NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.5) Exercise 10.5

NCERT books are recognised as important learning tools that can help CBSE students prepare for academic or competitive exams.These books provide them with a solid basis and broaden their knowledge, NCERT books are incredibly beneficial for all students. NCERT books are more than sufficient to clearly and comprehensively cover each subject’s important topics. There is no doubt that the NCERT books are helpful when it comes to comprehension. Instead of only memorisation, students should concentrate on comprehending the subject-matter. Students may benefit from using the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 to aid in their understanding of difficult and complex mathematical concepts.

The patterns presented in the NCERT books must be studied by students in order to prevent misunderstandings during the examination. Anyone who is well-versed in the topic will be able to answer any inquiries that are made during tests. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 are crucial for students since it will enable them to completely comprehend the organisational concepts of the NCERT books.NCERT Solutions for Class 7 Maths Chapter 10 Exercise 10.5 are available here for students preparing for the CBSE Class 8 Mathematics examinations. In order to succeed in the Class 7 board examination, students must become familiar with these NCERT solutions.

Due to how wide and thorough these NCERT texts are, CBSE rarely provides questions that go beyond them. These books must be thoroughly studied by the students. While it is acceptable to study from sources other than the NCERT books, students should make sure they have studied all of the material in the NCERT books. Before reading any other publications, it is essential to fully comprehend the NCERT textbooks.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.5) Exercise 10.5

It is simple to get access to NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 for CBSE Class 7 students. They may download the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 in PDF format from Extramarks’ website or mobile application. To stay focused, students will need the solutions for Class 7 Maths Chapter 10 Exercise 10.5 even when studying offline.

Exam preparation is made easier with the help of Extramarks’ study resources, which greatly improve in-class training. Students could benefit from the self-analysis exercises in the book and from being aware of the crucial strategies for facing difficult situations. Students can refer to the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 for more clarification on the process. Downloading the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 from Extramarks’ website can be very helpful for CBSE students, as it will provide them with offline access for the same. By downloading the PDF of the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 from the Extramarks website or mobile application, students may study the material even if they are not connected to the internet.

Though it may appear to be a demanding academic subject, students should be aware that renowned mathematicians from all around the world have contributed to it over the course of centuries. NCERT books are written with care for what students’ minds can comprehend at a certain age and are modelled after their chronological age. The NCERT textbooks’ goal is to foster students’ intellectual growth. The Extramarks online learning platform has produced NCERT Solutions to support students in their academic endeavourswhile keeping in mind the structure of NCERT books. Physics, Chemistry, Economics, Engineering, and other areas are now using Mathematics. To fully comprehend some concepts in these areas, Mathematics is required. In some curricula, Mathematics is taught as an “instrumental subject” to support the study of other disciplines, while in others, integrated courses that merge Mathematics and other subjects are available.

Access NCERT Solutions for Class 7 Mathematics Chapter 10 – Practical Geometry

A variety of solutions are provided for the practise questions in the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 to guarantee full understanding. The most recent CBSE curriculum was considered when developing solutions for Class 7th Maths Exercise 10.5.The primary goal of the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 is to serve as a resource and a solution to help students effectively handle issues on their own. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 are created by teaching staff members and subject-matter experts with advanced training skills.

It is important to let students know that Extramarks is a place where experts offer advice and inspiration on a number of subject-related topics. Students must have access to Extramarks’ NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5. Students can now easily access NCERT Solutions for Class 7 Maths Chapter 10 Exercise 10.5 and rely on Extramarks for all of their queries and worries.

NCERT Solutions for Class 7 Maths Chapter 10 Exercise 10.5 are produced for students utilising a concept-based approach and a mock test format. For scoring higher marks, students must review the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5. These thorough and organised answers aid students in comprehending the concept-based information. For students convenience, NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 are offered in both online and offline PDF formats. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 are more advantageous to students since they are available in PDF format.

Exercise 10.5

Students can access the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 for Practical Geometry. In these NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5, a chapter from the Mathematics NCERT Mathematics textbook is covered. Constructing a Right-Angled Triangle when the length of one leg and its Hypotenuse are provided (RHS Criterion). Students are urged to try to resolve the issues with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5, in order to aid them with their test preparation and score high Mathematics grades. Students can go through these answers to learn how to address all the issues effectively.

The comprehension of students is made very clear by NCERT books so that they will be able to answer any questions that may be asked during their board exams or yearly exams. So that students will not run into issues while answering questions, Extramarks  focuseson the NCERT books while also offering solutions to a variety of other publications.  CBSE guidelines strictly adhere to NCERT guidelines. Students who take CBSE examinations should be aware that they may pass with good grades by simply studying the NCERT textbooks.

Students may download the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 (EX 10.5) for all of the chapter’s exercises, which have been produced by a professional instructor in accordance with the NCERT guidelines, are available on Extramarks’ website. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 are provided to assist students in reviewing the entire syllabus and earning higher grades.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry Exercise 10.5

With the help of the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5, students will learn how to construct the Right-Angled Triangle if the Hypotenuse and length of one side are specified after reading Practical Geometry’s detailed discussion of the RHS criteria. In the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 there are 11 questions, including 10 questions that challenge students to determine whether a Triangle can be formed using the stated dimensions or not and to explain why.

The RHS Congruence principle must be remembered by students in order to improve comprehension while building Right-Angled Triangles. Students can download the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.5 from the Extramarks’ website. It is necessary for students to have a solid understanding of the Congruence principle in order to become well-versed in the Triangle Building criterion; students must carefully employ the material presented in the book’s highlights in order to internalise this learning.

Long-term students would benefit from a thorough review of the aforementioned Triangle ideas since they would be better prepared for exams with essential observational and logical thinking abilities.

Q.1

Construct the right angled ΔPQR, where m Q=90°, QR=8 cm and PR=10 cm.

Ans.

The steps of construction are as follows: (i) Draw a line segment QR of length 8 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbgfarjabbkfasjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbIda4iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@A7D9@

(ii) At point Q, draw a ray QX making 90° with QR. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGrbqucqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGrbqucqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqG5aqocqqGWaamcqGHWcaScqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGrbqucqqGsbGucqqGUaGlaaa@7C90@

(iii) Taking R as centre, draw an arc of 10 cm radius to intersect ray QX at point P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbkfasjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbgdaXiabbcdaWiabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGaqaaiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbkhaYjabbggaHjabbMha5jabbccaGiabbgfarjabbIfayjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabb6caUaaaaa@A7CF@

(iv) Join P to R. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGqbaucqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGsbGucqqGUaGlaaa@550A@

Thus, ΔPQR is the required right-angled triangle.MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqGHuoarcqqGqbaucqqGrbqucqqGsbGucqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqGYbGCcqqGPbqAcqqGNbWzcqqGObaAcqqG0baDcqqGTaqlcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@7F5A@

Q.2

Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long.

Ans.

A right-angled triangle ABC with hypotenuse 6 cm and one of the legs as 4 cm has to be constructed. The steps of construction are as follows: (i) Draw a line segment BC of length 4 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbgeabjabbccaGiabbkhaYjabbMgaPjabbEgaNjabbIgaOjabbsha0jabb2caTiabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbgeabjabbkeacjabboeadjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbIgaOjabbMha5jabbchaWjabb+gaVjabbsha0jabbwgaLjabb6gaUjabbwha1jabbohaZjabbwgaLjabbccaGiabbAda2iabbccaGiabbogaJjabb2gaTjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabb+gaVjabb6gaUjabbwgaLbqaaiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabbEgaNjabbohaZjabbccaGiabbggaHjabbohaZjabbccaGiabbsda0iabbccaGiabbogaJjabb2gaTjabbccaGiabbIgaOjabbggaHjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabbkgaIjabbwgaLjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbwgaLjabbsgaKjabb6caUaqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbkeacjabboeadjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbsda0iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@1FB7@

(ii) At point B, draw a ray BX making 90° with BC. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGcbGqcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGcbGqcqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqG5aqocqqGWaamcqGHWcaScqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGcbGqcqqGdbWqcqqGUaGlaaa@7C18@

(iii) Taking C as centre, draw an arc of 6 cm radius to intersect ray BX at point A. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabboeadjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbAda2iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGaqaaiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbkhaYjabbggaHjabbMha5jabbccaGiabbkeacjabbIfayjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbgeabjabb6caUaaaaa@A698@

(iv) Join A to C.

athType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGbbqqcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGdbWqcqqGUaGlaaa@54CE@ Thus, ΔABC is the required right-angled triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqGHuoarcqqGbbqqcqqGcbGqcqqGdbWqcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqGYbGCcqqGPbqAcqqGNbWzcqqGObaAcqqG0baDcqqGTaqlcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@7F00@

Q.3

Construct an isosceles rightangled triangle ABC, where m ACB=90° and AC=6cm.

Ans.

Since, in a isosceles triangle, the length of any two side are equal. So, AB=BC=6cm The steps of construction are as follows: (i) Draw a line segment AC of length 6 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbofatjabbMgaPjabb6gaUjabbogaJjabbwgaLjabbYcaSiabbccaGiabbMgaPjabb6gaUjabbccaGiabbggaHjabbccaGiabbMgaPjabbohaZjabb+gaVjabbohaZjabbogaJjabbwgaLjabbYgaSjabbwgaLjabbohaZjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabb6gaUjabbMha5jabbccaGiabbsha0jabbEha3jabb+gaVjabbccaGiabbohaZjabbMgaPjabbsgaKjabbwgaLbqaaiabbggaHjabbkhaYjabbwgaLjabbccaGiabbwgaLjabbghaXjabbwha1jabbggaHjabbYgaSjabb6caUiabbccaGiabbofatjabb+gaVjabbYcaSiabbccaGiabbgeabjabbkeacjabg2da9iabbkeacjabboeadjabg2da9iabbAda2iabbogaJjabb2gaTbqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbgeabjabboeadjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbAda2iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@0B0B@

(ii) At point C, draw a ray CX making 90° with AC. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGdbWqcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGdbWqcqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqG5aqocqqGWaamcqGHWcaScqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGbbqqcqqGdbWqcqqGUaGlaaa@7C1A@

(iii) Taking C as centre, draw an arc of 6 cm radius to intersect ray CX at point B. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabboeadjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbAda2iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGaqaaiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbkhaYjabbggaHjabbMha5jabbccaGiabboeadjabbIfayjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbkeacjabb6caUaaaaa@A69C@

(iv) Join A to B.

MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGbbqqcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGcbGqcqqGUaGlaaa@54CC@ Thus, ΔABC is the required triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqGHuoarcqqGbbqqcqqGcbGqcqqGdbWqcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@6E79@

Please register to view this section