NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations (Ex 4.1) Exercise 4.1

One of the most well-known educational boards in the nation is the CBSE. The CBSE curriculum includes NCERT textbooks. However, it has been observed that students find it difficult to understand the themes and concepts. Following this, students have a hard time understanding the material, which lowers their exam scores. Students make an effort to choose several reference materials to properly comprehend the topic. To solve all mathematical problems in the best way possible, one needs a lot of practise in the topic of Mathematics. Unless the student has the correct understanding, it can be challenging to perform the proper calculations.

Extramarks prove to be the ideal option for providing thorough theory and the best concepts. Students can gather all the necessary knowledge, which helps them  effectively clear up any remaining doubts. Therefore, when students are given video presentations, it is feasible for them to learn the subject matter in the best way possible. Students can resolve their doubts with no issues at all, which is helpful. Extramarks always goes the additional mile to ensure 100% satisfaction by assisting students in solving their assignments and exercises. Additionally, as many examples are given by the professionals most clearly, it does not take long to gain a good and clear understanding of the subject of Mathematics.

Extramarks uses straightforward language, which greatly aids in achieving flawless learning with no issues at all. Therefore, the course materials have been created so that students can pass with flying colours without being confused. Simple Equations is the fourth chapter of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1. Given that the video tutorials have been taught with several examples, Students can understand the most important concepts adequately. Therefore, this proves to be an additional benefit of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 for them because it never causes any form of difficulty in coming to the correct conclusion about it. The subject does not seem to be particularly challenging, which helps the students  do well on their examinations.

NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations (EX 4.1) Exercise 4.1

To assist them with their homework and exam preparation, students are required to read through the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 offered by Extramarks experts. Students can use the detailed explanations and step-by-step NCERT Class 7 Maths Chapter 4 Exercise 4.1 provided by Extramarks to help them learn the ideas in Chapter – Simple Equations.

To make sure that students have a thorough comprehension, Extramarks’ academics have carefully curated the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1. Students have access to more than 500 questions to prepare for examinations and ace them. Practise questions are provided for each topic covered in NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 to help students completely understand the ideas.

The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 offered by Extramarks experts cover a wide range of subjects, including the fundamentals of equations and applications of equations. Each topic offers more than 100 practise questions drawn from more than 50 different sources.

Students can also learn the ideas from entertaining and engaging 3D films and explainers on Extramarks. Additionally, they can assess their comprehension by creating tests that suit their preferences.

Access NCERT Solutions for Class 7 Mathematics Chapter 4- Simple Equations

The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 are available for both online and offline access on the Extramarks website and mobile application.

Below is a brief overview of all the important topics covered in the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1:

  • An equation is an assertion of equality including one or more variables (literals).
  • A linear equation in one variable is one that only uses one literal number (variable) with the highest power one.
  • By using the opposite sign, we can move a term from one side of an equation to the other. Transposition is the term for this action.

Students can efficiently complete NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1, based on Simple Equations, and complete the entire curriculum. The team of subject-matter specialists at Extramarks created each of these NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 keeping in mind their complex needs. The step-by-step NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 provided by Extramarks will help the students better understand the ideas.

The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 Simple Equations cover the basics of algebra, starting with the definition of variables, expressions, and equations. Students will be able to comprehend that the equation corresponds to any condition based on the variable with the aid of the offered NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1. Additionally, the values of the two expressions on either side of the equation ought to be identical. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 consists of six questions.

The first question in the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 is a little different because it requires writing the equation in statement form, while the final one requires framing equations. The students will find the first four of them simple.

Students should keep in mind that an equation is not deemed to exist if it contains any other signs, such as greater than or less than, between the LHS (Left Hand Side) and RHS (Right Hand Side), in addition to the equal sign.

Students should review the principles of Algebraic Words such as Variables, Expressions, Equations, etc., because the activities in the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 based on Simple Equations include the basics of algebra. The formation of expressions is illustrated throughout the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 with simple real-world examples, that will help students understand the meaning of all the algebraic words.

Students are recommended to carefully read each and every paragraph in the book in order to complete the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 since it properly explains the idea and the reasoning behind each question with examples.  Students can confidently proceed to the activities after practising the NCERT Solutions for Class 7 Maths Chapter 4 Exercise 4.1.

Chapter 4 – Simple Equations

The topics, materials, questions, and solutions in Extramarks’ NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 have been carefully considered. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 are self-explanatory, therefore, students should not worry about them. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 from Extramarks has provided students with a variety of answers to their Mathematical problems. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 are created with an eye towards the exam structure and syllabus. Clicking on the links for Class 7 Maths Chapter 4 will take students to a PDF download of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1.

Students have the opportunity to learn about the fundamentals of simple equations with the help of NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1. Simple Equations are not always as easy to understand as they may first appear to be. As a result, in addition to teaching students how to create equations, this NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 will also assist them in understanding what exactly they are. Additionally, after finishing these NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1, students will be able to turn assertions into equations. The NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 from Extramarks will be a helpful resource for students to understand the chapter effectively because of this very reason.

Below is an overview of the chapter:

Students are given the correct equation principles in this segment. Extramarks’  NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 assists in offering a variety of examples that enable readers to acquire the clearest understanding possible of how to use equations in the best way. Without any anxiety, the students can easily get all the necessary material that will help them perform well on their tests. Extramarks experts have developed the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 using the most recent CBSE curriculum. Using step-by-step NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 makes it simple to comprehend the equation most practically.

Both sides of an equation should be equal. When LHS and RHS are switched, the same number is added to both sides, the same number is removed from both sides, the same amount is multiplied from both sides of the RHS, and the LHS is halved by the same number,same number. The equation does not change. In Ex. 4.3, students will learn about transferring a number from one side of the equation to another as opposed to adding and subtracting it from both sides. Students will discover how to apply simple equations to the practical questions in Exercise 4.4.

A Mind-Reading Game

In this section, the students will analyse the universe of straightforward equations and their uses.. In a similar vein, the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 provides real-life examples from the classroom that will aid students in developing a more thorough understanding.

Setting up of an Equation

Examples in this subtopic will aid students in formulating equations. This is accomplished by providing students with real-world examples of girls with the names Ameena and Sara. It also includes NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 to the equations that were presented to the students. For easy comprehension, these NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 are provided in a very understandable manner.

Students frequently struggle with understanding how to properly build up an equation. Due to a lack of sufficient solutions, NCERT textbooks fall short of offering an in-depth comprehension of the topic. With the help of NCERT Solutions for Class 7 Maths Chapter 4 Exercise 4.1, the professionals at Extramarks can deliver the clearest method possible without causing any uncertainty.Therefore, it is feasible to comprehend Simple Equations where, with the help of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 it has been made possible to acquire the proper knowledge in an ideal way.

Review of what we know

This section will teach the specifics of an equation while taking into account what students have learned thus far. It will draw from the knowledge the student gained previously in  NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1. For instance, it has been widely explored here what constitutes a variable. Next, the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 continues to explain more about expressions. Here, examples are presented to help clarify the idea.

What Equation is?

Simply put, this part of the NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1 will summarise simple equations and wrap up the chapter.It will go over what an equality sign is and how important it is.The learner will also be taught RHS and LHS here. For the sake of the student’s understanding, all of this will be followed by equations and their solutions.

A mathematical statement involving a variable in which the values of two expressions on either side of the equality sign should be equal is called an equation. The links between two expressions on opposite sides of the sign are depicted by the straightforward equation. One variable makes it up.LHS (left-hand side) and RHS (right-hand side) are the names of the expressions on the two sides. A constant has a fixed value, but a variable has a different numeric value. Students will discover what an equation means in Ex 4.1. Any equation has an equality sign that indicates the value of the expression on the left side of the equation is equal to the value on the right side of the equation. Calculation skills are taught in NCERT Solutions For Class 7 Maths Chapter 4 Exercise 4.1.

NCERT Solutions for Class 7

Students may find Mathematics to be enjoyable with Extramarks’ NCERT Solutions for Class 7 Mathematics. Mathematics practise in Class 7 will help students do better in Class 8, then in Class 9, etc., laying the groundwork for a solid foundation in Mathematics. Experts at Extramarks have created step-by-step solutions with thorough justifications. To assist students in performing well on the Math exam, the solutions are organised for practice.

Students may effortlessly tackle challenging questions with the aid of the NCERT Solutions for Class 7 Mathematics offered by Extramarks. It is advised that students practise the NCERT Solutions, which are offered in both video and PDF versions. Additionally, it makes basic Mathematical ideas simple for students to comprehend. For students taking the CBSE Class 7 Mathematics exam, the NCERT Solutions for Class 7 Mathematics are a dependable study tool. To enhance students’ academic performance and knowledge, Extramarks specialists have answered the questions from the Mathematics NCERT textbooks.

On the Extramarks website and mobile application, students may find the NCERT Solutions for Class 7 Mathematics, which include all the problems organised by chapter for thorough understanding. The knowledgeable team at Extramarks has created the answers in a clear way that aids students in resolving issues quickly. Students can quickly answer a large number of questions from the NCERT textbook with these NCERT Solutions for Class 7 Mathematics.

Students should focus on chapters like comparing amounts, lines and angles, congruence of triangles, and other topics because they can earn high marks in the 15 chapters of the NCERT Solutions for Class 7 Mathematics.

The following chapters are included in Extramarks’ NCERT Solutions for Class 7 Maths:

  • Chapter 1 – Integers
  • Chapter 2 – Fractions and Decimals
  • Chapter 3 – Data Handling
  • Chapter 4 – Simple Equations
  • Chapter 5 – Lines and Angles
  • Chapter 6 – The Triangles and its Properties
  • Chapter 7 – Congruence of Triangles
  • Chapter 8 – Comparing Quantities
  • Chapter 9 – Rational Numbers
  • Chapter 10 – Practical Geometry
  • Chapter 11 – Perimeter and Area
  • Chapter 12 – Algebraic Expressions
  • Chapter 13 – Exponents and Powers
  • Chapter 14 – Symmetry
  • Chapter 15 – Visualising Solid Shapes

Q.1

Complete the last column of the table.

S.No. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa83uaiaa=5cacaWFobGaa83Baiaa=5ca aaa@413A@ Equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xraiaa=fhacaWF1bGaa8xyaiaa=rha caWFPbGaa83Baiaa=5gaaaa@4497@ Value MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8Nvaiaa=fgacaWFSbGaa8xDaiaa=vga aaa@41CB@ Say,whethertheequation issatisfied.( Yes/No ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaaieqacaWFtbGaa8xyaiaa=LhacaWFSaGa aGjbVlaa=DhacaWFObGaa8xzaiaa=rhacaWFObGaa8xzaiaa=jhaca aMb8UaaGjbVlaa=rhacaWFObGaa8xzaiaaysW7caWFLbGaa8xCaiaa =vhacaWFHbGaa8hDaiaa=LgacaWFVbGaa8NBaaqaaiaa=LgacaWFZb GaaGjbVlaa=nhacaWFHbGaa8hDaiaa=LgacaWFZbGaa8Nzaiaa=Lga caWFLbGaa8hzaiaa=5cadaqadaqaaiaa=LfacaWFLbGaa83Caiaa=9 cacaWFobGaa83BaaGaayjkaiaawMcaaaaaaa@6A99@
(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPaaaaa@3F86@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFZaaaaa@3FB4@
(ii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xkaaaa@4070@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@
(iii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xAaiaa=Lca aaa@415A@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa83maaaa@4062@
(iv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF2bGaa8xkaaaa@407D@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF3aaaaa@3FB8@
(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPaaaaa@3F93@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF4aaaaa@3FB9@
(vi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xkaaaa@407D@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@
(vii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xAaiaa=Lca aaa@4167@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF1aaaaa@3FB6@
(viii) 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa8xnaaaa@4064@
(ix) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF4bGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFTaGaa8Nnaaaa@405A@
(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPaaaaa@3F95@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFWaaaaa@3FA6@
(xi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPbGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWF2aaaaa@3FAC@

Ans.

S.No. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa83uaiaa=5cacaWFobGaa83Baiaa=5ca aaa@413A@ Equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xraiaa=fhacaWF1bGaa8xyaiaa=rha caWFPbGaa83Baiaa=5gaaaa@4497@ Value MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8Nvaiaa=fgacaWFSbGaa8xDaiaa=vga aaa@41CB@ Say,whethertheequation issatisfied.( Yes/No ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaaieqacaWFtbGaa8xyaiaa=LhacaWFSaGa aGjbVlaa=DhacaWFObGaa8xzaiaa=rhacaWFObGaa8xzaiaa=jhaca aMb8UaaGjbVlaa=rhacaWFObGaa8xzaiaaysW7caWFLbGaa8xCaiaa =vhacaWFHbGaa8hDaiaa=LgacaWFVbGaa8NBaaqaaiaa=LgacaWFZb GaaGjbVlaa=nhacaWFHbGaa8hDaiaa=LgacaWFZbGaa8Nzaiaa=Lga caWFLbGaa8hzaiaa=5cadaqadaqaaiaa=LfacaWFLbGaa83Caiaa=9 cacaWFobGaa83BaaGaayjkaiaawMcaaaaaaa@6A99@
(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPaaaaa@3F86@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFZaaaaa@3FB4@ No
(ii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xkaaaa@4070@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@ No
(iii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xAaiaa=Lca aaa@415A@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa83maaaa@4062@ Yes
(iv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF2bGaa8xkaaaa@407D@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF3aaaaa@3FB8@ No
(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPaaaaa@3F93@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF4aaaaa@3FB9@ Yes
(vi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xkaaaa@407D@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@ No
(vii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xAaiaa=Lca aaa@4167@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF1aaaaa@3FB6@ Yes
(viii) 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa8xnaaaa@4064@ No
(ix) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF4bGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFTaGaa8Nnaaaa@405A@ No
(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPaaaaa@3F95@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFWaaaaa@3FA6@ No
(xi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPbGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWF2aaaaa@3FAC@ Yes

Q.2

Check whether the value given in the brackets is a solution to the given equation or not:(a) n+5=19(n=1) (b) 7n+5=19(n=2)(c) 7n+5=19(n=2) (d) 4p3=13(p=1)(e) 4p3=13(p=4) (f)4p3=13(p=0)

Ans.

( a )n+5=19 (n=1) Put n=1 in L.H.S to get n+5=1+5=6R.H.S So, the given value in the bracket is not a solution to the given equation. ( b ) 7n+5=19 (n= 2) Put n=2 in L.H.S to get 7n+5=7( 2 )+5=14+5=9R.H.S So, the given value in the bracket is not a solution to the given equation. ( c ) 7n+5 =19 (n=2) Put n=2 in L.H.S to get 7n+5=7( 2 )+5=14+5=19=R.H.S So, the given value in the bracket is a solution to the given equation. ( d ) 4p3=13 (p=1) Put p=1 in L.H.S to get 4p3=4( 1 )3=43=1R.H.S So, the given value in the bracket is not a solution to the given equation. ( e ) 4p3=13 (p= 4) Put p=4 in L.H.S to get 4p3=4( 4 )3=163=19R.H.S So, the given value in the bracket is not a solution to the given equation. ( f ) 4p3=13 (p=0) Put p=0 in L.H.S to get 4p3=4( 0 )3=03=3R.H.S So, the given value in the bracket is not a solution to the given equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGUbGaey4kaSIaaeynaiabg2da9iaabgdacaqG5aGaaeiiaiaacI cacaqGUbGaeyypa0JaaeymaiaacMcaaeaacaqGqbGaaeyDaiaabsha caqGGaGaaeOBaiabg2da9iaabgdacaqGGaGaaeyAaiaab6gacaqGGa Gaaeitaiaab6cacaqGibGaaeOlaiaabofacaqGGaGaaeiDaiaab+ga caqGGaGaae4zaiaabwgacaqG0baabaGaaeOBaiaabUcacaqG1aGaey ypa0JaaGymaiabgUcaRiaaiwdacqGH9aqpcaaI2aGaeyiyIKRaaeOu aiaab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcaca qGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaa bwgacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaae iiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG IbGaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabM gacaqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeii aiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUb GaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaae yDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaa baGaaeOyaaGaayjkaiaawMcaaiaabccacaqG3aGaaeOBaiabgUcaRi aabwdacqGH9aqpcaqGXaGaaeyoaiaabccacaGGOaGaaeOBaiabg2da 9iabgkHiTiaabccacaqGYaGaaiykaaqaaiaabcfacaqG1bGaaeiDai aabccacaqGUbGaeyypa0JaeyOeI0IaaeOmaiaabccacaqGPbGaaeOB aiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0b Gaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG3aGaaeOBaiaa bUcacaqG1aGaeyypa0JaaG4namaabmaabaGaeyOeI0IaaGOmaaGaay jkaiaawMcaaiabgUcaRiaaiwdacqGH9aqpcqGHsislcaaIXaGaaGin aiabgUcaRiaaiwdacqGH9aqpcqGHsislcaaI5aGaeyiyIKRaaeOuai aab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabw gacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeii aiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIb GaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMga caqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiai aabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGa aeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyD aiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaaba Gaae4yaaGaayjkaiaawMcaaiaabccacaqG3aGaaeOBaiabgUcaRiaa bwdacaqGGaGaeyypa0JaaeymaiaabMdacaqGGaGaaiikaiaab6gacq GH9aqpcaqGYaGaaiykaaqaaiaabcfacaqG1bGaaeiDaiaabccacaqG UbGaeyypa0JaaeOmaiaabccacaqGPbGaaeOBaiaabccacaqGmbGaae OlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4BaiaabccacaqG NbGaaeyzaiaabshaaeaacaqG3aGaaeOBaiaabUcacaqG1aGaeyypa0 JaaG4namaabmaabaGaaGOmaaGaayjkaiaawMcaaiabgUcaRiaaiwda cqGH9aqpcaaIXaGaaGinaiabgUcaRiaaiwdacqGH9aqpcaaIXaGaaG yoaiabg2da9iaabkfacaqGUaGaaeisaiaab6cacaqGtbaabaGaae4u aiaab+gacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNb GaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqG2bGaaeyyaiaabYga caqG1bGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAai aabwgacaqGGaGaaeOyaiaabkhacaqGHbGaae4yaiaabUgacaqGLbGa aeiDaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa bshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEgacaqGPb GaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGaaeizaa GaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabodacqGH 9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iaabgdaca GGPaaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9aqpcaaI XaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeisaiaab6 cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiD aaqaaiaabsdacaqGWbGaeyOeI0IaaG4maiabg2da9iaaisdadaqada qaaiaaigdaaiaawIcacaGLPaaacqGHsislcaaIZaGaeyypa0JaaGin aiabgkHiTiaaiodacqGH9aqpcaaIXaGaeyiyIKRaaeOuaiaab6caca qGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqGGaGaaeiD aiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUb GaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaabMga caqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIbGaaeOCai aabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMgacaqGZbGa aeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa bshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEgacaqGPb GaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGaaeyzaa GaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabodacqGH 9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iabgkHiTi aabccacaqG0aGaaiykaaqaaiaabcfacaqG1bGaaeiDaiaabccacaqG WbGaeyypa0JaeyOeI0IaaeinaiaabccacaqGPbGaaeOBaiaabccaca qGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4Baiaa bccacaqGNbGaaeyzaiaabshaaeaacaqG0aGaaeiCaiabgkHiTiaaio dacqGH9aqpcaaI0aWaaeWaaeaacqGHsislcaaI0aaacaGLOaGaayzk aaGaeyOeI0IaaG4maiabg2da9iabgkHiTiaaigdacaaI2aGaeyOeI0 IaaG4maiabg2da9iabgkHiTiaaigdacaaI5aGaeyiyIKRaaeOuaiaa b6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqGGa GaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiai aabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIbGa aeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMgaca qGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiaiaa bohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaae iiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEga caqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGa aeOzaaGaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabo dacqGH9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iaa icdacaGGPaaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9a qpcaqGWaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeis aiaab6cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLb GaaeiDaaqaaiaabsdacaqGWbGaeyOeI0IaaG4maiabg2da9iaaisda daqadaqaaiaaicdaaiaawIcacaGLPaaacqGHsislcaaIZaGaeyypa0 JaaGimaiabgkHiTiaaiodacqGH9aqpcqGHsislcaaIZaGaeyiyIKRa aeOuaiaab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabY cacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeOD aiaabwgacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLb GaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabcca caqGIbGaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiai aabMgacaqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGa aeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gaca qGUbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqa aiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXb GaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@FE43@

Q.3

Solve the following equations by trial and error method:(i) 5p+2=17 (ii) 3m14=4

Ans.

( i ) 5p+ 2=17 Put p=1 to L.H.S to get 5( 1 )+2=5+2=7R.H.S Put p=2 to L.H.S to get 5( 2 )+2=10+2=12R.H.S Put p=3 to L.H.S to get 5( 3 )+2=15+2=17=R.H.S Thus, p=3 is a solution to the given equation ( ii ) 3m14=4 Put m=4 in L.H.S to get 3( 4 )14=1214=2R.H.S Put m=5 in L.H.S to get 3( 5 )14=1514=1R.H.S Put m=6 in L.H.S to get 3( 4 )14=1814=4=R.H.S Thus, m=6 is a solution to the given equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabMgaaiaawIcacaGLPaaa caqGGaGaaeynaiaabchacqGHRaWkcaqGGaGaaeOmaiabg2da9iaabg dacaqG3aaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9aqp caqGXaGaaeiiaiaabshacaqGVbGaaeiiaiaabYeacaqGUaGaaeisai aab6cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGa aeiDaaqaaiaabwdadaqadaqaaiaaigdaaiaawIcacaGLPaaacaqGRa GaaeOmaiabg2da9iaabwdacaqGRaGaaeOmaiabg2da9iaabEdacqGH GjsUcaqGsbGaaeOlaiaabIeacaqGUaGaae4uaaqaaiaabcfacaqG1b GaaeiDaiaabccacaqGWbGaeyypa0JaaeOmaiaabccacaqG0bGaae4B aiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0b Gaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG1aWaaeWaaeaa caaIYaaacaGLOaGaayzkaaGaae4kaiaabkdacqGH9aqpcaqGXaGaae imaiaabUcacaqGYaGaeyypa0JaaeymaiaabkdacqGHGjsUcaqGsbGa aeOlaiaabIeacaqGUaGaae4uaaqaaiaabcfacaqG1bGaaeiDaiaabc cacaqGWbGaeyypa0Jaae4maiaabccacaqG0bGaae4BaiaabccacaqG mbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4Baiaabc cacaqGNbGaaeyzaiaabshaaeaacaqG1aWaaeWaaeaacaaIZaaacaGL OaGaayzkaaGaae4kaiaabkdacqGH9aqpcaqGXaGaaeynaiaabUcaca qGYaGaeyypa0JaaeymaiaabEdacqGH9aqpcaqGsbGaaeOlaiaabIea caqGUaGaae4uaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaae iiaiaabchacqGH9aqpcaqGZaGaaeiiaiaabMgacaqGZbGaaeiiaiaa bggacaqGGaGaae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae 4Baiaab6gacaqGGaGaaeiDaiaab+gacaqGGaGaaeiDaiaabIgacaqG LbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabw gacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeii aaqaamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaqGGaGaae 4maiaab2gacqGHsislcaqGXaGaaeinaiabg2da9iaabsdaaeaacaqG qbGaaeyDaiaabshacaqGGaGaaeyBaiabg2da9iaabsdacaqGGaGaae yAaiaab6gacaqGGaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqG GaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaae4mam aabmaabaGaaGinaaGaayjkaiaawMcaaiabgkHiTiaaigdacaaI0aGa eyypa0JaaGymaiaaikdacqGHsislcaaIXaGaaGinaiabg2da9iabgk HiTiaaikdacqGHGjsUcaqGsbGaaeOlaiaabIeacaqGUaGaae4uaaqa aiaabcfacaqG1bGaaeiDaiaabccacaqGTbGaeyypa0Jaaeynaiaabc cacaqGPbGaaeOBaiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4u aiaabccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaaca qGZaWaaeWaaeaacaaI1aaacaGLOaGaayzkaaGaeyOeI0IaaGymaiaa isdacqGH9aqpcaaIXaGaaGynaiabgkHiTiaaigdacaaI0aGaeyypa0 JaeyOeI0IaaGymaiabgcMi5kaabkfacaqGUaGaaeisaiaab6cacaqG tbaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaab2gacqGH9aqpcaqG2a GaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeisaiaab6ca caqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabodadaqadaqaaiaaisdaaiaawIcacaGLPaaacqGHsislcaaI XaGaaGinaiabg2da9iaaigdacaaI4aGaeyOeI0IaaGymaiaaisdacq GH9aqpcaaI0aGaeyypa0JaaeOuaiaab6cacaqGibGaaeOlaiaabofa aeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccacaqGTbGaey ypa0JaaeOnaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaa bohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaae iiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGLbGaaeyCaiaabw hacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaaaaaa@76BD@

Q.4

Write equations for the following statements:(i) The sum of numbers x and 4 is 9.(ii) The difference between y and 2 is 8.(iii) Ten times a is 70.(iv) The number b divided by 5 gives 6.(v) Three fourth of t is 15.(vi) Seven times m plus 7 gets you 77.(vii) One fourth of a number minus 4 gives 4.(viii) If you take away 6 from 6 times y, you get 60.(ix) If you add 3 toone third of z, you get 30.

Ans.

( i )x+4=9 (ii)y2=8 (iii)10a=70 (iv) b 5 =6 (v) 3 4 t=15 ( vi )7m+7=77 ( vii ) x 4 4=4 ( viii )6y6=60 ( ix ) z 3 +3=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabMgaaiaawIcacaGLPaaa caaMe8UaamiEaiabgUcaRiaaisdacqGH9aqpcaaI5aaabaGaaiikai aabMgacaqGPbGaaeykaiaaysW7caWG5bGaeyOeI0IaaGOmaiabg2da 9iaaiIdaaeaacaqGOaGaaeyAaiaabMgacaqGPbGaaeykaiaaysW7ca aIXaGaaGimaiaadggacqGH9aqpcaaI3aGaaGimaaqaaiaabIcacaqG PbGaaeODaiaabMcacaaMe8+aaSaaaeaacaWGIbaabaGaaGynaaaacq GH9aqpcaaI2aaabaGaaeikaiaabAhacaqGPaGaaGjbVpaalaaabaGa aG4maaqaaiaaisdaaaGaamiDaiabg2da9iaaigdacaaI1aaabaWaae WaaeaacaqG2bGaaeyAaaGaayjkaiaawMcaaiaaysW7caaI3aGaamyB aiabgUcaRiaaiEdacqGH9aqpcaaI3aGaaG4naaqaamaabmaabaGaae ODaiaabMgacaqGPbaacaGLOaGaayzkaaGaaGjbVpaalaaabaGaamiE aaqaaiaaisdaaaGaeyOeI0IaaGinaiabg2da9iaaisdaaeaadaqada qaaiaabAhacaqGPbGaaeyAaiaabMgaaiaawIcacaGLPaaacaaMe8Ua aGOnaiaadMhacqGHsislcaaI2aGaeyypa0JaaGOnaiaaicdaaeaada qadaqaaiaabMgacaqG4baacaGLOaGaayzkaaGaaGjbVpaalaaabaGa amOEaaqaaiaaiodaaaGaey4kaSIaaG4maiabg2da9iaaiodacaaIWa aaaaa@9828@

Q.5

Write the following equations in statement forms:(i)    p+4=15(ii)   m7=3(iii)   2m=7(iv) m5=3(v)35m=6(vi) 3p+4=25(vii) 4p2=18(viii) p2+2=8

Ans.

(i) The sum of p and 4 is 15. (ii) 7 subtracted from m is 3. (iii) Twice of a number m is 7. (iv) One-fifth of m is 3. (v) Three-fifth of m is 6. (vi) Three times of a number p, when add to 4 gives 25. (vii) When 2 is subtracted from four times of a number p, it gives 18. (viii) When 2 is added to half of a number p, it gives 8. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaGGOaGaamyAaiaacMcacaqGGaGaaeiv aiaabIgacaqGLbGaaeiiaiaabohacaqG1bGaaeyBaiaabccacaqGVb GaaeOzaiaabccacaqGWbGaaeiiaiaabggacaqGUbGaaeizaiaabcca caqG0aGaaeiiaiaabMgacaqGZbGaaeiiaiaabgdacaqG1aGaaeOlaa qaaiaabIcacaqGPbGaaeyAaiaabMcacaqGGaGaae4naiaabccacaqG ZbGaaeyDaiaabkgacaqG0bGaaeOCaiaabggacaqGJbGaaeiDaiaabw gacaqGKbGaaeiiaiaabAgacaqGYbGaae4Baiaab2gacaqGGaGaaeyB aiaabccacaqGPbGaae4CaiaabccacaqGZaGaaeOlaaqaaiaabIcaca qGPbGaaeyAaiaabMgacaqGPaGaaeiiaiaabsfacaqG3bGaaeyAaiaa bogacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaae OBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab2gacaqG GaGaaeyAaiaabohacaqGGaGaae4naiaab6caaeaacaqGOaGaaeyAai aabAhacaqGPaGaaeiiaiaab+eacaqGUbGaaeyzaiaab2cacaqGMbGa aeyAaiaabAgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccaca qGTbGaaeiiaiaabMgacaqGZbGaaeiiaiaabodacaqGUaaabaGaaeik aiaabAhacaqGPaGaaeiiaiaabsfacaqGObGaaeOCaiaabwgacaqGLb GaaeylaiaabAgacaqGPbGaaeOzaiaabshacaqGObGaaeiiaiaab+ga caqGMbGaaeiiaiaab2gacaqGGaGaaeyAaiaabohacaqGGaGaaeOnai aab6caaeaacaqGOaGaaeODaiaabMgacaqGPaGaaeiiaiaabsfacaqG ObGaaeOCaiaabwgacaqGLbGaaeiiaiaabshacaqGPbGaaeyBaiaabw gacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaaeOB aiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchacaqGSa GaaeiiaiaabEhacaqGObGaaeyzaiaab6gacaqGGaGaaeyyaiaabsga caqGKbGaaeiiaiaabshacaqGVbGaaeiiaiaabsdacaqGGaGaae4zai aabMgacaqG2bGaaeyzaiaabohacaqGGaGaaeOmaiaabwdacaqGUaaa baGaaeikaiaabAhacaqGPbGaaeyAaiaabMcacaqGGaGaae4vaiaabI gacaqGLbGaaeOBaiaabccacaqGYaGaaeiiaiaabMgacaqGZbGaaeii aiaabohacaqG1bGaaeOyaiaabshacaqGYbGaaeyyaiaabogacaqG0b GaaeyzaiaabsgacaqGGaGaaeOzaiaabkhacaqGVbGaaeyBaiaabcca caqGMbGaae4BaiaabwhacaqGYbGaaeiiaiaabshacaqGPbGaaeyBai aabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGa aeOBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchaca qGSaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaeyA aiaabshacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaabohacaqGGa GaaeymaiaabIdacaqGUaaabaGaaeikaiaabAhacaqGPbGaaeyAaiaa bMgacaqGPaGaaeiiaiaabEfacaqGObGaaeyzaiaab6gacaqGGaGaae OmaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeizaiaabsgacaqG LbGaaeizaiaabccacaqG0bGaae4BaiaabccacaqGObGaaeyyaiaabY gacaqGMbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaaeOB aiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchacaqGSa GaaeiiaiaabMgacaqG0bGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGZbGaaeiiaiaabIdacaqGUaaaaaa@52BE@

Q.6

Set up an equation in the following cases:i Irfan says that he has 7 marbles more than five times the marbles Parmit has.Irfan has 37 marbles.(Take m to be the number of Parmits marbles.(ii) Laxmis father is 49 years old. He is 4 years older than three times Laxmis age.(Take Laxmis age to be y years.)iii The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7.The highest score is 87.(Take the lowest score to be l).iv In an isosceles triangle, the vertex angle is twice either base angle.(Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Ans.

(i) Let Parmit has m marbles. Then, according to the question, we have 5×Number of marbles Parmit has +7=Number of marbles Irfan has 5×m+7=37 So, we get 5m+7=37 (ii) Let Laxmi be y years old Then, according to the question, we have 3×Laxmi’s age+4=Laxmi’s father age 3×y+4=49 3y+4=49 (iii) Let the lowest marks be l. Then, according to the question, we have 2×lowest marks +7=Highest marks 2×l+7=87 2l+7=87 (iv) An isoceles triangle has two angles equal. Let the base angle be b. Then, according to the question, we have b+b+2b=180° 4b=180° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeit aiaabwgacaqG0bGaaeiiaiaabcfacaqGHbGaaeOCaiaab2gacaqGPb GaaeiDaiaabccacaqGObGaaeyyaiaabohacaqGGaGaamyBaiaabcca caqGTbGaaeyyaiaabkhacaqGIbGaaeiBaiaabwgacaqGZbGaaeOlaa qaaiaabsfacaqGObGaaeyzaiaab6gacaqGSaGaaeiiaiaabggacaqG JbGaae4yaiaab+gacaqGYbGaaeizaiaabMgacaqGUbGaae4zaiaabc cacaqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyC aiaabwhacaqGLbGaae4CaiaabshacaqGPbGaae4Baiaab6gacaqGSa GaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwga aeaacaqG1aGaey41aqRaaeOtaiaabwhacaqGTbGaaeOyaiaabwgaca qGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaab2gacaqGHbGaaeOCaiaa bkgacaqGSbGaaeyzaiaabohacaqGGaGaaeiuaiaabggacaqGYbGaae yBaiaabMgacaqG0bGaaeiiaiaabIgacaqGHbGaae4CaiaabccacaqG RaGaae4naiabg2da9iaab6eacaqG1bGaaeyBaiaabkgacaqGLbGaae OCaiaabccacaqGVbGaaeOzaiaabccacaqGTbGaaeyyaiaabkhacaqG IbGaaeiBaiaabwgacaqGZbaabaGaaCzcaiaaxMaacaWLjaGaaCzcai aaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaaeysaiaabkhacaqGMbGa aeyyaiaab6gacaqGGaGaaeiAaiaabggacaqGZbaabaGaaCzcaiaaxM aacaWLjaGaaCzcaiaaxMaacaWLjaGaaGjbVlaaysW7caqG1aGaey41 aqRaamyBaiabgUcaRiaabEdacqGH9aqpcaqGZaGaae4naaqaaiaabo facaqGVbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyz aiaabshaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaaca aMe8UaaGjbVlaaysW7daqjEaqaaiaabwdacaWGTbGaey4kaSIaae4n aiabg2da9iaabodacaqG3aaaaaqaaiaabIcacaqGPbGaaeyAaiaabM cacaqGGaGaaeitaiaabwgacaqG0bGaaeiiaiaabYeacaqGHbGaaeiE aiaab2gacaqGPbGaaeiiaiaabkgacaqGLbGaaeiiaiaadMhacaqGGa GaaeyEaiaabwgacaqGHbGaaeOCaiaabohacaqGGaGaae4BaiaabYga caqGKbaabaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcacaqGGaGaae yyaiaabogacaqGJbGaae4BaiaabkhacaqGKbGaaeyAaiaab6gacaqG NbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabc cacaqGXbGaaeyDaiaabwgacaqGZbGaaeiDaiaabMgacaqGVbGaaeOB aiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2b GaaeyzaaqaaiaabodacqGHxdaTcaqGmbGaaeyyaiaabIhacaqGTbGa aeyAaiaabEcacaqGZbGaaeiiaiaabggacaqGNbGaaeyzaiabgUcaRi aabsdacqGH9aqpcaqGmbGaaeyyaiaabIhacaqGTbGaaeyAaiaabEca caqGZbGaaeiiaiaabAgacaqGHbGaaeiDaiaabIgacaqGLbGaaeOCai aabccacaqGHbGaae4zaiaabwgaaeaacaqGZaGaey41aqRaamyEaiaa bUcacaqG0aGaeyypa0JaaeinaiaabMdaaeaadaqjEaqaaiaabodaca WG5bGaey4kaSIaaeinaiabg2da9iaabsdacaqG5aaaaaqaaiaabIca caqGPbGaaeyAaiaabMgacaqGPaGaaeiiaiaabYeacaqGLbGaaeiDai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiBaiaab+gacaqG3bGa aeyzaiaabohacaqG0bGaaeiiaiaab2gacaqGHbGaaeOCaiaabUgaca qGZbGaaeiiaiaabkgacaqGLbGaaeiiaiaadYgacaqGUaaabaGaaeiv aiaabIgacaqGLbGaaeOBaiaabYcacaqGGaGaaeyyaiaabogacaqGJb Gaae4BaiaabkhacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsha caqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGXbGaaeyDai aabwgacaqGZbGaaeiDaiaabMgacaqGVbGaaeOBaiaabYcacaqGGaGa ae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaaik dacqGHxdaTcaqGSbGaae4BaiaabEhacaqGLbGaae4CaiaabshacaqG GaGaaeyBaiaabggacaqGYbGaae4AaiaabohacaqGGaGaey4kaSIaae 4naiabg2da9iaabIeacaqGPbGaae4zaiaabIgacaqGLbGaae4Caiaa bshacaqGGaGaaeyBaiaabggacaqGYbGaae4AaiaabohaaeaacaqGYa Gaey41aqRaamiBaiabgUcaRiaabEdacqGH9aqpcaqG4aGaae4naaqa amaaL4babaGaaGOmaiaadYgacqGHRaWkcaaI3aGaeyypa0JaaGioai aaiEdaaaaabaGaaeikaiaabMgacaqG2bGaaeykaiaabccacaqGbbGa aeOBaiaabccacaqGPbGaae4Caiaab+gacaqGJbGaaeyzaiaabYgaca qGLbGaae4CaiaabccacaqG0bGaaeOCaiaabMgacaqGHbGaaeOBaiaa bEgacaqGSbGaaeyzaiaabccacaqGObGaaeyyaiaabohacaqGGaGaae iDaiaabEhacaqGVbGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqG LbGaae4CaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaab6 caaeaacaqGmbGaaeyzaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGa aeiiaiaabkgacaqGHbGaae4CaiaabwgacaqGGaGaaeyyaiaab6gaca qGNbGaaeiBaiaabwgacaqGGaGaaeOyaiaabwgacaqGGaGaamOyaiaa b6caaeaacaqGubGaaeiAaiaabwgacaqGUbGaaeilaiaabccacaqGHb Gaae4yaiaabogacaqGVbGaaeOCaiaabsgacaqGPbGaaeOBaiaabEga caqGGaGaaeiDaiaab+gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiai aabghacaqG1bGaaeyzaiaabohacaqG0bGaaeyAaiaab+gacaqGUbGa aeilaiaabccacaqG3bGaaeyzaiaabccacaqGObGaaeyyaiaabAhaca qGLbaabaGaamOyaiabgUcaRiaadkgacqGHRaWkcaWGYaGaamOyaiab g2da9iaabgdacaqG4aGaaeimaiabgclaWcqaamaaL4babaGaaGinai aadkgacqGH9aqpcaaIXaGaaGioaiaaicdacqGHWcaSaaaaaaa@1B6D@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Where can students access the Class 7 Maths Chapter 4 Exercise 4.1 Solutions?

Students can avail the solutions for the Class 7 Maths Chapter 4 Exercise 4.1 on the Extramarks website and mobile application.

2. Is Class 7 Maths Exercise 4.1 difficult?

The Class 7 Maths Exercise 4.1 may at first seem a little difficult but with consistent practice with the assistance of the NCERT Class 7 Maths Chapter Exercise 4.1 and sheer determination, students can master the subject conveniently.