGaaeiiaiaabggacaqGGaGaaeOCaiaabMgacaqGNbGaaeOz aiaabIgacaqG0bGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqGLb GaaeizaiaabccacaqG0bGaaeOCaiaabMgacaqGHbGaaeOBaiaabEga caqGSbGaaeyzaiaabccacaqGHbGaaeiDaiaabccacaqGqbGaaeOlaa qaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaaeiiamaaL4babaGa aeiuaiaabgfadaahaaWcbeqaaiaabkdaaaGccqGHRaWkcaqGsbGaae iuamaaCaaaleqabaGaaeOmaaaakiabg2da9iaabgfacaqGsbWaaWba aSqabeaacaqGYaaaaaaaaOqaaiaabofacaqGVbGaaeilaiaabccaca qGOaGaaeyAaiaabMgacaqGPaGaaeiiaiaabMgacaqGZbGaaeiiaiaa bshacaqGYbGaaeyDaiaabwgacaqGUaaaaaa@D7AA@

Q.7

Find the perimeter of the rectangle whose length is 40 cmand a diagonal is 41cm.

Ans.

In a rectangle, all interior angles are of 90º measure. Therefore,Pythagoras theorem can be applied here. ( 41 ) 2 = ( 40 ) 2 + x 2 1681 =1600 + x 2 x 2 = 1681 1600 = 81 x= 9 cm So, Perimeter =2( Length + Breadth ) = 2( x+ 40 ) = 2 ( 9 + 40 ) = 98 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGjbGaaeOBaiaabccacaqGHbGaaeii aiaabkhacaqGLbGaae4yaiaabshacaqGHbGaaeOBaiaabEgacaqGSb GaaeyzaiaacYcacaqGGaGaaeyyaiaabYgacaqGSbGaaeiiaiaabMga caqGUbGaaeiDaiaabwgacaqGYbGaaeyAaiaab+gacaqGYbGaaeiiai aabggacaqGUbGaae4zaiaabYgacaqGLbGaae4CaiaabccacaqGHbGa aeOCaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyoaiaaicdaca GG6cGaaeiiaiaab2gacaqGLbGaaeyyaiaabohacaqG1bGaaeOCaiaa bwgacaGGUaaabaGaaeivaiaabIgacaqGLbGaaeOCaiaabwgacaqGMb Gaae4BaiaabkhacaqGLbGaaiilaiaabcfacaqG5bGaaeiDaiaabIga caqGHbGaae4zaiaab+gacaqGYbGaaeyyaiaabohacaqGGaGaaeiDai aabIgacaqGLbGaae4BaiaabkhacaqGLbGaaeyBaiaabccacaqGJbGa aeyyaiaab6gacaqGGaGaaeOyaiaabwgacaqGGaGaaeyyaiaabchaca qGWbGaaeiBaiaabMgacaqGLbGaaeizaiaabccacaqGObGaaeyzaiaa bkhacaqGLbGaaiOlaaqaaiaaxMaacaWLjaWaaeWaaeaacaqG0aGaae ymaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaakiaaysW7caaM e8Uaeyypa0ZaaeWaaeaacaqG0aGaaGimaaGaayjkaiaawMcaamaaCa aaleqabaGaaeOmaaaakiabgUcaRiaadIhadaahaaWcbeqaaiaabkda aaaakeaacaWLjaGaaCzcaiaabgdacaqG2aGaaeioaiaabgdacaqGGa Gaeyypa0JaaeymaiaabAdacaaIWaGaaGimaiaabccacqGHRaWkcaWG 4bWaaWbaaSqabeaacaqGYaaaaaGcbaGaaCzcaiaaxMaacaaMe8UaaG jbVlaaysW7caaMe8UaamiEamaaCaaaleqabaGaaeOmaaaakiabg2da 9iaabccacaqGXaGaaeOnaiaabIdacaqGXaGaaeiiaiabgkHiTiaabc cacaqGXaGaaeOnaiaaicdacaaIWaaabaGaaCzcaiaaxMaacaaMe8Ua aGjbVlaabccacaaMe8UaaCzcaiaaysW7caaMe8Uaeyypa0Jaaeiiai aabIdacaqGXaaabaGaaCzcaiaaxMaacaaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaadIhacqGH9aqpcaqGGaGaaeyoaiaabccacaqGJbGaae yBaaqaaiaabofacaqGVbGaaeilaiaabccacaqGqbGaaeyzaiaabkha caqGPbGaaeyBaiaabwgacaqG0bGaaeyzaiaabkhacaqGGaGaeyypa0 JaaeOmamaabmaabaGaaeitaiaabwgacaqGUbGaae4zaiaabshacaqG ObGaaeiiaiabgUcaRiaabccacaqGcbGaaeOCaiaabwgacaqGHbGaae izaiaabshacaqGObaacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacaWL jaGaaGjbVlaaysW7cqGH9aqpcaqGGaGaaeOmamaabmaabaGaamiEai abgUcaRiaabccacaqG0aGaaGimaaGaayjkaiaawMcaaaqaaiaaxMaa caWLjaGaaCzcaiaaysW7caaMe8Uaeyypa0JaaeiiaiaabkdacaqGGa WaaeWaaeaacaqG5aGaaeiiaiabgUcaRiaabccacaqG0aGaaGimaaGa ayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaCzcaiaaysW7caaMe8Uaey ypa0JaaeiiamaaL4babaGaaeyoaiaabIdacaqGGaGaae4yaiaab2ga aaaaaaa@2661@

Q.8

The diagonals of a rhombus measure 16 cm and 30 cm.Find its perimeter.

Ans.

Let ABCD be a rhombus( all sides are of equal length )and its diagonals, AC and BD, are intersecting each other at point O. Since, diagonals of a rhombus bisect each other at 90°. So, By applying Pythagoras theorem in ΔAOB, OA 2 + OB 2 = AB 2 8 2 + 15 2 = AB 2 64+225 = AB 2 289 = AB 2 AB = 17 cm Therefore,the length of the side of rhombus is 17 cm. Perimeter of rhombus =4×Side of the rhombus = 4×17 = 68 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGmbGaaeyzaiaabshacaqGGaGaaeyq aiaabkeacaqGdbGaaeiraiaabccacaqGIbGaaeyzaiaabccacaqGHb GaaeiiaiaabkhacaqGObGaae4Baiaab2gacaqGIbGaaeyDaiaaboha daqadaqaaiaabggacaqGSbGaaeiBaiaabccacaqGZbGaaeyAaiaabs gacaqGLbGaae4CaiaabccacaqGHbGaaeOCaiaabwgacaqGGaGaae4B aiaabAgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabYgacaqGGa GaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObaacaGLOaGaayzk aaGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaqG0bGaae4Caaqaai aabsgacaqGPbGaaeyyaiaabEgacaqGVbGaaeOBaiaabggacaqGSbGa ae4CaiaacYcacaqGGaGaaeyqaiaaboeacaqGGaGaaeyyaiaab6gaca qGKbGaaeiiaiaabkeacaqGebGaaiilaiaabccacaqGHbGaaeOCaiaa bwgacaqGGaGaaeyAaiaab6gacaqG0bGaaeyzaiaabkhacaqGZbGaae yzaiaabogacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqG HbGaae4yaiaabIgacaqGGaGaae4BaiaabshacaqGObGaaeyzaiaabk hacaqGGaGaaeyyaiaabshacaqGGaGaaeiCaiaab+gacaqGPbGaaeOB aiaabshacaqGGaGaae4taiaac6caaeaacaqGtbGaaeyAaiaab6gaca qGJbGaaeyzaiaabYcacaqGGaGaaeizaiaabMgacaqGHbGaae4zaiaa b+gacaqGUbGaaeyyaiaabYgacaqGZbGaaeiiaiaab+gacaqGMbGaae iiaiaabggacaqGGaGaaeOCaiaabIgacaqGVbGaaeyBaiaabkgacaqG 1bGaae4CaiaabccacaqGIbGaaeyAaiaabohacaqGLbGaae4yaiaabs hacaqGGaGaaeyzaiaabggacaqGJbGaaeiAaiaabccacaqGVbGaaeiD aiaabIgacaqGLbGaaeOCaiaabccacaqGHbGaaeiDaiaabccacaqG5a GaaGimaiabgclaWkaac6caaeaacaqGtbGaae4BaiaabYcaaeaacaqG cbGaaeyEaiaabccacaqGHbGaaeiCaiaabchacaqGSbGaaeyEaiaabM gacaqGUbGaae4zaiaabccacaqGqbGaaeyEaiaabshacaqGObGaaeyy aiaabEgacaqGVbGaaeOCaiaabggacaqGZbGaaeiiaiaabshacaqGOb Gaaeyzaiaab+gacaqGYbGaaeyzaiaab2gacaqGGaGaaeyAaiaab6ga caqGGaGaeuiLdqKaaeyqaiaab+eacaqGcbGaaiilaaqaaiaab+eaca qGbbWaaWbaaSqabeaacaqGYaaaaOGaey4kaSIaae4taiaabkeadaah aaWcbeqaaiaabkdaaaGccqGH9aqpcaqGGaGaaeyqaiaabkeadaahaa WcbeqaaiaabkdaaaaakeaacaaMe8UaaGjbVlaaysW7caqG4aWaaWba aSqabeaacaqGYaaaaOGaey4kaSIaaeymaiaabwdadaahaaWcbeqaai aabkdaaaGccqGH9aqpcaqGGaGaaeyqaiaabkeadaahaaWcbeqaaiaa bkdaaaaakeaacaaMe8UaaeOnaiaabsdacqGHRaWkcaqGYaGaaeOmai aabwdacaqGGaGaeyypa0JaaeiiaiaabgeacaqGcbWaaWbaaSqabeaa caqGYaaaaaGcbaGaaCzcaiaaysW7caaMe8UaaeOmaiaabIdacaqG5a Gaaeiiaiabg2da9iaabccacaqGbbGaaeOqamaaCaaaleqabaGaaeOm aaaaaOqaaiaaxMaacaaMe8UaaGjbVlaaysW7caqGbbGaaeOqaiaabc cacqGH9aqpcaqGGaGaaeymaiaabEdacaqGGaGaae4yaiaab2gaaeaa caqGubGaaeiAaiaabwgacaqGYbGaaeyzaiaabAgacaqGVbGaaeOCai aabwgacaGGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaabYgacaqGLbGa aeOBaiaabEgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccaca qG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaa bccacaqGVbGaaeOzaiaabccacaqGYbGaaeiAaiaab+gacaqGTbGaae OyaiaabwhacaqGZbGaaeiiaiaabMgacaqGZbGaaeiiaiaabgdacaqG 3aGaaeiiaiaabogacaqGTbGaaiOlaaqaaiaabcfacaqGLbGaaeOCai aabMgacaqGTbGaaeyzaiaabshacaqGLbGaaeOCaiaabccacaqGVbGa aeOzaiaabccacaqGYbGaaeiAaiaab+gacaqGTbGaaeOyaiaabwhaca qGZbGaaeiiaiabg2da9iaabsdacqGHxdaTcaqGtbGaaeyAaiaabsga caqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGYbGaaeiAaiaab+gacaqGTbGaaeOyaiaabwhacaqGZbaa baGaaeiiaiaaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaeyypa0Jaae iiaiaabsdacqGHxdaTcaqGXaGaae4naaqaaiaabccacaWLjaGaaCzc aiaaxMaacaWLjaGaaCzcaiabg2da9iaabccadaqjEaqaaiaabAdaca qG4aGaaeiiaiaabogacaqGTbaaaaaaaa@9BE4@

Please register to view this section