NCERT Solutions for Class 7 Maths Chapter 15 Visualising Solid Shapes (EX 15.1) Exercise 15.1

The 14 questions in Chapter 15 are all fairly simple and are based on the ideas covered in each section. These brief questions will not take much time to complete. The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 Geometry fundamentals are covered in Class 7 Math Chapter 15 because it imparts crucial knowledge for solving geometry-related problems. Although no formulas are covered in this chapter, there are some definitions and information that students should be familiar with to solve the problems. Students can also download the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 in PDF format.

If students have any problems with the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1, they can get help from the teachers in live sessions. The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 are the best study materials to understand the chapter deeply. In fact, students can check their answers with the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1.

NCERT Solutions for Class 7 Maths Chapter 15 Visualising Solid Shapes (EX 15.1) Exercise 15.1 

The mathematical study of spatial relationships is known as Geometry. In our everyday lives, it also aids in calculating heights and distances, from calculating a box’s volume to determining a room’s measurements. Students must therefore master the ideas surrounding solid shape visualisation.

As all shapes and things in the human world have length, breadth, and height, therefore, Geometry is the study of these items in two and three dimensions. The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 Understanding terminology like 2D and 3D and the significance of their respective fields is the first step towards visualising solid shapes. Diagrams describe concepts such as vertices, edges, and faces.

Students must be aware of the distinction between solid and flat geometry. The study of lines and shapes like squares, triangles, rectangles, and hexagons is known as “Plane Geometry,” also called “Two-Dimensional Geometry.” In contrast, the study of prisms, cylinders, cubes, pyramids, spheres, and other three-dimensional objects is known as “Solid Geometry.”The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 are the best materials to understand the chapter deeply.

Students can easily download the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 from the Extramarks website and mobile application. They also get the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 in PDF form. The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 are also used in the chapter’s practice.

Students can learn about three-dimensional space and how objects can be formed in three dimensions by completing some of the activities in the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1. They are instructed to create the appropriate frames or nets for the shapes and then prompted to try to construct the shapes using the prepared cutouts or frames. As a result, it will be easier to develop the visualisation abilities needed for the exercise and the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1.

The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 begin with an introduction to forms and objects in 2D and 3D space. In NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1, the meanings of terminology like edges, faces, and vertices of shapes are revised. Along with the idea of perceiving solid objects and how to observe their distinct sections, further solid drawings on a flat surface, oblique sketches, and isometric sketches are explained. The chapter’s last section discusses Shadow Play as a technique to view three-dimensional objects in a two-dimensional environment.

Access NCERT Solution for Class VII Mathematics Chapter 15- Visualising Solid Shapes

The greatest study guide is the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 titled – Visualising Solid Shapes, which answers all the issues raised in NCERT Class 7. Students can use these NCERT Solutions for Class 7 Maths Chapter 15 Exercise 15.1 to regularly practise different questions in order to perform well on the final exams.

There are four exercises in Chapter 15 of the NCERT Solutions for Class 7 Maths, Visualizing Solid Shapes. All of the questions in the exercises have accurate answers in the solutions. Introduction to Plane Figures and Solid Figures, Faces, Edges and Vertices, Nets for Building 3-D Shapes, Drawing Solids on a Flat Surface, Oblique Sketches, Isometric Sketches, and Visualising Solid Objects are topics covered in this chapter, Viewing Different Sections of a Solid, One way to View an Object by Cutting or Slicing, and Another way is by Shadow Play.

The best option for CBSE students in exam preparation is to choose the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1. Numerous exercises are included in this chapter. Extramarks provides the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 in PDF format in this case. Students can download these solutions directly from their website or mobile application whenever they need them.

Exercise 15.1

According to the most recent CBSE syllabus, the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 offer solutions with thorough explanations. Students will get lots of practise doing these problems, which will help them finish the assignment quickly. Using the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 is crucial to achieving academic success. The ability to write tests will become more natural to students, who will be better able to handle them.

Students must practise exercises in NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1. Considering that all exercises involve various questions that must be answered and could come up in their finals, Extramarks offers these solutions. As a result, they feel more confident about their course material.

The well-explained NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 help students boost their preparation. In order to lay a foundation for later concepts, Visualising Solid Shapes explains the principles of geometric shapes. The concepts of two-dimensional shapes, defined as those with a length and a width, and three-dimensional objects, defined as those with a height component, have been described through examples. Students can visualise any shape with the provided dimensions by using terms like faces, edges, and vertices that are well explained with illustrations.

Making paper frames and building figures are mentioned to help the students better comprehend the measurements in 3D space. This will promote the innovative thinking needed to comprehend geometry. The NCERT Solutions for Class 7 Maths, Chapter 15, Exercise 15.1 includes 5 questions that test students’ knowledge of identifying shapes.

The exercise questions are included in the NCERT Solutions for Class 7 Maths, Chapter 15, Exercise 15.1.Visualising The main idea behind solid shapes is to attempt to find the right shape to fit into the available net or framework.

To complete NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1, students must fully understand two- and three-dimensional space.. This will enable them to visualise the provided frameworks rather than depend just on guesswork.

NCERT Solutions for Class 7 Maths Chapter 15 Visualising Solid Shapes Exercise 15.1

The subject matter experts at Extramarks carefully follow all CBSE regulations to solve the exercise problems and questions. Any student in Class 7 who is thoroughly familiar with all the ideas from the topic – Visualising Solid Shapes and quite knowledgeable about all the problems from the exercises provided can easily earn the highest marks on the final exam. Students can use these NCERT Solutions for Class 7 Maths Chapter 15 Exercise 15.1 to learn the pattern of questions that may be asked in the exam, as well as the marks distribution and chapter weighting, to adequately prepare for the final exam.

The NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 are thought to be the ideal choice for CBSE students preparing for exams. Numerous exercises are included in this chapter. Extramarks includes the PDF versions of the NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1. These NCERT Solutions Class 7 Maths Chapter 15 Exercise 15.1 are available for download at their convenience, or they may access it straight from the website or mobile application to study it.

In addition to these, NCERT Solutions for Class 7 Maths, Chapter 15, Exercise 15.1 includes a variety of exercises with numerous questions.As previously noted, Extramarks specialists have already answered and solved these questions. Because of this, they are all guaranteed to be of the highest quality, and anyone can use them to study for exams. Understanding the textbook concepts and completing the tasks provided next to them is crucial for achieving the highest grade attainable in the class.

When students practise from the NCERT Solutions for Class 7 Maths Chapter 15 Exercise 15.1, it is easier for them to learn all concepts and ideas present in the chapter. It allows them to evaluate what they have learned in a shorter period of time. They also save time because they are not required to use textbooks to learn. Students can quickly download Class 7th Maths Chapter 15 Exercise 15.1 in PDF format and use it to double-check their answers.

Students can register with Extramarks to obtain more information regarding the NCERT solutions or to gain access to numerous study materials.

Q.1

Identify the nets which can be used to make cubes(cut out copies of the nets and try it):

Ans

(i)The given net can be folded as:

When the faces that are in sky blue colur and in pink colour are folded to make cube, they will be overlaping each other. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbEfaxjabbIgaOjabbwgaLjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbAgaMjabbggaHjabbogaJjabbwgaLjabbohaZjabbccaGiabbsha0jabbIgaOjabbggaHjabbsha0jabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbMgaPjabb6gaUjabbccaGiabbohaZjabbUgaRjabbMha5jabbccaGiabbkgaIjabbYgaSjabbwha1jabbwgaLjabbccaGiabbogaJjabb+gaVjabbYgaSjabbwha1jabbkhaYjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbMgaPjabb6gaUjabbccaGiabbchaWjabbMgaPjabb6gaUjabbUgaRjabbccaGiabbogaJjabb+gaVjabbYgaSjabb+gaVjabbwha1jabbkhaYbqaaiabbggaHjabbkhaYjabbwgaLjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbsgaKjabbwgaLjabbsgaKjabbccaGiabbsha0jabb+gaVjabbccaGiabb2gaTjabbggaHjabbUgaRjabbwgaLjabbccaGiabbogaJjabbwha1jabbkgaIjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbwgaLjabbMha5jabbccaGiabbEha3jabbMgaPjabbYgaSjabbYgaSjabbccaGiabbkgaIjabbwgaLjabbccaGiabb+gaVjabbAha2jabbwgaLjabbkhaYjabbYgaSjabbggaHjabbchaWjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbwgaLjabbggaHjabbogaJjabbIgaOjabbccaGiabb+gaVjabbsha0jabbIgaOjabbwgaLjabbkhaYjabb6caUaaaaa@D794@

(ii) The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6D1B@

Thus, a cube can thus be formed in above way. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGHbqycqqGGaaicqqGJbWycqqG1bqDcqqGIbGycqqGLbqzcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqG1bqDcqqGZbWCcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGTbqBcqqGLbqzcqqGKbazcqqGGaaicqqGPbqAcqqGUbGBcqqGGaaicqqGHbqycqqGIbGycqqGVbWBcqqG2bGDcqqGLbqzcqqGGaaicqqG3bWDcqqGHbqycqqG5bqEcqqGUaGlaaa@7902@

(iii) The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6D35@

Thus, a cube can thus be formed in above way. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGHbqycqqGGaaicqqGJbWycqqG1bqDcqqGIbGycqqGLbqzcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqG1bqDcqqGZbWCcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGTbqBcqqGLbqzcqqGKbazcqqGGaaicqqGPbqAcqqGUbGBcqqGGaaicqqGHbqycqqGIbGycqqGVbWBcqqG2bGDcqqGLbqzcqqGGaaicqqG3bWDcqqGHbqycqqG5bqEcqqGUaGlaaa@7902@

(iv) The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6D35@

Thus, a cube can thus be formed in above way. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGHbqycqqGGaaicqqGJbWycqqG1bqDcqqGIbGycqqGLbqzcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqG1bqDcqqGZbWCcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGTbqBcqqGLbqzcqqGKbazcqqGGaaicqqGPbqAcqqGUbGBcqqGGaaicqqGHbqycqqGIbGycqqGVbWBcqqG2bGDcqqGLbqzcqqGGaaicqqG3bWDcqqGHbqycqqG5bqEcqqGUaGlaaa@7902@

(v) The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqG2bGDcqqGPaqkcqqGGaaicqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6BDC@

When the faces are in blue colour and in red colour are folded to make a cube, they will be overlapping each other.

(vi) The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbEfaxjabbIgaOjabbwgaLjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbAgaMjabbggaHjabbogaJjabbwgaLjabbohaZjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbMgaPjabb6gaUjabbccaGiabbkgaIjabbYgaSjabbwha1jabbwgaLjabbccaGiabbogaJjabb+gaVjabbYgaSjabb+gaVjabbwha1jabbkhaYjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbMgaPjabb6gaUjabbccaGiabbkhaYjabbwgaLjabbsgaKjabbccaGiabbogaJjabb+gaVjabbYgaSjabb+gaVjabbwha1jabbkhaYjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbsgaKjabbwgaLjabbsgaKbqaaiabbsha0jabb+gaVjabbccaGiabb2gaTjabbggaHjabbUgaRjabbwgaLjabbccaGiabbggaHjabbccaGiabbogaJjabbwha1jabbkgaIjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbwgaLjabbMha5jabbccaGiabbEha3jabbMgaPjabbYgaSjabbYgaSjabbccaGiabbkgaIjabbwgaLjabbccaGiabb+gaVjabbAha2jabbwgaLjabbkhaYjabbYgaSjabbggaHjabbchaWjabbchaWjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbwgaLjabbggaHjabbogaJjabbIgaOjabbccaGiabb+gaVjabbsha0jabbIgaOjabbwgaLjabbkhaYjabb6caUaqaaiabbIcaOiabbAha2jabbMgaPjabbMcaPiabbccaGiabbsfaujabbIgaOjabbwgaLjabbccaGiabbEgaNjabbMgaPjabbAha2jabbwgaLjabb6gaUjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbsgaKjabbwgaLjabbsgaKjabbccaGiabbggaHjabbohaZjabbQda6aaaaa@FAB5@

Thus, a cube can thus be formed in above way.MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGHbqycqqGGaaicqqGJbWycqqG1bqDcqqGIbGycqqGLbqzcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqG1bqDcqqGZbWCcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGTbqBcqqGLbqzcqqGKbazcqqGGaaicqqGPbqAcqqGUbGBcqqGGaaicqqGHbqycqqGIbGycqqGVbWBcqqG2bGDcqqGLbqzcqqGGaaicqqG3bWDcqqGHbqycqqG5bqEcqqGUaGlaaa@7902@

Q.2

Dice are cubes with dots on each face. Opposite faces of a die always have a total of seven dots on them.

Here are two nets to make dice cubes; the numbers inserted in each square indicate the number of dots in that box.

Insert suitable numbers in the blanks, remembering that the number on the opposite faces should total to 7.

Ans

(i) The numbers can be inserted as follows so as to make the given net into a net of a dice. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbsfaujabbIgaOjabbwgaLjabbccaGiabb6gaUjabbwha1jabb2gaTjabbkgaIjabbwgaLjabbkhaYjabbohaZjabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabbMgaPjabb6gaUjabbohaZjabbwgaLjabbkhaYjabbsha0jabbwgaLjabbsgaKjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbccaGiabbohaZjabb+gaVjabbccaGiabbggaHjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabb2gaTjabbggaHjabbUgaRjabbwgaLjabbccaGiabbsha0jabbIgaOjabbwgaLbqaaiabbEgaNjabbMgaPjabbAha2jabbwgaLjabb6gaUjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabbMgaPjabb6gaUjabbsha0jabb+gaVjabbccaGiabbggaHjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabbccaGiabbsgaKjabbMgaPjabbogaJjabbwgaLjabb6caUaaaaa@B167@

It can be seen that the sum of opposite faces is 7. (ii) The numbers can be inserted as follows so as to make the given net into a net of a dice. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbMeajjabbsha0jabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabbohaZjabbwgaLjabbwgaLjabb6gaUjabbccaGiabbsha0jabbIgaOjabbggaHjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbohaZjabbwha1jabb2gaTjabbccaGiabb+gaVjabbAgaMjabbccaGiabb+gaVjabbchaWjabbchaWjabb+gaVjabbohaZjabbMgaPjabbsha0jabbwgaLjabbccaGiabbAgaMjabbggaHjabbogaJjabbwgaLjabbohaZjabbccaGiabbMgaPjabbohaZjabbccaGiabbEda3iabb6caUaqaaaqaaiabbIcaOiabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbIgaOjabbwgaLjabbccaGiabb6gaUjabbwha1jabb2gaTjabbkgaIjabbwgaLjabbkhaYjabbohaZjabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabbMgaPjabb6gaUjabbohaZjabbwgaLjabbkhaYjabbsha0jabbwgaLjabbsgaKjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbccaGiabbohaZjabb+gaVjabbccaGiabbggaHjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabb2gaTjabbggaHjabbUgaRjabbwgaLjabbccaGiabbsha0jabbIgaOjabbwgaLbqaaiabbEgaNjabbMgaPjabbAha2jabbwgaLjabb6gaUjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabbMgaPjabb6gaUjabbsha0jabb+gaVjabbccaGiabbggaHjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabbccaGiabbsgaKjabbMgaPjabbogaJjabbwgaLjabb6caUaaaaa@F0CD@

It can be seen that the sum of opposite faces is 7. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGjbqscqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGZbWCcqqGLbqzcqqGLbqzcqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqGHbqycqqG0baDcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGZbWCcqqG1bqDcqqGTbqBcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGVbWBcqqGWbaCcqqGWbaCcqqGVbWBcqqGZbWCcqqGPbqAcqqG0baDcqqGLbqzcqqGGaaicqqGMbGzcqqGHbqycqqGJbWycqqGLbqzcqqGZbWCcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG3aWncqqGUaGlaaa@8038@

Q.3

Can this be a net for a die? Explain your answer.

Ans

The given net can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@67F2@

It can be observed that the opposite face of the dice so formed have 2 and 5, 1 and 4, 3 and 6 on them. The sum of numbers on the opposite faces comes to 7, 5 and 9 respectively. However, in case of a dice, the sum of numbers on the opposite faces should be7. Therefore, this net is not of a dice. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbMeajjabbsha0jabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabb+gaVjabbkgaIjabbohaZjabbwgaLjabbkhaYjabbAha2jabbwgaLjabbsgaKjabbccaGiabbsha0jabbIgaOjabbggaHjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbchaWjabb+gaVjabbohaZjabbMgaPjabbsha0jabbwgaLjabbccaGiabbAgaMjabbggaHjabbogaJjabbwgaLjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbsgaKjabbMgaPjabbogaJjabbwgaLjabbccaGiabbohaZjabb+gaVjabbccaGiabbAgaMjabb+gaVjabbkhaYjabb2gaTjabbwgaLjabbsgaKbqaaiabbIgaOjabbggaHjabbAha2jabbwgaLjabbccaGiabbkdaYiabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbwda1iabbYcaSiabbccaGiabbgdaXiabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsda0iabbYcaSiabbccaGiabbodaZiabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbAda2iabbccaGiabb+gaVjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabb2gaTjabb6caUaqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbwha1jabb2gaTjabbccaGiabb+gaVjabbAgaMjabbccaGiabb6gaUjabbwha1jabb2gaTjabbkgaIjabbwgaLjabbkhaYjabbohaZjabbccaGiabb+gaVjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbchaWjabb+gaVjabbohaZjabbMgaPjabbsha0jabbwgaLjabbccaGiabbAgaMjabbggaHjabbogaJjabbwgaLjabbohaZjabbccaGiabbogaJjabb+gaVjabb2gaTjabbwgaLjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabbEda3iabbYcaSiabbccaGiabbwda1iabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbMda5aqaaiabbkhaYjabbwgaLjabbohaZjabbchaWjabbwgaLjabbogaJjabbsha0jabbMgaPjabbAha2jabbwgaLjabbYgaSjabbMha5jabb6caUaqaaiabbIeaijabb+gaVjabbEha3jabbwgaLjabbAha2jabbwgaLjabbkhaYjabbYcaSiabbccaGiabbMgaPjabb6gaUjabbccaGiabbogaJjabbggaHjabbohaZjabbwgaLjabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabbccaGiabbsgaKjabbMgaPjabbogaJjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbohaZjabbwha1jabb2gaTjabbccaGiabb+gaVjabbAgaMjabbccaGiabb6gaUjabbwha1jabb2gaTjabbkgaIjabbwgaLjabbkhaYjabbohaZjabbccaGiabb+gaVjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbchaWjabb+gaVjabbohaZjabbMgaPjabbsha0jabbwgaLbqaaiabbAgaMjabbggaHjabbogaJjabbwgaLjabbohaZjabbccaGiabbohaZjabbIgaOjabb+gaVjabbwha1jabbYgaSjabbsgaKjabbccaGiabbkgaIjabbwgaLjabbEda3iabb6caUaqaaiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbMgaPjabbohaZjabbccaGiabb6gaUjabbwgaLjabbsha0jabbccaGiabbMgaPjabbohaZjabbccaGiabb6gaUjabb+gaVjabbsha0jabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabbccaGiabbsgaKjabbMgaPjabbogaJjabbwgaLjabb6caUaaaaa@A39A@

Q.4

Here is an incomplete net for making a cube. Completeit in at least two different ways. Remember that a cubehas six faces. How many are there in the net here?(Give two separate diagrams. If you like, you may use a squared sheet for easy manipulation.)

Ans

There are 3 faces given in the net. The given net can be completed as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqGLbqzcqqGYbGCcqqGLbqzcqqGGaaicqqGHbqycqqGYbGCcqqGLbqzcqqGGaaicqqGZaWmcqqGGaaicqqGMbGzcqqGHbqycqqGJbWycqqGLbqzcqqGZbWCcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGPbqAcqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGUaGlcqqGGaaicqqGubavcqqGObaAcqqGLbqzcqqGGaaicqqGNbWzcqqGPbqAcqqG2bGDcqqGLbqzcqqGUbGBcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGJbWycqqGVbWBcqqGTbqBcqqGWbaCcqqGSbaBcqqGLbqzcqqG0baDcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@9737@

Q.5

Match the nets with appropriate solids:

Ans

Consider net (i) It can be folded as:

Consider net (ii) It can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGdbWqcqqGVbWBcqqGUbGBcqqGZbWCcqqGPbqAcqqGKbazcqqGLbqzcqqGYbGCcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGjbqscqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6F9D@

It is a net of cube. Hence, (a) is the correct option. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGjbqscqqG0baDcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqGHbqycqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGJbWycqqG1bqDcqqGIbGycqqGLbqzcqqGUaGlcqqGGaaicqqGibascqqGLbqzcqqGUbGBcqqGJbWycqqGLbqzcqqGSaalcqqGGaaicqqGOaakcqqGHbqycqqGPaqkcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGJbWycqqGVbWBcqqGYbGCcqqGYbGCcqqGLbqzcqqGJbWycqqG0baDcqqGGaaicqqGVbWBcqqGWbaCcqqG0baDcqqGPbqAcqqGVbWBcqqGUbGBcqqGUaGlaaa@825B@

Consider net (iii) It can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGdbWqcqqGVbWBcqqGUbGBcqqGZbWCcqqGPbqAcqqGKbazcqqGLbqzcqqGYbGCcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGOaakcqqGPbqAcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGjbqscqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@70F6@

It is a net of cylinder. Hence, (b) is the correct option. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGjbqscqqG0baDcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqGHbqycqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGJbWycqqG5bqEcqqGSbaBcqqGPbqAcqqGUbGBcqqGKbazcqqGLbqzcqqGYbGCcqqGUaGlcqqGGaaicqqGibascqqGLbqzcqqGUbGBcqqGJbWycqqGLbqzcqqGSaalcqqGGaaicqqGOaakcqqGIbGycqqGPaqkcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGJbWycqqGVbWBcqqGYbGCcqqGYbGCcqqGLbqzcqqGJbWycqqG0baDcqqGGaaicqqGVbWBcqqGWbaCcqqG0baDcqqGPbqAcqqGVbWBcqqGUbGBcqqGUaGlaaa@87EF@

Consider net (iv) It can be folded as: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGdbWqcqqGVbWBcqqGUbGBcqqGZbWCcqqGPbqAcqqGKbazcqqGLbqzcqqGYbGCcqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGjbqscqqG0baDcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGMbGzcqqGVbWBcqqGSbaBcqqGKbazcqqGLbqzcqqGKbazcqqGGaaicqqGHbqycqqGZbWCcqqG6aGoaaa@6FB7@

It is a net of cone. Hence, (c) is the correct option. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGjbqscqqG0baDcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqGHbqycqqGGaaicqqGUbGBcqqGLbqzcqqG0baDcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGJbWycqqGVbWBcqqGUbGBcqqGLbqzcqqGUaGlcqqGGaaicqqGibascqqGLbqzcqqGUbGBcqqGJbWycqqGLbqzcqqGSaalcqqGGaaicqqGOaakcqqGJbWycqqGPaqkcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGJbWycqqGVbWBcqqGYbGCcqqGYbGCcqqGLbqzcqqGJbWycqqG0baDcqqGGaaicqqGVbWBcqqGWbaCcqqG0baDcqqGPbqAcqqGVbWBcqqGUbGBcqqGUaGlaaa@826B@

Please register to view this section