NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations (EX 4.3) Exercise 4.3

Mathematics has always been considered one of the most difficult subjects to learn and understand. It is also one of the most important subjects for students of all grades. It plays a very important role in improving a student’s overall score. The curriculum is so extensive that many students find it difficult to follow the steps and concepts of mathematics. It causes confusion among students. The challenge for students is also to identify the correct approach and method to apply in order to respond to each question asked. Self-studying this subject can be very time-consuming. Students need a deeper understanding of concepts and formulas. To address their concerns, Extramarks offers curative and diligently prepared solutions. Each chapter in the NCERT textbook is carefully divided into different segments, each equipped with comprehensive exercises. Each exercise allows students to take a holistic approach while solving its questions and achieving the highest marks.

Each step in every solution is clearly explained, giving students a clear understanding of the concepts they are dealing with. Through intensive study of the NCERT solutions, students gain insight into each concept and method, enabling them to solve any question posed on any topic of the subject matter. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 introduce concepts such as Integers, Fraction Multiplication and Division, Geometry, Algebra, Rational Numbers, Simple Equations, and more. These solutions lay the foundation for higher Mathematics. Therefore, students should focus carefully on individual solutions given in NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3. Extramarks facilitates comprehension by framing details in plain language.The NCERT Solutions for Class 7 Maths, Chapter 4 Exercise 4.3, not only helped students with their school annual exams, but they can also be used to excel in various competitive exams.The Class 7 Mathematics NCERT solutions provide students with an easy way to comprehend Mathematics.

Students can find NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 in PDF format. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 pertain to Exercise 4.3 of Chapter 4 of Class 7 Mathematics. Extramarks encourages students to download and practise the NCERT Solutions For Class  7 Mathematics Chapter 4 Exercise 4.3. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 PDF versions consist of 15 short chapters. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 are prepared by efficient mentors of Extramarks, so the chances of inconsistencies are negligible.

NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations (EX 4.3) Exercise 4.3

Students can download PDF versions of NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 and solutions to all chapters’ exercises in one place, created by experienced teachers according to NCERT guidelines. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 include questions with answers to help students revise the entire syllabus and gain more points. Students can register on Extramarks to receive access to all the solutions. Each NCERT solution is provided to make learning with the assistance of Extramarks easy and interesting. Subjects such as Science, Mathematics, and English are easier to learn with access to Extramarks.

Access NCERT Solutions for Class 7 Maths Chapter 4 – Simple Equation

Choosing NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 could be considered the best choice for students who want to prepare for the exam. Extramarks provides NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 in PDF format. Students can download these solutions at their convenience or access them directly online via the Extramarks website or mobile application. Extramarks’ subject matter experts have engineered  solutions to various kinds of questions in line with all of the CBSE guidelines. A student in Class 7 who knowsall the concepts in the Mathematics textbook and has practised all the problems in the exercises in the book will easily get the highest score in the final exam. With the help of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3, students can easily understand the types of questions that may appear during the examination, related to this chapter and familiarise themselves with the topic weightage pertaining to the chapter. In addition to Exercise 4.3, to which the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 pertain, this chapter also has many exercises with different types of questions. As mentioned, the solutions to all of these questions have been produced by the subject specialists of Mathematics of Extramarks. Hence, all of these solutions are of the highest quality and can be read by students while preparing for the exam.

Understanding all the concepts in the textbook and solving the adjacent exercises is very important to getting good marks in exams. Students must download the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 from the Extramarks website and get prepared for the examination. The most remarkable feature of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 is that they are accessible both online and offline.

NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations Exercise 4.3

The Mathematics textbook for Class 7 includes chapters on Integrals, Fractions and Decimals, Simple Equations, Data Handling, Lines and Angles, Triangles and their Properties, Comparing Quantities, Congruence in Triangles, etc. Understanding the concepts embedded in these chapters requires regular practice. In order to master the problem-solving skills necessary for this purpose, the use of NCERT solutions to make learning easier, faster, and better is highly recommended. Students looking for credible answers to questions in NCERT books are suggested to access the Extramarks website. These NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 are created after extensive research that sets Extramarks apart. Extramarks NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 are also important reference materials for students with regard to the completion of their homework assignments. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 offer a straightforward and innovative approach to building a strong conceptual foundation for a variety of academic themes taught to students in Class 7. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 facilitate an engaging unhindered learning experience and can also be used for revision just before exams. The easily downloadable format of NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 ensures that step-by-step explanations of all the issues and concepts  covered in the Class 7 textbooks required by the CBSE board are provided.

Q.1

Solve the following equations:(a) 2y+52=372 (b) 5t+28=10 (c)a5+3=2(d) q4+7=5 (e) 52x=10 (f) 52x=254(g) 7m+192=13 (h) 6z+10=2 (i) 3l2=23(j) 2b35=3

Ans.

( a )2y+ 5 2 = 37 2 2y= 37 2 5 2 = 375 2 = 32 2 =16 2y=16 y= 16 2 =8 Thus, y=8 ( b ) 5t+28=10 5t=1028 5t=18 t= 18 5 ( c ) a 5 +3=2 a 5 =23 a 5 =1 a=5 ( d ) q 4 +7=5 q 4 =57 q 4 =2 q=8 ( e ) 5 2 x=10 5x=10×2 x= 10×2 5 = 5 ×2×2 5 =4 Thus, x=4 ( f ) 5 2 x= 25 4 5x= 25×2 4 x= 5 ×5× 2 2 ×2× 5 Thus, x= 5 2 ( g )7m+ 19 2 =13 7m=13 19 2 = 2619 2 = 7 2 7m= 7 2 m= 7 2× 7 Thus, m= 1 2 ( h ) 6z+10=2 6z=210 6z=12 z= 12 6 = 2× 6 6 0 Thus, z=2 ( i ) 3l 2 = 2 3 3l= 4 3 l= 4 9 ( j ) 2b 3 5=3 2b 3 =8 2b=24 b= 24 2 = 2 ×12 2 Thus, b=12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGYaGaamyEaiabgUcaRmaalaaabaGaaGynaaqaaiaaikdaaaGaey ypa0ZaaSaaaeaacaaIZaGaaG4naaqaaiaaikdaaaaabaGaaGOmaiaa dMhacqGH9aqpdaWcaaqaaiaaiodacaaI3aaabaGaaGOmaaaacqGHsi sldaWcaaqaaiaaiwdaaeaacaaIYaaaaiabg2da9maalaaabaGaaG4m aiaaiEdacqGHsislcaaI1aaabaGaaGOmaaaacqGH9aqpdaWcaaqaai aaiodacaaIYaaabaGaaGOmaaaacqGH9aqpcaaIXaGaaGOnaaqaaiaa ikdacaWG5bGaeyypa0JaaGymaiaaiAdaaeaacaWG5bGaeyypa0ZaaS aaaeaacaaIXaGaaGOnaaqaaiaaikdaaaGaeyypa0JaaGioaaqaaiaa dsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamyEai abg2da9iaaiIdaaaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGa aeiiaiaabwdacaqG0bGaey4kaSIaaeOmaiaabIdacqGH9aqpcaqGXa GaaGimaaqaaiaaiwdacaWG0bGaeyypa0JaaGymaiaaicdacqGHsisl caaIYaGaaGioaaqaaiaaiwdacaWG0bGaeyypa0JaeyOeI0IaaGymai aaiIdaaeaadaqjEaqaaiaadshacqGH9aqpdaWcaaqaaiabgkHiTiaa igdacaaI4aaabaGaaGynaaaaaaaabaWaaeWaaeaacaqGJbaacaGLOa GaayzkaaWaaSaaaeaacaqGHbaabaGaaGynaaaacqGHRaWkcaaIZaGa eyypa0JaaGOmaaqaamaalaaabaGaamyyaaqaaiaaiwdaaaGaeyypa0 JaaGOmaiabgkHiTiaaiodaaeaadaWcaaqaaiaadggaaeaacaaI1aaa aiabg2da9iabgkHiTiaaigdaaeaadaqjEaqaaiaadggacqGH9aqpcq GHsislcaaI1aaaaaqaamaabmaabaGaaeizaaGaayjkaiaawMcaamaa laaabaGaamyCaaqaaiaaisdaaaGaey4kaSIaaG4naiabg2da9iaaiw daaeaadaWcaaqaaiaadghaaeaacaaI0aaaaiabg2da9iaaiwdacqGH sislcaaI3aaabaWaaSaaaeaacaWGXbaabaGaaGinaaaacqGH9aqpcq GHsislcaaIYaaabaWaauIhaeaacaWGXbGaeyypa0JaeyOeI0IaaGio aaaaaeaadaqadaqaaiaabwgaaiaawIcacaGLPaaadaWcaaqaaiaaiw daaeaacaaIYaaaaiaadIhacqGH9aqpcqGHsislcaaIXaGaaGimaaqa aiaaiwdacaWG4bGaeyypa0JaeyOeI0IaaGymaiaaicdacqGHxdaTca aIYaaabaGaamiEaiabg2da9maalaaabaGaeyOeI0IaaGymaiaaicda cqGHxdaTcaaIYaaabaGaaGynaaaacqGH9aqpdaWcaaqaaiabgkHiTi qaiwdagaGfaiabgEna0kaaikdacqGHxdaTcaaIYaaabaGabGynayaa waaaaiabg2da9iabgkHiTiaaisdaaeaacaWGubGaamiAaiaadwhaca WGZbGaaiilaiaaysW7daqjEaqaaiaadIhacqGH9aqpcqGHsislcaaI 0aaaaaqaamaabmaabaGaaeOzaaGaayjkaiaawMcaamaalaaabaGaaG ynaaqaaiaaikdaaaGaamiEaiabg2da9maalaaabaGaaGOmaiaaiwda aeaacaaI0aaaaaqaaiaaiwdacaWG4bGaeyypa0ZaaSaaaeaacaaIYa GaaGynaiabgEna0kaaikdaaeaacaaI0aaaaaqaaiaadIhacqGH9aqp daWcaaqaaiqaiwdagaGfaiabgEna0kaaiwdacqGHxdaTceaIYaGbay baaeaaceaIYaGbaybacqGHxdaTcaaIYaGaey41aqRabGynayaawaaa aaqaaiaadsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4baba GaamiEaiabg2da9maalaaabaGaaGynaaqaaiaaikdaaaaaaaqaamaa bmaabaGaae4zaaGaayjkaiaawMcaaiaaiEdacaWGTbGaey4kaSYaaS aaaeaacaaIXaGaaGyoaaqaaiaaikdaaaGaeyypa0JaaGymaiaaioda aeaacaaI3aGaamyBaiabg2da9iaaigdacaaIZaGaeyOeI0YaaSaaae aacaaIXaGaaGyoaaqaaiaaikdaaaGaeyypa0ZaaSaaaeaacaaIYaGa aGOnaiabgkHiTiaaigdacaaI5aaabaGaaGOmaaaacqGH9aqpdaWcaa qaaiaaiEdaaeaacaaIYaaaaaqaaiaaiEdacaWGTbGaeyypa0ZaaSaa aeaacaaI3aaabaGaaGOmaaaaaeaacaWGTbGaeyypa0ZaaSaaaeaace aI3aGbaybaaeaacaaIYaGaey41aqRabG4nayaawaaaaaqaaiaadsfa caWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamyBaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaaaaaqaamaabmaabaGaaeiA aaGaayjkaiaawMcaaiaabccacaqG2aGaaeOEaiabgUcaRiaabgdaca aIWaGaeyypa0JaeyOeI0IaaeOmaaqaaiaaiAdacaWG6bGaeyypa0Ja eyOeI0IaaGOmaiabgkHiTiaaigdacaaIWaaabaGaaGOnaiaadQhacq GH9aqpcqGHsislcaaIXaGaaGOmaaqaaiaadQhacqGH9aqpdaWcaaqa aiabgkHiTiaaigdacaaIYaaabaGaaGOnaaaacqGH9aqpdaWcaaqaai abgkHiTiaaikdacqGHxdaTceaI2aGbaybaaeaaceaI2aGbaybaaaGa aGimaaqaaiaadsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4 babaGaamOEaiabg2da9iabgkHiTiaaikdaaaaabaWaaeWaaeaacaqG PbaacaGLOaGaayzkaaWaaSaaaeaacaaIZaGaamiBaaqaaiaaikdaaa Gaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaaaeaacaaIZaGaamiB aiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaaabaWaauIhaeaaca WGSbGaeyypa0ZaaSaaaeaacaaI0aaabaGaaGyoaaaaaaaabaWaaeWa aeaacaqGQbaacaGLOaGaayzkaaWaaSaaaeaacaaIYaGaamOyaaqaai aaiodaaaGaeyOeI0IaaGynaiabg2da9iaaiodaaeaadaWcaaqaaiaa ikdacaWGIbaabaGaaG4maaaacqGH9aqpcaaI4aaabaGaaGOmaiaadk gacqGH9aqpcaaIYaGaaGinaaqaaiaadkgacqGH9aqpdaWcaaqaaiaa ikdacaaI0aaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiqaikdagaGfai abgEna0kaaigdacaaIYaaabaGabGOmayaawaaaaaqaaiaadsfacaWG ObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamOyaiabg2da9i aaigdacaaIYaaaaaaaaa@981B@

Q.2

Solve the following equations:(a) 2(x+4)=12 (b) 3(n5)=21 (c) 3(n5)=21(d) 32(2y)=7 (e)4(2x)=9 (f) 4(2x)=9(g) 4+5(p1)=34 (h)345(p1)=4

Ans.

(a) 2(x+ 4)=12 Divide both sides by 2 to get x+4=6 Thus, x=2 ( b ) 3(n5)=21 Divide both sides by 3 to get n5=7 Thus, n=2 ( c ) 3(n5)=21 Divide both sides by 2 to get n5=7 Thus, n=12 ( d ) 32(2y)=7 2( 2y )=4 Divide both sides by2 to get 2y=2 Multiply both sides by1 to get y2=2 Thus, y=4 ( e ) 4(2x)=9 Divide both sides by4 to get 2x= 9 4 Multiply both sides by1 to get x2= 9 4 x= 9 4 +2= 9+8 4 Thus, x= 17 4 ( f ) 4(2x)=9 Divide both sides by 4 to get 2x= 9 4 Multiply both sides by -1 to get x2= 9 4 x= 9 4 +2= 9+8 4 Thus, x= 1 4 ( g ) 4+5 (p1)=34 5( p1 )=30 Divide both sides by 5 to get p1=6 p=6+1=7 Thus, p=7 ( h ) 345(p1)=4 5( p1 )=30 Divide both sides by5 to get p1=6 p=6+1=7 Thus, p=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyyaiaacMcacaqGGaGaaGOm aiaacIcacaWG4bGaey4kaSIaaeiiaiaaisdacaGGPaGaeyypa0JaaG ymaiaaikdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwga caqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAai aabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGYaGa aeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaadI hacqGHRaWkcaaI0aGaeyypa0JaaGOnaaqaaiaabsfacaqGObGaaeyD aiaabohacaqGSaGaaGjbVpaaL4babaGaamiEaiabg2da9iaaikdaaa aabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaeiiaiaaiodacaGG OaGaamOBaiabgkHiTiaaiwdacaGGPaGaeyypa0JaeyOeI0IaaGOmai aaigdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwgacaqG GaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabs gacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGZaGaaeii aiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaad6gacq GHsislcaaI1aGaeyypa0JaeyOeI0Iaae4naaqaaiaabsfacaqGObGa aeyDaiaabohacaqGSaWaauIhaeaacaqGGaGaamOBaiabg2da9iabgk HiTiaaikdaaaaabaWaaeWaaeaacaqGJbaacaGLOaGaayzkaaGaaeii aiaaiodacaGGOaGaamOBaiabgkHiTiaaiwdacaGGPaGaeyypa0Jaey OeI0IaaeOmaiaabgdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeiz aiaabwgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZb GaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabcca caqGYaGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaad6gacqGHsislcaaI1aGaeyypa0JaeyOeI0IaaG4naaqaaiaa dsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamOBai abg2da9iabgkHiTiaaigdacaaIYaaaaaqaamaabmaabaGaaeizaaGa ayjkaiaawMcaaiaabccacaqGZaGaeyOeI0IaaeOmaiaacIcacaqGYa GaeyOeI0IaamyEaiaacMcacqGH9aqpcaqG3aaabaGaeyOeI0IaaGOm amaabmaabaGaaGOmaiabgkHiTiaadMhaaiaawIcacaGLPaaacqGH9a qpcaaI0aaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGa aeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgaca qGKbGaaeyzaiaabohacaqGGaGaaeOyaiaabMhacqGHsislcaqGYaGa aeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaaik dacqGHsislcaWG5bGaeyypa0JaeyOeI0IaaGOmaaqaaiaab2eacaqG 1bGaaeiBaiaabshacaqGPbGaaeiCaiaabYgacaqG5bGaaeiiaiaabk gacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyz aiaabohacaqGGaGaaeOyaiaabMhacqGHsislcaqGXaGaaeiiaiaabs hacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaadMhacqGHsisl caaIYaGaeyypa0JaaGOmaaqaaiaabsfacaqGObGaaeyDaiaabohaca qGSaGaaeiiamaaL4babaGaamyEaiabg2da9iaaisdaaaaabaWaaeWa aeaacaqGLbaacaGLOaGaayzkaaGaaeiiaiabgkHiTiaaisdacaGGOa GaaGOmaiabgkHiTiaadIhacaGGPaGaeyypa0Jaaeyoaaqaaiaabsea caqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Bai aabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGa aeiiaiaabkgacaqG5bGaeyOeI0IaaeinaiaabccacaqG0bGaae4Bai aabccacaqGNbGaaeyzaiaabshaaeaacaqGYaGaeyOeI0IaamiEaiab g2da9maalaaabaGaeyOeI0IaaGyoaaqaaiaaisdaaaaabaGaaeytai aabwhacaqGSbGaaeiDaiaabMgacaqGWbGaaeiBaiaabMhacaqGGaGa aeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsgaca qGLbGaae4CaiaabccacaqGIbGaaeyEaiabgkHiTiaabgdacaqGGaGa aeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaamiEaiabgk HiTiaaikdacqGH9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaaqaaiaa dIhacqGH9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaiabgUcaRiaaik dacqGH9aqpdaWcaaqaaiaaiMdacqGHRaWkcaaI4aaabaGaaGinaaaa aeaacaWGubGaamiAaiaadwhacaWGZbGaaiilaiaaysW7daqjEaqaai aadIhacqGH9aqpdaWcaaqaaiaaigdacaaI3aaabaGaaGinaaaaaaaa baWaaeWaaeaacaqGMbaacaGLOaGaayzkaaGaaeiiaiaaisdacaGGOa GaaGOmaiabgkHiTiaadIhacaGGPaGaeyypa0Jaaeyoaaqaaiaabsea caqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Bai aabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGa aeiiaiaabkgacaqG5bGaaeiiaiaabsdacaqGGaGaaeiDaiaab+gaca qGGaGaae4zaiaabwgacaqG0baabaGaaeOmaiabgkHiTiaadIhacqGH 9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaaqaaiaab2eacaqG1bGaae iBaiaabshacaqGPbGaaeiCaiaabYgacaqG5bGaaeiiaiaabkgacaqG VbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabo hacaqGGaGaaeOyaiaabMhacaqGGaGaaeylaiaabgdacaqGGaGaaeiD aiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiEaiabgkHiTi aaikdacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdaaeaacaaI0aaaaaqa aiaadIhacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdaaeaacaaI0aaaai abgUcaRiaaikdacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdacqGHRaWk caaI4aaabaGaaGinaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaai ilaiaaysW7daqjEaqaaiaadIhacqGH9aqpdaWcaaqaaiabgkHiTiaa igdaaeaacaaI0aaaaaaaaeaadaqadaqaaiaabEgaaiaawIcacaGLPa aacaqGGaGaaGinaiabgUcaRiaaiwdacaqGGaGaaiikaiaadchacqGH sislcaaIXaGaaiykaiabg2da9iaaiodacaaI0aaabaGaaGynamaabm aabaGaamiCaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH9aqpcaaI ZaGaaGimaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyzai aabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGa aeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiaabwdaca qGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiC aiabgkHiTiaaigdacqGH9aqpcaaI2aaabaGaamiCaiabg2da9iaaiA dacqGHRaWkcaaIXaGaeyypa0JaaG4naaqaaiaabsfacaqGObGaaeyD aiaabohacaGGSaGaaGjbVpaaL4babaGaamiCaiabg2da9iaaiEdaaa aabaWaaeWaaeaacaqGObaacaGLOaGaayzkaaGaaeiiaiaaiodacaaI 0aGaeyOeI0IaaGynaiaacIcacaWGWbGaeyOeI0IaaGymaiaacMcacq GH9aqpcaaI0aaabaGaeyOeI0IaaGynamaabmaabaGaamiCaiabgkHi TiaaigdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaIZaGaaGimaa qaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqG IbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabw gacaqGZbGaaeiiaiaabkgacaqG5bGaeyOeI0IaaeynaiaabccacaqG 0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaWGWbGaeyOeI0 IaaGymaiabg2da9iaaiAdaaeaacaWGWbGaeyypa0JaaGOnaiabgUca RiaaigdacqGH9aqpcaaI3aaabaGaaeivaiaabIgacaqG1bGaae4Cai aabYcacaaMe8+aauIhaeaacaWGWbGaeyypa0JaaG4naaaaaaaa@6D42@

Q.3

Solve the following equations.(a) 4=5 (p2) (b)4=5 (p2) (c)16=5(2p)(d) 10=4+3 (t+2) (e) 28=4+3 (t+5)(f) 0=16+4 (m6)

Ans.

( a ) 4=5(p2) Divide both sides by 5 to get 4 5 =p2 p= 4 5 +2= 4+10 5 Thus, p= 14 5 ( b )4=5(p2) Divide both sides by 5 to get 4 5 =p2 p= 4 5 +2= 4+10 5 Thus, p= 6 5 ( c )16=5 (2p) Divide both sides by 5 to get 16 5 =2p Multiply both sides by 1 to get 16 5 =p2 p= 16 5 +2= 16+10 5 Thus, p= 6 5 ( d ) 10=4+3(t+2) 6=3( t+2 ) Divide both sides by 3 to get 2=t+2 Thus, t=0 ( e ) 28=4+3(t+5) 24=3( t+5 ) Divide both sides by 3 to get 8=t+5 Thus, t=3 ( f )0=16+4(m6) 16=4( m6 ) Divide both sides by 4 to get 4=m6 Thus, m=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGGaGaaeinaiabg2da9iaabwdacaGGOaGaamiCaiabgkHiTiaabk dacaGGPaaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGa aeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgaca qGKbGaaeyzaiaabohacaqGGaGaaeOyaiaabMhacaqGGaGaaeynaiaa bccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaadaWcaa qaaiaaisdaaeaacaaI1aaaaiabg2da9iaadchacqGHsislcaaIYaaa baGaamiCaiabg2da9maalaaabaGaaGinaaqaaiaaiwdaaaGaey4kaS IaaGOmaiabg2da9maalaaabaGaaGinaiabgUcaRiaaigdacaaIWaaa baGaaGynaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaiilaiaays W7daqjEaqaaiaadchacqGH9aqpdaWcaaqaaiaaigdacaaI0aaabaGa aGynaaaaaaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaeyOeI0 Iaaeinaiabg2da9iaabwdacaGGOaGaamiCaiabgkHiTiaaikdacaGG PaaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGaaeiiai aabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGa aeyzaiaabohacaqGGaGaaeOyaiaabMhacaqGGaGaaeynaiaabccaca qG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaadaWcaaqaaiab gkHiTiaaisdaaeaacaaI1aaaaiabg2da9iaadchacqGHsislcaaIYa aabaGaamiCaiabg2da9maalaaabaGaeyOeI0IaaGinaaqaaiaaiwda aaGaey4kaSIaaGOmaiabg2da9maalaaabaGaeyOeI0IaaGinaiabgU caRiaaigdacaaIWaaabaGaaGynaaaaaeaacaqGubGaaeiAaiaabwha caqGZbGaaiilaiaaysW7daqjEaqaaiaadchacqGH9aqpdaWcaaqaai aaiAdaaeaacaaI1aaaaaaaaeaadaqadaqaaiaabogaaiaawIcacaGL PaaacqGHsislcaaIXaGaaGOnaiabg2da9iabgkHiTiaaiwdacaqGGa GaaiikaiaaikdacqGHsislcaWGWbGaaiykaaqaaiaabseacaqGPbGa aeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Baiaabshaca qGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaa bkgacaqG5bGaaeiiaiabgkHiTiaabwdacaqGGaGaaeiDaiaab+gaca qGGaGaae4zaiaabwgacaqG0baabaWaaSaaaeaacaaIXaGaaGOnaaqa aiaaiwdaaaGaeyypa0JaaGOmaiabgkHiTiaadchaaeaacaqGnbGaae yDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaaeyEaiaabccacaqG IbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabw gacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiabgkHiTiaabgdacaqG GaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaWaaSaaae aacqGHsislcaqGXaGaaeOnaaqaaiaaiwdaaaGaeyypa0JaamiCaiab gkHiTiaaikdaaeaacaWGWbGaeyypa0ZaaSaaaeaacqGHsislcaaIXa GaaGOnaaqaaiaaiwdaaaGaey4kaSIaaGOmaiabg2da9maalaaabaGa eyOeI0IaaGymaiaaiAdacqGHRaWkcaaIXaGaaGimaaqaaiaaiwdaaa aabaGaaeivaiaabIgacaqG1bGaae4CaiaacYcacaaMe8+aauIhaeaa caWGWbGaeyypa0ZaaSaaaeaacqGHsislcaaI2aaabaGaaGynaaaaaa aabaWaaeWaaeaacaqGKbaacaGLOaGaayzkaaGaaeiiaiaabgdacaaI WaGaeyypa0JaaeinaiabgUcaRiaabodacaGGOaGaamiDaiabgUcaRi aaikdacaGGPaaabaGaaGOnaiabg2da9iaaiodadaqadaqaaiaadsha cqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqG2b GaaeyAaiaabsgacaqGLbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIga caqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeOyai aabMhacaqGGaGaae4maiaabccacaqG0bGaae4BaiaabccacaqGNbGa aeyzaiaabshaaeaacaaIYaGaeyypa0JaamiDaiabgUcaRiaaikdaae aacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccadaqjEaqaaiaa dshacqGH9aqpcaaIWaaaaaqaamaabmaabaGaaeyzaaGaayjkaiaawM caaiaabccacaqGYaGaaeioaiabg2da9iaabsdacqGHRaWkcaqGZaGa aiikaiaadshacqGHRaWkcaqG1aGaaiykaaqaaiaaikdacaaI0aGaey ypa0JaaG4mamaabmaabaGaamiDaiabgUcaRiaaiwdaaiaawIcacaGL PaaaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwgacaqGGa GaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsga caqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGZaGaaeiiai aabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaaiIdacqGH 9aqpcaWG0bGaey4kaSIaaGynaaqaaiaabsfacaqGObGaaeyDaiaabo hacaqGSaGaaeiiamaaL4babaGaamiDaiabg2da9iaaiodaaaaabaWa aeWaaeaacaqGMbaacaGLOaGaayzkaaGaaGimaiabg2da9iaabgdaca qG2aGaey4kaSIaaeinaiaacIcacaWGTbGaeyOeI0IaaeOnaiaacMca aeaacqGHsislcaaIXaGaaGOnaiabg2da9iaaisdadaqadaqaaiaad2 gacqGHsislcaaI2aaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqG 2bGaaeyAaiaabsgacaqGLbGaaeiiaiaabkgacaqGVbGaaeiDaiaabI gacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeOy aiaabMhacaqGGaGaaeinaiaabccacaqG0bGaae4BaiaabccacaqGNb GaaeyzaiaabshaaeaacqGHsislcaaI0aGaeyypa0JaamyBaiabgkHi TiaaiAdaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccada qjEaqaaiaad2gacqGH9aqpcaaIYaaaaaaaaa@C843@

Q.4

(a) Construct 3 equations starting with x=2(b) Construct 3 equations starting with x=2

Ans.

(a) We have x=2 Multiply both sides by 4 to get 4x=8 ( i ) Subtract 2 from both sides to get 4x2=6 ( ii ) Divide both sides by 2 to get 2x1=3 (iii) (b)We have x=2 Adding 4 to both sides to get x+4=2 ( i ) Multiply 2 from both sides to get 2x+8=4 ( ii ) Divide both sides by 2 to get x+4=2 ( iii ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyyaiaabMcacaqGGaGaae4v aiaabwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaadIhacq GH9aqpcaaIYaaabaGaaeytaiaabwhacaqGSbGaaeiDaiaabMgacaqG WbGaaeiBaiaabMhacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabc cacaqGZbGaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyE aiaabccacaqG0aGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLb GaaeiDaaqaamaaL4babaGaaGinaiaadIhacqGH9aqpcaaI4aaaaiab lAciljablAciljablAciljablAcilnaabmaabaGaaeyAaaGaayjkai aawMcaaaqaaiaabofacaqG1bGaaeOyaiaabshacaqGYbGaaeyyaiaa bogacaqG0bGaaeiiaiaabkdacaqGGaGaaeOzaiaabkhacaqGVbGaae yBaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqG PbGaaeizaiaabwgacaqGZbGaaeiiaiaabshacaqGVbGaaeiiaiaabE gacaqGLbGaaeiDaaqaamaaL4babaGaaGinaiaadIhacqGHsislcaaI YaGaeyypa0JaaGOnaaaacqWIMaYscqWIMaYsdaqadaqaaiaabMgaca qGPbaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqG2bGaaeyAaiaa bsgacaqGLbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae 4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeOyaiaabMhacaqG GaGaaeOmaiaabccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabs haaeaadaqjEaqaaiaaikdacaWG4bGaeyOeI0IaaGymaiabg2da9iaa iodaaaGaeSOjGSKaeSOjGSKaaeikaiaabMgacaqGPbGaaeyAaiaabM caaeaacaqGOaGaaeOyaiaabMcacaaMe8Uaae4vaiaabwgacaqGGaGa aeiAaiaabggacaqG2bGaaeyzaaqaaiaadIhacqGH9aqpcqGHsislca aIYaaabaGaaeyqaiaabsgacaqGKbGaaeyAaiaab6gacaqGNbGaaeii aiaabsdacaqGGaGaaeiDaiaab+gacaqGGaGaaeOyaiaab+gacaqG0b GaaeiAaiaabccacaqGZbGaaeyAaiaabsgacaqGLbGaae4Caiaabcca caqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaadaqjEaqaai aadIhacqGHRaWkcaaI0aGaeyypa0JaaGOmaaaacqWIMaYscqWIMaYs cqWIMaYsdaqadaqaaiaabMgaaiaawIcacaGLPaaaaeaacaqGnbGaae yDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaaeyEaiaabccacaqG YaGaaeiiaiaabAgacaqGYbGaae4Baiaab2gacaqGGaGaaeOyaiaab+ gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsgacaqGLbGaae4C aiaabccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaada qjEaqaaiaaikdacaWG4bGaey4kaSIaaGioaiabg2da9iaaisdaaaGa eSOjGSKaeSOjGS0aaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaa qaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqG IbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabw gacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiaabkdacaqGGaGaaeiD aiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaWaauIhaeaacaWG4b Gaey4kaSIaaGinaiabg2da9iaaikdaaaGaeSOjGSKaeSOjGS0aaeWa aeaacaqGPbGaaeyAaiaabMgaaiaawIcacaGLPaaaaaaa@3819@

Please register to view this section

FAQs (Frequently Asked Questions)

1. How many questions are there in Chapter 4 to which solutions to Class 7 Maths Exercise 4.3 pertain?

NCERT solutions for Chapter 4 of Class 7 Mathematics contain approximately 18 questions divided into 4 exercises. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3 provide detailed answers to each question so students can understand the concepts step by step. These questions require a lot of attention and practice as each step is important for the exam. Students are better able to understand the chapter if they spend a lot of time solving each problem along with the example.

2. Should students practice all the problems provided in the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.3?

Yes, all problems provided by the Class 7 Maths Chapter 4 Exercise 4.3 Solutions should be solved. Simple Equation is a chapter that requires a lot of practice to fully understand the topic and learn how to apply them to solve a problem. Students can use it as a reference guide for preparing for Chapter 4. This process can be made easy with the help of the Class 7 Mathematics Chapter 4 NCERT solutions.

3. What does a simple equation explained in Class 7 Maths Chapter 4 Exercise 4.3 mean?

The representation of the relationship between two expressions on both sides of the equal to sign is known as a simple equation. These equations can have 2 or more than 2 variables. Students can get in-depth knowledge about simple equations in the NCERT solutions for Chapter 4 of Class 7 Mathematics. The NCERT solutions provide students with accurate methods to solve each question in a manner that helps students comprehend them at the same time.

4. How do students write an equation according to NCERT Class 7 Maths Chapter 4 Exercise 4.3?

Students can learn how to write equations and all of the simple equations in Chapter 4 through NCERT solutions. Learning the theory and applying all the fundamentals gets easier with the aid and assistance of NCERT solutions. These solutions are also valuable aid for self-assessment and for reference purposes. With the right preparation, students can be ready for the exam.