NCERT Solutions for Class 7 Maths Chapter 5 Lines and Angles (EX 5.1) Exercise 5.1

Class 7 is undeniably one of the most significant years in a student’s education. Students’ academic careers are shaped by the lessons they learn in Class 7. Throughout a person’s life, the knowledge acquired in Class 7 is applied in a variety of ways. Each topic covered in Class 7 can significantly contribute to students’ progress. The exams taken in Class 7 are very crucial. Students must put in a lot of work to succeed in the Class 7 exams. Students might benefit from performing well on the Class 7 exams throughout their careers. Students’ confidence increases by doing well in the exams, and they will not be afraid of future exams. As a result, they will be able to do better in future tests. In Class 7, there are several subjects that students must learn. Therefore, Class 7 serves as a year where students take crucial steps for their future academic careers. Mathematics is a very important subject for Class 7 students to learn. While studying Mathematics, students frequently struggle to find useful resources to help in their studies. Extramarks provides a comprehensive response to the necessities of students’ studies. Even though NCERT textbooks are fantastic study resources, students still struggle to get reliable NCERT solutions. Extramarks provides accurate and comprehensive NCERT solutions such as the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. Additionally, it offers a complete learning solution that brings together the advantages of real-time instruction and the benefits of a Learning App to give students a smooth learning experience.

For Class 7 students to advance in their preparation for the yearly examinations in Mathematics, the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 act as a very useful resource. The CBSE suggests the NCERT Mathematics textbook for Class 7 students. The NCERT textbook is also suggested by a number of other state boards as well. Therefore, the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 provided by Extramarks will be helpful to students from various boards as well as those from the CBSE. The problems in the exercises of the NCERT books have answers provided at the end. However, only providing answers is insufficient since  students also need to grasp the methods required to arrive at the answer. If the methods and steps are clear, students can learn how to respond to any question that is posed to them. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 by Extramarks is an example of the type of study resource that enables students to comprehend and learn about the answers and methods from the base.

Lines and Angles are covered in Chapter 5 of the NCERT textbook for Class 7. Class 7 Maths Exercise 5.1 is based on some of the basic concepts of Lines and Angles. It covers various important concepts like Complementary and Supplementary Angles, Adjacent Angles, Linear Pair, etc. Along with other study materials offered by Extramarks, the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 cover all of the key ideas given in the CBSE syllabus for the Class 7 exams. Expert teachers created the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 to help students be ready for questions found in CBSE Class 7 exams. Students can prepare for a variety of competitive exams like, the Olympiads, by practising the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. To become proficient with the problems, students should practise the NCERT Solutions for Class 7 Maths Chapter 5 Exercise 5.1 several times.In order to finish the exam question paper within the allotted time, students should practise the NCERT textbook exercises regularly. Their inability to finish the question paper within the allotted time is frequently caused by a lack of practise. The exam paper also has a number of NCERT book-related questions. Students who have access to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 learn how to formulate their answers so that they can finish the question paper within the time limit

The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 are useful for students making preparations for the yearly examinations since they are written in simple terms that every student can understand. In order to help students succeed in their exams, the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 have been written in a step-by-step fashion. Following these solutions will help students save time and keep them from having to go elsewhere to find the topics covered in the curriculum or the marks distribution. The most recent CBSE syllabus and guidelines were followed during the creation of the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 provide complete and error-free solutions to every question in the exercise. By continuously practising NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1, students may answer such questions quickly and accurately in exams. Students do not require any additional support to use the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 because they are written in an easy-to-understand manner.

NCERT Solutions for Class 7 Maths Chapter 5 Lines and Angles (EX 5.1) Exercise 5.1  

Extramarks provides the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 in PDF format. Class 7 students can easily download them from the Extramarks website and mobile application. This will give them offline access to the solutions for easy use in the future.

Access NCERT Solutions for class 7 Maths Chapter 5 – Lines And Angles

For Class 7 students preparing for the annual exams, Extramarks provides access to a variety of study materials. Each of the study tools available on the Extramarks app and website has been compiled by academic professionals from a variety of fields. Due to the contributions of several academicians, the study materials and learning modules are interesting and easy to grasp. Students can also access the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 through the Extramarks portal. The Class 7 Maths Chapter 5 Exercise 5.1 Solutions can be downloaded from the Extramarks website and mobile application in a downloadable PDF format.

NCERT Solutions for Class 7 Maths Chapter 5 Lines and Angles Exercise 5.1

Receiving the proper training is essential to grasping the large number of concepts taught in Mathematics in Class 7. Attaining success in subjects like Mathematics can be challenging, and the pressure of exams only makes it more challenging. To thoroughly understand the principles in a particular topic, students can use different forms of support from Extramarks in addition to getting access to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 from the finest subject specialists. Through the use of the carefully prepared study materials offered by Extramarks, students can receive the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 engineered by renowned subject experts. With the aid of these study tools, students might feel more confident in their approach to their upcoming exams. Class 7 comprises a number of tests at the school level. Students need expert guidance, though, in order to perform well on these exams. Having access to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 could improve exam preparation.

In addition to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1, Extramarks also provides study materials for students in Class 7. The study materials make it easier to fully comprehend the ideas required to do Class 7 Maths Chapter 5 Exercise 5.1. Students can revise their chapter summaries with the help of these study materials. They are created by highly knowledgeable instructors with many years of expertise in a clear and understandable way. Extramarks provides practise worksheets for each chapter, sample papers, and more. As a result, students do not have to search elsewhere for more materials because they can discover everything they need in just one place. Through Extramarks, studentscan study with some of the top instructors who have years of professional expertise in their respective disciplines. They thoroughly explain each topic using learning modules with interesting visuals and animations. As a tool to assist students to raise their grades and accomplish their learning objectives, Extramarks consistently emphasises fundamentals in addition to thorough and quick learning. To help students with their preparation, subject experts have also provided numerous other resources, including the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 and others.

The most important strategy for preparing for exams is to complete NCERT exercises. As a result, it is usually suggested that students practise the questions from the NCERT textbook. They also require the correct answers to the questions in order to validate their answers. Students may be able to get the assistance they require when preparing for exams through the NCERT solutions provided by Extramarks. Using the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 will allow them to apply the concepts from the lesson in a more simple and thorough way. Highly skilled teachers wrote detailed and error-free NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. These answers were developed keeping the mental capabilities of Class 7 students in mind. The complex problems in this exercise have been divided into smaller, more manageable parts to make writing their answers much easier. Teachers frequently emphasise how important it is to provide comprehensive, stepwise answers in exams to get full marks. Students must carefully follow the framework provided in the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 for the best results.

Class 7 students must use the books produced by the National Council of Educational Research and Training (NCERT) in accordance with CBSE norms. The Mathematics textbooks for Class 7 are published by the NCERT. There are various exercises in each chapter of the NCERT Mathematics textbook. Students are typically instructed to read the NCERT book line by line. Students should try to answer the questions given in the book after finishing each chapter, including those in the examples and exercises. Students must have the correct answers to evaluate after answering the questions. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 are therefore available on Extramarks. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 have been provided by Extramarks in a stepwise format to help students fully comprehend the problems, even if they are dealing with them for the first time. Alternative solutions to some questions that are easier to understand are also included in Extramarks’ NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1.

NCERT Solutions for Class 7

NCERT solutions are generally available on the internet. Students can find NCERT solutions from teachers with experience and qualifications on a variety of websites. However, students need to be sure that these sources are reliable. One such website is the Extramarks website. Extramarks provides NCERT solutions for Class 7 students in all subjects. Hence, it acts as a one-stop solution for students’ needs in all subjects.

Before taking the annual exams, Class 7 students need access to a range of problems and clearly explained solutions. The majority of question banks use NCERT textbook questions as the basis for their content. Students understand the concepts more rapidly when they have access to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 because it makes it easier for them to answer the questions. Learning new concepts fast helps students feel better prepared for any exam. Additionally, students benefit from having extra study time while maintaining their ability to concentrate on other academic responsibilities. Understanding the methods given in the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 will help them advance in their preparation. Having access to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 that are tailored to students’ needs can be a useful study tool despite the chapter’s relatively challenging and complex content. Learning the concepts of Lines and Angles will be simpler if students use these study tools. They could practise solving the NCERT questions if they want to consistently make progress while working on other papers or subjects. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 by Extramarks is one example of scholarly material that focuses on a specific topic. This may help them complete the chapter thoroughly. Extramarks offers a variety of learning modules and study tools, including chapter-by-chapter worksheets and adaptive tests, for students who desire to perform better on their exams. In order to complete learning, practising and testing at the same place, Extramarks offers these resources. Due to the fact that Extramarks’ NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 are authored and compiled by highly qualified mentors, all students are provided with a perfect educational experience.

Q.1

Find the complement of the following angles:

Ans.

(i) 20° Since the sum of complementary angle is 90° So, we have Complement=90°20°= 70° (ii) 63° Since the sum of complementary angle is 90° So, we have Complement=90°63°= 27° (iii) 57° Since the sum of complementary angle is 90° So, we have Complement=90°57°= 33° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeOm aiaabcdacqGHWcaSaeaacaqGtbGaaeyAaiaab6gacaqGJbGaaeyzai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabwhacaqGTbGa aeiiaiaab+gacaqGMbGaaeiiaiaabogacaqGVbGaaeyBaiaabchaca qGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGHbGaaeOCaiaa bMhacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBaiaabwgacaqGGaGaae yAaiaabohacaqGGaGaaeyoaiaabcdacqGHWcaSaeaacaqGtbGaae4B aiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2b GaaeyzaaqaaiaaboeacaqGVbGaaeyBaiaabchacaqGSbGaaeyzaiaa b2gacaqGLbGaaeOBaiaabshacqGH9aqpcaqG5aGaaeimaiabgclaWk abgkHiTiaaikdacaaIWaGaeyiSaaRaeyypa0ZaauIhaeaacaaI3aGa aGimaiabgclaWcaaaeaacaqGOaGaaeyAaiaabMgacaqGPaGaaeiiai aabAdacaqGZaGaeyiSaalabaGaae4uaiaabMgacaqGUbGaae4yaiaa bwgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1bGaae yBaiaabccacaqGVbGaaeOzaiaabccacaqGJbGaae4Baiaab2gacaqG WbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaiaabk hacaqG5bGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqGLbGaaeii aiaabMgacaqGZbGaaeiiaiaabMdacaqGWaGaeyiSaalabaGaae4uai aab+gacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGa aeODaiaabwgaaeaacaqGdbGaae4Baiaab2gacaqGWbGaaeiBaiaabw gacaqGTbGaaeyzaiaab6gacaqG0bGaeyypa0JaaeyoaiaabcdacqGH WcaScqGHsislcaaI2aGaaG4maiabgclaWkabg2da9maaL4babaGaaG OmaiaaiEdacqGHWcaSaaaabaGaaeikaiaabMgacaqGPbGaaeyAaiaa bMcacaqGGaGaaeynaiaabEdacqGHWcaSaeaacaqGtbGaaeyAaiaab6 gacaqGJbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4C aiaabwhacaqGTbGaaeiiaiaab+gacaqGMbGaaeiiaiaabogacaqGVb GaaeyBaiaabchacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabsha caqGHbGaaeOCaiaabMhacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBai aabwgacaqGGaGaaeyAaiaabohacaqGGaGaaeyoaiaabcdacqGHWcaS aeaacaqGtbGaae4BaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae iAaiaabggacaqG2bGaaeyzaaqaaiaaboeacaqGVbGaaeyBaiaabcha caqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacqGH9aqpcaqG5a GaaeimaiabgclaWkabgkHiTiaaiwdacaaI3aGaeyiSaaRaeyypa0Za auIhaeaacaaIZaGaaG4maiabgclaWcaaaaaa@25ED@

Q.2 Find the supplement of the following angles:

Ans.

(i) 105° Since the sum of supplementary angle is 180° So, we have Complement=180°105°= 75° (ii) 87° Since the sum of Supplementary angle is 180° So, we have Complement=180°87°= 93° (iii) 154° Since the sum of Supplementary angle is 180° So, we have Complement=180°154°= 26° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeym aiaabcdacaqG1aGaeyiSaalabaGaae4uaiaabMgacaqGUbGaae4yai aabwgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1bGa aeyBaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaaeyDaiaabchaca qGWbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaiaa bkhacaqG5bGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqGLbGaae iiaiaabMgacaqGZbGaaeiiaiaabgdacaqG4aGaaeimaiabgclaWcqa aiaabofacaqGVbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGOb GaaeyyaiaabAhacaqGLbaabaGaae4qaiaab+gacaqGTbGaaeiCaiaa bYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaiabg2da9iaabgdaca qG4aGaaeimaiabgclaWkabgkHiTiaaigdacaaIWaGaaGynaiabgcla Wkabg2da9maaL4babaGaaG4naiaaiwdacqGHWcaSaaaabaGaaeikai aabMgacaqGPbGaaeykaiaabccacaqG4aGaae4naiabgclaWcqaaiaa bofacaqGPbGaaeOBaiaabogacaqGLbGaaeiiaiaabshacaqGObGaae yzaiaabccacaqGZbGaaeyDaiaab2gacaqGGaGaae4BaiaabAgacaqG GaGaae4uaiaabwhacaqGWbGaaeiCaiaabYgacaqGLbGaaeyBaiaabw gacaqGUbGaaeiDaiaabggacaqGYbGaaeyEaiaabccacaqGHbGaaeOB aiaabEgacaqGSbGaaeyzaiaabccacaqGPbGaae4CaiaabccacaqGXa GaaeioaiaabcdacqGHWcaSaeaacaqGtbGaae4BaiaabYcacaqGGaGa ae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaabo eacaqGVbGaaeyBaiaabchacaqGSbGaaeyzaiaab2gacaqGLbGaaeOB aiaabshacqGH9aqpcaqGXaGaaeioaiaabcdacqGHWcaScqGHsislca aI4aGaaG4naiabgclaWkabg2da9maaL4babaGaaGyoaiaaiodacqGH WcaSaaGaaeikaiaabMgacaqGPbGaaeyAaiaabMcacaqGGaGaaeymai aabwdacaqG0aGaeyiSaalabaGaae4uaiaabMgacaqGUbGaae4yaiaa bwgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1bGaae yBaiaabccacaqGVbGaaeOzaiaabccacaqGtbGaaeyDaiaabchacaqG WbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaiaabk hacaqG5bGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqGLbGaaeii aiaabMgacaqGZbGaaeiiaiaabgdacaqG4aGaaeimaiabgclaWcqaai aabofacaqGVbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGObGa aeyyaiaabAhacaqGLbaabaGaae4qaiaab+gacaqGTbGaaeiCaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaiabg2da9iaabgdacaqG 4aGaaeimaiabgclaWkabgkHiTiaaigdacaaI1aGaaGinaiabgclaWk abg2da9maaL4babaGaaGOmaiaaiAdacqGHWcaSaaaaaaa@2D1D@

Q.3

Identify which of the following pairs of angles arencomplementary and which are supplementary.(i) 65°, 115° (ii) 63°, 27° (iii) 112°, 68°(iv)130°, 50° (v) 45°, 45° (vi) 80°, 10°

Ans.

(i) 65°, 115°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 65°+115°=180°Therefore, given pair is supplemenatry.(ii) 63°, 27°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 63°+27°=90°Therefore, given pair is complementary.(iii) 112°, 68°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 112°+68°=180°Therefore, given pair is supplemenatry.(iv) 130°, 50°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 130°+50°=180°Therefore, given pair is supplemenatry.(v) 45°, 45°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 45°+45°=90°Therefore, given pair is complementary.(vi) 80°, 10°Since, the sum of complementary angle is 90°and sum ofsupplementary angle is 180°.So, 80°+10°=90°Therefore, given pair is complementary.

Q.4

Find the angle which is equal to its complement.

Ans.

Let the angle be x.Since, it also equal to its complement.So, complement angle = x.Sum of complementary angle is 90°So, we getx+x=90°2x=90°x=90°2=45°Thus, the angle be 45°.

Q.5

Find the angle which is equal to its supplement.

Ans.

Let the angle be x. Since, it also equal to its supplement.So, supplement angle = x.Sum of supplementary angle is 180°So, we getx+x=180°2x=180°x=180°2=90°Thus, the angle be 90°.

Q.6

In the given figure, 1 and 2 are supplementary angles. If 1 is decreased, what changes should take place in 2 so that both angles still remain supplementary.

Ans.

Since,1 and 2are supplementary angles. If 1 reduced, then 2 should be increased by the same measure so that this angle remain supplementary. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGtbGaaeyAaiaab6gacaqGJbGaaeyz aiaabYcacaaMe8UaeyiiIaTaaGymaiaabccacaqGHbGaaeOBaiaabs gacaqGGaGaeyiiIaTaaGOmaiaaysW7caqGHbGaaeOCaiaabwgacaqG GaGaae4CaiaabwhacaqGWbGaaeiCaiaabYgacaqGLbGaaeyBaiaabw gacaqGUbGaaeiDaiaabggacaqGYbGaaeyEaiaabccacaqGHbGaaeOB aiaabEgacaqGSbGaaeyzaiaabohacaqGUaaabaGaaeysaiaabAgaca qGGaGaeyiiIaTaaGymaiaaysW7caqGGaGaaeOCaiaabwgacaqGKbGa aeyDaiaabogacaqGLbGaaeizaiaabYcacaqGGaGaaeiDaiaabIgaca qGLbGaaeOBaiaabccacqGHGic0caaIYaGaaeiiaiaabohacaqGObGa ae4BaiaabwhacaqGSbGaaeizaiaabccacaqGIbGaaeyzaiaabccaca qGPbGaaeOBaiaabogacaqGYbGaaeyzaiaabggacaqGZbGaaeyzaiaa bsgacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaae iiaiaabohacaqGHbGaaeyBaiaabwgacaqGGaaabaGaaeyBaiaabwga caqGHbGaae4CaiaabwhacaqGYbGaaeyzaiaabccacaqGZbGaae4Bai aabccacaqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGa aeyAaiaabohacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBaiaabwgaca qGGaGaaeOCaiaabwgacaqGTbGaaeyyaiaabMgacaqGUbGaaeiiaiaa bohacaqG1bGaaeiCaiaabchacaqGSbGaaeyzaiaab2gacaqGLbGaae OBaiaabshacaqGHbGaaeOCaiaabMhacaqGUaaaaaa@C186@

Q.7

Can two angles be supplementary if both of them are(i) acute?(ii) obtuse?(iii) right?

Ans.

(i) No, if both angles are acute, that means that both angles are less than 90°. In that case, their sum can not be equal to 180°.(ii) No, if both angles are obtuse, that means that both angles greater than 90°. In that case, their sum will exceed 180°.(iii) Yes, if both angles are right angles, that is, 90°,then their sum will be exact 180°.

Q.8 An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Ans.

Let x and y be two angles having complementary angle pairand x is greater than 45°.Then,x+y=90°y=90°xThus, y will be less than 45°.

Q.9

In the adjoining figure:(i) Is 1 adjacent to 2?(ii)Is AOC adjacent to AOE?(iii) Do COE andEODform a linear pair?(iv) Are BOD and DOAsupplementary?(v) Is 1 vertically opposite to 4?(v) What is the vertically opposite angle of 5?

Ans.

(i) Yes, since they have a common vetex O and also a common arm OC. Also, their non-common arms, OA and OB are on either side of the common arm. (ii) No. they have a common vertex O and also a common arm OA. However, their non common arms, OC and OE are on the same side of the common arm. Therefore, theses are not adjacent to each other. (iii) Yes, since they have a common vertex O and a common arm OE. Also, their non common arms OC and OD, are opposite rays. (iv) Yes, since BOD and DOA have a common vertex O and their non-common arms opposite to each other. (v) Yes, since these are fromed dure to the intersection of two straight lines (AB and CD) (vi) COB is the vertically opposite angle of 5 as these are formed due to the intersection of two straight lines AB and CD. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeyw aiaabwgacaqGZbGaaeilaiaabccacaqGZbGaaeyAaiaab6gacaqGJb GaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqG5bGaaeiiaiaabIga caqGHbGaaeODaiaabwgacaqGGaGaaeyyaiaabccacaqGJbGaae4Bai aab2gacaqGTbGaae4Baiaab6gacaqGGaGaaeODaiaabwgacaqG0bGa aeyzaiaabIhacaqGGaGaae4taiaabccacaqGHbGaaeOBaiaabsgaca qGGaGaaeyyaiaabYgacaqGZbGaae4BaiaabccacaqGHbGaaeiiaiaa bogacaqGVbGaaeyBaiaab2gacaqGVbGaaeOBaaqaaiaabggacaqGYb GaaeyBaiaabccacaqGpbGaae4qaiaab6cacaqGGaGaaeyqaiaabYga caqGZbGaae4BaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeyAai aabkhacaqGGaGaaeOBaiaab+gacaqGUbGaaeylaiaabogacaqGVbGa aeyBaiaab2gacaqGVbGaaeOBaiaabccacaqGHbGaaeOCaiaab2gaca qGZbGaaeilaiaabccacaqGpbGaaeyqaiaaygW7caqGGaGaaeyyaiaa b6gacaqGKbGaaeiiaiaab+eacaqGcbGaaeiiaiaabggacaqGYbGaae yzaiaabccacaqGVbGaaeOBaaqaaiaabwgacaqGPbGaaeiDaiaabIga caqGLbGaaeOCaiaabccacaqGZbGaaeyAaiaabsgacaqGLbGaaeiiai aab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGa ae4Baiaab2gacaqGTbGaae4Baiaab6gacaqGGaGaaeyyaiaabkhaca qGTbGaaeOlaaqaaiaabIcacaqGPbGaaeyAaiaabMcacaqGGaGaaeOt aiaab+gacaqGUaGaaeiiaiaabshacaqGObGaaeyzaiaabMhacaqGGa GaaeiAaiaabggacaqG2bGaaeyzaiaabccacaqGHbGaaeiiaiaaboga caqGVbGaaeyBaiaab2gacaqGVbGaaeOBaiaabccacaqG2bGaaeyzai aabkhacaqG0bGaaeyzaiaabIhacaqGGaGaae4taiaabccacaqGHbGa aeOBaiaabsgacaqGGaGaaeyyaiaabYgacaqGZbGaae4Baiaabccaca qGHbGaaeiiaiaabogacaqGVbGaaeyBaiaab2gacaqGVbGaaeOBaaqa aiaabggacaqGYbGaaeyBaiaabccacaqGpbGaaeyqaiaab6cacaqGGa Gaaeisaiaab+gacaqG3bGaaeyzaiaabAhacaqGLbGaaeOCaiaabYca caqGGaGaaeiDaiaabIgacaqGLbGaaeyAaiaabkhacaqGGaGaaeOBai aab+gacaqGUbGaaeiiaiaabogacaqGVbGaaeyBaiaab2gacaqGVbGa aeOBaiaabccacaqGHbGaaeOCaiaab2gacaqGZbGaaeilaiaabccaca qGpbGaae4qaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaae4taiaa bweacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaab+gacaqGUbaaba GaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGHbGaaeyBaiaabwga caqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabccacaqGVbGaaeOzai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGTbGa aeyBaiaab+gacaqGUbGaaeiiaiaabggacaqGYbGaaeyBaiaab6caca qGGaGaaeivaiaabIgacaqGLbGaaeOCaiaabwgacaqGMbGaae4Baiaa bkhacaqGLbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGZbGaae yzaiaabohacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaab6gacaqG VbGaaeiDaaqaaiaabggacaqGKbGaaeOAaiaabggacaqGJbGaaeyzai aab6gacaqG0bGaaeiiaiaabshacaqGVbGaaeiiaiaabwgacaqGHbGa ae4yaiaabIgacaqGGaGaae4BaiaabshacaqGObGaaeyzaiaabkhaca qGUaaabaGaaeikaiaabMgacaqGPbGaaeyAaiaabMcacaqGGaGaaeyw aiaabwgacaqGZbGaaeilaiaabccacaqGZbGaaeyAaiaab6gacaqGJb GaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqG5bGaaeiiaiaabIga caqGHbGaaeODaiaabwgacaqGGaGaaeyyaiaabccacaqGJbGaae4Bai aab2gacaqGTbGaae4Baiaab6gacaqGGaGaaeODaiaabwgacaqGYbGa aeiDaiaabwgacaqG4bGaaeiiaiaab+eacaqGGaGaaeyyaiaab6gaca qGKbGaaeiiaiaabggacaqGGaGaae4yaiaab+gacaqGTbGaaeyBaiaa b+gacaqGUbaabaGaaeyyaiaabkhacaqGTbGaaeiiaiaab+eacaqGfb GaaeOlaiaabccacaqGbbGaaeiBaiaabohacaqGVbGaaeilaiaabcca caqG0bGaaeiAaiaabwgacaqGPbGaaeOCaiaabccacaqGUbGaae4Bai aab6gacaqGGaGaae4yaiaab+gacaqGTbGaaeyBaiaab+gacaqGUbGa aeiiaiaabggacaqGYbGaaeyBaiaabohacaqGGaGaae4taiaaboeaca qGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaab+eacaqGebGaaeilaiaa bccacaqGHbGaaeOCaiaabwgaaeaacaqGVbGaaeiCaiaabchacaqGVb Gaae4CaiaabMgacaqG0bGaaeyzaiaabccacaqGYbGaaeyyaiaabMha caqGZbGaaeOlaaqaaiaabIcacaqGPbGaaeODaiaabMcacaqGGaGaae ywaiaabwgacaqGZbGaaeilaiaabccacaqGZbGaaeyAaiaab6gacaqG JbGaaeyzaiaabccacqGHGic0caqGcbGaae4taiaabseacaqGGaGaae yyaiaab6gacaqGKbGaaeiiaiabgcIiqlaabseacaqGpbGaaeyqaiaa bccacaqGObGaaeyyaiaabAhacaqGLbGaaeiiaiaabggacaqGGaGaae 4yaiaab+gacaqGTbGaaeyBaiaab+gacaqGUbGaaeiiaiaabAhacaqG LbGaaeOCaiaabshacaqGLbGaaeiEaiaabccacaqGpbGaaeiiaiaabg gacaqGUbGaaeizaiaabccaaeaacaqG0bGaaeiAaiaabwgacaqGPbGa aeOCaiaabccacaqGUbGaae4Baiaab6gacaqGTaGaae4yaiaab+gaca qGTbGaaeyBaiaab+gacaqGUbGaaeiiaiaabggacaqGYbGaaeyBaiaa bohacaqGGaGaae4BaiaabchacaqGWbGaae4BaiaabohacaqGPbGaae iDaiaabwgacaqGGaGaaeiDaiaab+gacaqGGaGaaeyzaiaabggacaqG JbGaaeiAaiaabccacaqGVbGaaeiDaiaabIgacaqGLbGaaeOCaiaab6 caaeaacaqGOaGaaeODaiaabMcacaqGGaGaaeywaiaabwgacaqGZbGa aeilaiaabccacaqGZbGaaeyAaiaab6gacaqGJbGaaeyzaiaabccaca qG0bGaaeiAaiaabwgacaqGZbGaaeyzaiaabccacaqGHbGaaeOCaiaa bwgacaqGGaGaaeOzaiaabkhacaqGVbGaaeyBaiaabwgacaqGKbGaae iiaiaabsgacaqG1bGaaeOCaiaabwgacaqGGaGaaeiDaiaab+gacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaabMgacaqGUbGaaeiDaiaabw gacaqGYbGaae4CaiaabwgacaqGJbGaaeiDaiaabMgacaqGVbGaaeOB aiaabccacaqGVbGaaeOzaiaabccacaqG0bGaae4Daiaab+gaaeaaca qGZbGaaeiDaiaabkhacaqGHbGaaeyAaiaabEgacaqGObGaaeiDaiaa bccacaqGSbGaaeyAaiaab6gacaqGLbGaae4CaiaabccacaqGOaGaae yqaiaabkeacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaaboeacaqG ebGaaeykaaqaaiaabIcacaqG2bGaaeyAaiaabMcacaqGGaGaeyiiIa Taae4qaiaab+eacaqGcbGaaeiiaiaabMgacaqGZbGaaeiiaiaabsha caqGObGaaeyzaiaabccacaqG2bGaaeyzaiaabkhacaqG0bGaaeyAai aabogacaqGHbGaaeiBaiaabYgacaqG5bGaaeiiaiaab+gacaqGWbGa aeiCaiaab+gacaqGZbGaaeyAaiaabshacaqGLbGaaeiiaiaabggaca qGUbGaae4zaiaabYgacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiab gcIiqlaaiwdacaqGGaGaaeyyaiaabohacaqGGaGaaeiDaiaabIgaca qGLbGaae4CaiaabwgacaqGGaGaaeyyaiaabkhacaqGLbaabaGaaeOz aiaab+gacaqGYbGaaeyBaiaabwgacaqGKbGaaeiiaiaabsgacaqG1b GaaeyzaiaabccacaqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwga caqGGaGaaeyAaiaab6gacaqG0bGaaeyzaiaabkhacaqGZbGaaeyzai aabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGa aeiiaiaabshacaqG3bGaae4BaiaabccacaqGZbGaaeiDaiaabkhaca qGHbGaaeyAaiaabEgacaqGObGaaeiDaiaabccacaqGSbGaaeyAaiaa b6gacaqGLbGaae4CaiaabccacaqGbbGaaeOqaiaabccacaqGHbGaae OBaiaabsgacaqGGaGaae4qaiaabseacaqGUaaaaaa@D551@

Q.10

Indicate which pairs of angles are:(i) Vertically opposite angles.(ii) Linear pairs.

Ans.

(i) 1 , 4and 5, ( 2+3 ) are vertically opposite angles as these formed due to the intersection of straight lines (ii) 1 and 5, 5and, 4 as these have common vertex and also have non-common arms opposite to each other. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaeyii IaTaaGymaiaabccacaqGSaGaaeiiaiabgcIiqlaaisdacaaMe8Uaae yyaiaab6gacaqGKbGaaeiiaiabgcIiqlaaiwdacaGGSaGaaeiiamaa bmaabaGaeyiiIaTaaGOmaiabgUcaRiabgcIiqlaaiodaaiaawIcaca GLPaaacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaabAhacaqGLbGa aeOCaiaabshacaqGPbGaae4yaiaabggacaqGSbGaaeiBaiaabMhaca qGGaGaae4BaiaabchacaqGWbGaae4BaiaabohacaqGPbGaaeiDaiaa bwgacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBaiaabwgacaqGZbaaba GaaeyyaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaae4Caiaabwga caqGGaGaaeOzaiaab+gacaqGYbGaaeyBaiaabwgacaqGKbGaaeiiai aabsgacaqG1bGaaeyzaiaabccacaqG0bGaae4BaiaabccacaqG0bGa aeiAaiaabwgacaqGGaGaaeyAaiaab6gacaqG0bGaaeyzaiaabkhaca qGZbGaaeyzaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabohacaqG0bGaaeOCaiaabggacaqGPbGaae 4zaiaabIgacaqG0bGaaeiiaiaabYgacaqGPbGaaeOBaiaabwgacaqG ZbaabaGaaeikaiaabMgacaqGPbGaaeykaiaabccacqGHGic0caaIXa GaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHGic0caqG1aGaaeil aiaabccacqGHGic0caaI1aGaaGjbVlaabggacaqGUbGaaeizaiaabY cacaqGGaGaeyiiIaTaaGinaiaabccacaqGHbGaae4CaiaabccacaqG 0bGaaeiAaiaabwgacaqGZbGaaeyzaiaabccacaqGObGaaeyyaiaabA hacaqGLbGaaeiiaiaabogacaqGVbGaaeyBaiaab2gacaqGVbGaaeOB aiaabccacaqG2bGaaeyzaiaabkhacaqG0bGaaeyzaiaabIhacaqGGa aabaGaaeyyaiaab6gacaqGKbGaaeiiaiaabggacaqGSbGaae4Caiaa b+gacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaiaabccacaqGUbGaae 4Baiaab6gacaqGTaGaae4yaiaab+gacaqGTbGaaeyBaiaab+gacaqG UbGaaeiiaiaabggacaqGYbGaaeyBaiaabohacaqGGaGaae4Baiaabc hacaqGWbGaae4BaiaabohacaqGPbGaaeiDaiaabwgacaqGGaGaaeiD aiaab+gacaqGGaGaaeyzaiaabggacaqGJbGaaeiAaiaabccacaqGVb GaaeiDaiaabIgacaqGLbGaaeOCaiaab6caaaaa@04E1@

Q.11 In the following figure, is

1

adjacent to

2

? Give reasons.

Ans.

1

and

2

are not adjacent angles because they don’t have common vertex.

Q.12

Find the values of the angles x, y and z in each of the following:

Ans.

(i) Since x and 55° are vertically opposite angles.So, x=55°x°+y°=180°55°+y°=180°y°=180°55°     =125°y°=z°(vertically opposite angles)So,z°=125°(ii) z°=40°(vertically opposite angles)y°+z°=180°(Linear pair)y°=180°40°     =140°40°+x°+25°=180°x°+65°=180°x°=180°65°     =115°

Q.13

Fill in the blanks:(i) If two angles are complementary, then the sum of their measures is______.(ii) If two angles are supplementary, then the sum of their measures is_____.(iii) Two angles forming a linear pair are_______________.(iv) If two adjacent angles are supplementary, they form a__________.(v) If two lines intersect at a point, then the vertically opposite angles are always_____________.(vi) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are__________.

Ans.

Fill in the blanks: ( i ) If two angles are complementary, then the sum of their measures is 90° . ( ii ) If two angles are supplementary, then the sum of their measures is 180° . ( iii ) Two angles forming a linear pair are supplementary . ( iv ) If two adjacent angles are supplementary, they form a Linear pair . ( v ) If two lines intersect at a point, then the vertically opposite angles are always equal . ( vi ) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are obtuse angles . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGgbGaaeyAaiaabYgacaqGSbGaaeii aiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIb GaaeiBaiaabggacaqGUbGaae4AaiaabohacaGG6aaabaWaaeWaaeaa caqGPbaacaGLOaGaayzkaaGaaeiiaiaabMeacaqGMbGaaeiiaiaabs hacaqG3bGaae4BaiaabccacaqGHbGaaeOBaiaabEgacaqGSbGaaeyz aiaabohacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaabogacaqGVb GaaeyBaiaabchacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabsha caqGHbGaaeOCaiaabMhacaGGSaGaaeiiaiaabshacaqGObGaaeyzai aab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1bGa aeyBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgaca qGPbGaaeOCaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaab2gacaqGLbGaaeyyaiaabohacaqG1bGaaeOCaiaabwgacaqGZb GaaeiiaiaabMgacaqGZbGaaeiiamaaL4babaGaaeyoaiaabcdacqGH WcaSaaGaaiOlaaqaamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPa aacaqGGaGaaeysaiaabAgacaqGGaGaaeiDaiaabEhacaqGVbGaaeii aiaabggacaqGUbGaae4zaiaabYgacaqGLbGaae4CaiaabccacaqGHb GaaeOCaiaabwgacaqGGaGaae4CaiaabwhacaqGWbGaaeiCaiaabYga caqGLbGaaeyBaiaabwgacaqGUbGaaeiDaiaabggacaqGYbGaaeyEai aacYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeOBaiaabccacaqG0bGa aeiAaiaabwgacaqGGaGaae4CaiaabwhacaqGTbGaaeiiaiaab+gaca qGMbGaaeiiaiaabshacaqGObGaaeyzaiaabMgacaqGYbaabaGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyBaiaabwgacaqGHb Gaae4CaiaabwhacaqGYbGaaeyzaiaabohacaqGGaGaaeyAaiaaboha caqGGaWaauIhaeaacaaIXaGaaGioaiaaicdacqGHWcaSaaGaaiOlaa qaamaabmaabaGaaeyAaiaabMgacaqGPbaacaGLOaGaayzkaaGaaeii aiaabsfacaqG3bGaae4BaiaabccacaqGHbGaaeOBaiaabEgacaqGSb GaaeyzaiaabohacaqGGaGaaeOzaiaab+gacaqGYbGaaeyBaiaabMga caqGUbGaae4zaiaabccacaqGHbGaaeiiaiaabYgacaqGPbGaaeOBai aabwgacaqGHbGaaeOCaiaabccacaqGWbGaaeyyaiaabMgacaqGYbGa aeiiaiaabggacaqGYbGaaeyzaiaabccadaqjEaqaaiaabohacaqG1b GaaeiCaiaabchacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabsha caqGHbGaaeOCaiaabMhaaaGaaiOlaaqaamaabmaabaGaaeyAaiaabA haaiaawIcacaGLPaaacaqGGaGaaeysaiaabAgacaqGGaGaaeiDaiaa bEhacaqGVbGaaeiiaiaabggacaqGKbGaaeOAaiaabggacaqGJbGaae yzaiaab6gacaqG0bGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqG LbGaae4CaiaabccacaqGHbGaaeOCaiaabwgacaqGGaGaae4Caiaabw hacaqGWbGaaeiCaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiD aiaabggacaqGYbGaaeyEaiaacYcacaqGGaGaaeiDaiaabIgacaqGLb GaaeyEaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGMbGaae4BaiaabkhacaqGTbGaaeiiaiaabggacaqGGaWaau IhaeaacaqGmbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGaGa aeiCaiaabggacaqGPbGaaeOCaaaacaGGUaaabaWaaeWaaeaacaqG2b aacaGLOaGaayzkaaGaaeiiaiaabMeacaqGMbGaaeiiaiaabshacaqG 3bGaae4BaiaabccacaqGSbGaaeyAaiaab6gacaqGLbGaae4Caiaabc cacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabohacaqGLbGaae4y aiaabshacaqGGaGaaeyyaiaabshacaqGGaGaaeyyaiaabccacaqGWb Gaae4BaiaabMgacaqGUbGaaeiDaiaacYcacaqGGaGaaeiDaiaabIga caqGLbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeODai aabwgacaqGYbGaaeiDaiaabMgacaqGJbGaaeyyaiaabYgacaqGSbGa aeyEaiaabccacaqGVbGaaeiCaiaabchacaqGVbGaae4CaiaabMgaca qG0bGaaeyzaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGHbGaaeOBaiaabEgacaqGSbGaaeyzaiaabohacaqGGa GaaeyyaiaabkhacaqGLbGaaeiiaiaabggacaqGSbGaae4Daiaabgga caqG5bGaae4CaiaabccadaqjEaqaaiaabwgacaqGXbGaaeyDaiaabg gacaqGSbaaaiaaygW7caGGUaaabaWaaeWaaeaacaqG2bGaaeyAaaGa ayjkaiaawMcaaiaabccacaqGjbGaaeOzaiaabccacaqG0bGaae4Dai aab+gacaqGGaGaaeiBaiaabMgacaqGUbGaaeyzaiaabohacaqGGaGa aeyAaiaab6gacaqG0bGaaeyzaiaabkhacaqGZbGaaeyzaiaabogaca qG0bGaaeiiaiaabggacaqG0bGaaeiiaiaabggacaqGGaGaaeiCaiaa b+gacaqGPbGaaeOBaiaabshacaGGSaGaaeiiaiaabggacaqGUbGaae izaiaabccacaqGPbGaaeOzaiaabccacaqGVbGaaeOBaiaabwgacaqG GaGaaeiCaiaabggacaqGPbGaaeOCaiaabccacaqGVbGaaeOzaiaabc cacaqG2bGaaeyzaiaabkhacaqG0bGaaeyAaiaabogacaqGHbGaaeiB aiaabYgacaqG5baabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaae4BaiaabchacaqGWbGaae4BaiaabohacaqGPbGaaeiDaiaa bwgacaqGGaGaaeyyaiaab6gacaqGNbGaaeiBaiaabwgacaqGZbGaae iiaiaabggacaqGYbGaaeyzaiaabccacaqGHbGaae4yaiaabwhacaqG 0bGaaeyzaiaabccacaqGHbGaaeOBaiaabEgacaqGSbGaaeyzaiaabo hacaGGSaGaaeiiaiaabshacaqGObGaaeyzaiaab6gacaqGGaGaaeiD aiaabIgacaqGLbGaaeiiaiaab+gacaqG0bGaaeiAaiaabwgacaqGYb GaaeiiaiaabchacaqGHbGaaeyAaiaabkhacaqGGaGaae4BaiaabAga aeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae ODaiaabwgacaqGYbGaaeiDaiaabMgacaqGJbGaaeyyaiaabYgacaqG SbGaaeyEaiaabccacaqGVbGaaeiCaiaabchacaqGVbGaae4CaiaabM gacaqG0bGaaeyzaiaabccacaqGHbGaaeOBaiaabEgacaqGSbGaaeyz aiaabohacaqGGaGaaeyyaiaabkhacaqGLbGaaeiiamaaL4babaGaae 4BaiaabkgacaqG0bGaaeyDaiaabohacaqGLbGaaeiiaiaabggacaqG UbGaae4zaiaabYgacaqGLbGaae4CaaaacaGGUaaaaaa@4282@

Q.14

In the adjoining figure, name the following pairs of angle.(i) Obtuse vertically opposite angles(ii) Adjacent complementary angles(iii) Equal supplementary angles(iv) Unequal supplementary angles(v) Adjacent angles that do not form a linear pair.

Ans.

(i) AOD,BOC(ii) EOA,AOB(iii)EOB,EOD(iv)EOA,EOC(v)AOBandAOE,AOE  andEOD,EODandCOD.

Please register to view this section

FAQs (Frequently Asked Questions)

1. How can students access the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1?

From the Extramarks website and mobile application, students can access the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. Students can find the solutions in PDF format and download them for future reference. This will ensure that they can solve the exercise and check their answers whenever they can without needing to connect to the internet.

2. How many questions are there in NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1?

The NCERT Class 7 Maths Chapter 5 Exercise 5.1 consist of 14 questions. All 14 questions have been solved in the solutions provided by Extramarks. This makes sure that students will have no issues completing this exercise.

3. How can students improve their scores on their exams by using the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1?

The most significant textbook for the CBSE Class 7 exams is the NCERT textbook on Mathematics. Many times, questions are constructed directly from the NCERT exercises and examples. The NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 answer these questions completely and concisely. Students may receive higher grades if they correctly respond to these questions in their exams.

 

4. Why should Class 7 students use Extramarks to aid in their exam preparation?

Extramarks offers a variety of study aids for Class 7 students preparing for their exams, in addition to the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1. Each supplementary study tool available on the Extramarks app and website has been compiled by academic professionals from different fields. Due to the contributions of several academicians, the study materials and learning modules are easy to grasp. Students can also acquire the NCERT Solutions For Class 7 Maths Chapter 5 Exercise 5.1 through the Extramarks portal.