NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.4) Exercise 10.4

The NCERT textbooks are a great resource for students and offer a number of benefits to improve conceptual comprehension. The NCERT texts provide a detailed explanation of the fundamental concepts in each area. Students can completely comprehend everything from the NCERT textbooks by attentively reading them. Students who possess the necessary conceptual clarity will be better prepared to answer any issue in the long run.

Students will discover that they can quickly reply to all of the questions from the examination papers from the previous years if they diligently study from the NCERT books and follow them. A few questions and phrases are changed to gauge the student’s understanding in the exams, otherwise, most questions remain the same in the question paper. Students may use the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 if they need assistance. Those who intend to take competitive examinations may access the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4.

The NCERT textbooks are thorough and in-depth, and, hence CBSE seldom offers questions that go beyond these NCERT textbooks. These disciplines not only aim to enhance classroom learning but are crucial for examinations. Exercises for self-evaluation and lessons on  effective strategies for dealing with complex situations are included in the book for the benefit of students. In order to comprehend the procedure better, students need to consult the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.4) Exercise 10.4 

For CBSE Class 7 students, the answers to Class 7 Maths Chapter 10 Exercise 10.4 are easily downloadable. Students may study even when they are not online by downloading the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 from the Extramarks website or mobile application.

Class 7 Chapter 10: Practical Geometry can be solved with the aid of NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4. Students value Class 7 because it offers a road to Class 10 students. No question would elude a student if they utilised Extramarks to obtain the NCERT Maths Class 7 Chapter 10 Exercise 10.4. Students who consistently use and stick to NCERT textbooks will find that they are able to respond to all of the questions from the previous year’s examination papers with ease.

The Class 7 Mathematics course should be completed by students. Science’s conceptual test carries 80 marks. Extramarks provides the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4, in addition, to sample problems from previous examinations and practise papers. By going through the Extramarks’ website, students can learn about the test format, obtain study advice, and acquire the CBSE Class 7 syllabus for 2023.

Access NCERT Solutions for Class 7 Chapter 10 – Practical Geometry

The Extramarks website and mobile application contain all the resources necessary for competitive exam preparation. Extramarks is a tool that students may utilise to prepare for a range of competitive examinations, including JEE Mains, NEET, JEE Advance, CUET, and others. All of the chapters and questions have answers available on Extramarks for students to find. On the Extramarks website, students may acquire the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 in PDF format for further help in that subject.

Students can get their hands on NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4, which is essential for last-minute exam preparation and encourage them to understand the chapter’s unique and exciting topics. The solutions for Class 7th Maths Chapter 10 Exercise 10.4 are excellent learning tools that can be used by students to grasp any chapter topic. This chapter has to cover a number of crucial issues with clarity and precision.

The NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry Exercises 10.1, 10.2, 10.3, 10.4, and 10.5 are available for free download in PDF format. In this instance the most recent questions from the NCERT books are followed by updated NCERT Solutions 2022–2023 Students can learn more about Mathematics by downloading the aforementioned PDF file from the Extramarks website or mobile application. For students’ academic success, the  NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 are quite beneficial. Students understand the material more clearly when subject-matter experts are the lecturers. Students should read the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4. Even if it is likely that students already know a lot, a professional assessment could allow them to get a better mark for their answers. Students will learn how experts approach Mathematical issues by reading the  NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 and incorporating that information into their solutions.

Exercise 10.4

The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 provides several solutions to the practise problems to make sure that students thoroughly understand the subject matter. The most recent CBSE curriculum was considered while creating the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4. The basic objective of the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 is to act as a useful tool and solution to assist students in successfully addressing problems on their own. The instructional design team behind the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 comprises of subject specialists with extensive teaching backgrounds.

It is important to let students know that Extramarks is a place where competent professors may offer advice and inspiration on a number of subject-related topics. Students must have access to Extramarks’ NCERT Solutions For Class 8 Science Chapter 5 In Hindi. Students can now easily access NCERT Solutions For Class 8 Science Chapter 5 In Hindi and rely on Extramarks for all of their queries and worries. It is a reliable platform for students to practise regularly.

Humans are surrounded by forms, and due to Geometry, anyone can understand them in great detail. Students must have studied these forms or figures from prior lessons because they are present everywhere. Assuming that the students have a basic understanding of line segments, Angles, Angle Bisectors, and others as these are the most common basics when starting with Geometry, the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 Practical Geometry will provide insights into the construction of Geometrical figures and components such as Parallel Lines, different kinds of triangles, etc.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry Exercise 10.4

Congruence is a topic that is reinforced in this chapter’s exercise, which states that Two Angles and a side of a Triangle are Congruent if they are equal to their Corresponding Angles and Sides of the Opposite Triangle. Students are recommended to click on this link to obtain the PDF of  NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4.

The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 has many helpful exercises and examples that students should not neglect since they are purposefully included in each segment to facilitate the student’s development in understanding the ideas. Students will understand what the crucial requirements are for building triangles while working through these Exercise 10.4 Class 7th, as well as occasionally what kinds of measurements could result in a triangle. Students may discover the pdf download options for learning tools like the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.4 for Practical Geometry.

To comprehend the subject and build specifics, students should practise the examples daily and independently. They should start by downloading the PDFs of Extramarks NCERT Solutions and other learning tools.

Q.1

Construct ΔABC, given m A=60°, m B=30° and AB=5.8 cm.

Ans.

(i) Draw a line segment AB of length 5.8 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPaqkcqqGGaaicqqGebarcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqqGZbWCcqqGLbqzcqqGNbWzcqqGTbqBcqqGLbqzcqqGUbGBcqqG0baDcqqGGaaicqqGbbqqcqqGcbGqcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGSbaBcqqGLbqzcqqGUbGBcqqGNbWzcqqG0baDcqqGObaAcqqGGaaicqqG1aqncqqGUaGlcqqG4aaocqqGGaaicqqGJbWycqqGTbqBcqqGUaGlaaa@750F@

(ii) At point A, draw a ray AX making 60° angle with AB. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGbbqqcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGbbqqcqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqG2aGncqqGWaamcqGHWcaScqqGGaaicqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGbbqqcqqGcbGqcqqGUaGlaaa@8382@

(iii) At point B, draw a ray AX making 30° angle with AB. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGcbGqcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGbbqqcqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGZaWmcqqGWaamcqGHWcaScqqGGaaicqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGbbqqcqqGcbGqcqqGUaGlaaa@84D7@

(iv) Point C has to lie on both the rays, AX and BY. Therefore, C is the point of intersection of these two rays. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbAha2jabbMcaPiabbccaGiabbcfaqjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabboeadjabbccaGiabbIgaOjabbggaHjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabbYgaSjabbMgaPjabbwgaLjabbccaGiabb+gaVjabb6gaUjabbccaGiabbkgaIjabb+gaVjabbsha0jabbIgaOjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbggaHjabbMha5jabbohaZjabbYcaSiabbccaGiabbgeabjabbIfayjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbkeacjabbMfazjabb6caUiabbccaGiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGaqaaiabboeadjabbccaGiabbMgaPjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabb+gaVjabbAgaMjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbohaZjabbwgaLjabbccaGiabbsha0jabbEha3jabb+gaVjabbccaGiabbkhaYjabbggaHjabbMha5jabbohaZjabb6caUaaaaa@CAC3@

Thus, ABC is the required triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGbbqqcqqGcbGqcqqGdbWqcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@6D12@

Q.2

Construct ΔPQR if PQ=5 cm, m PQR=105° and m QRP=40°.(Hint: Recallanglesum property of a triangle).

Ans.

To construct triangle PQR, we need to find RPQ. Using angle sum property of triangles to get PQR+PRQ+RPQ=180° 105°+40°+RPQ=180° RPQ=180°145° =35° The steps of construction are as follows: (i) Draw a line segment PQ of length 5 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabb+gaVjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbcfaqjabbgfarjabbkfasjabbYcaSiabbccaGiabbEha3jabbwgaLjabbccaGiabb6gaUjabbwgaLjabbwgaLjabbsgaKjabbccaGiabbsha0jabb+gaVjabbccaGiabbAgaMjabbMgaPjabb6gaUjabbsgaKjabbccaGiabgcIiqlabbkfasjabbcfaqjabbgfarjabb6caUaqaaiabbwfavjabbohaZjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbohaZjabbwha1jabb2gaTjabbccaGiabbchaWjabbkhaYjabb+gaVjabbchaWjabbwgaLjabbkhaYjabbsha0jabbMha5jabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabbEgaNjabbwgaLjabbsha0bqaaiabgcIiqlabbcfaqjabbgfarjabbkfasjabgUcaRiabgcIiqlabbcfaqjabbkfasjabbgfarjabgUcaRiabgcIiqlabbkfasjabbcfaqjabbgfarjabg2da9iabigdaXiabiIda4iabicdaWiabgclaWcqaaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGPaVlabigdaXiabicdaWiabiwda1iabgclaWkabgUcaRiabisda0iabicdaWiabgclaWkabgUcaRiabgcIiqlabbkfasjabbcfaqjabbgfarjabg2da9iabigdaXiabiIda4iabicdaWiabgclaWcqaaiaaxMaacaWLjaGaaCzcaiaaysW7caaMe8UaaGjbVlaaykW7cqGHGic0cqqGsbGucqqGqbaucqqGrbqucqGH9aqpcqaIXaqmcqaI4aaocqaIWaamcqGHWcaScqGHsislcqaIXaqmcqaI0aancqaI1aqncqGHWcaSaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaeG4mamJaeGynauJaeyiSaalabaGaeeivaqLaeeiAaGMaeeyzauMaeeiiaaIaee4CamNaeeiDaqNaeeyzauMaeeiCaaNaee4CamNaeeiiaaIaee4Ba8MaeeOzayMaeeiiaaIaee4yamMaee4Ba8MaeeOBa4Maee4CamNaeeiDaqNaeeOCaiNaeeyDauNaee4yamMaeeiDaqNaeeyAaKMaee4Ba8MaeeOBa4MaeeiiaaIaeeyyaeMaeeOCaiNaeeyzauMaeeiiaaIaeeyyaeMaee4CamNaeeiiaaIaeeOzayMaee4Ba8MaeeiBaWMaeeiBaWMaee4Ba8Maee4DaCNaee4CamNaeeOoaOdabaGaeeikaGIaeeyAaKMaeeykaKIaeeiiaaIaeeiraqKaeeOCaiNaeeyyaeMaee4DaCNaeeiiaaIaeeyyaeMaeeiiaaIaeeiBaWMaeeyAaKMaeeOBa4MaeeyzauMaeeiiaaIaee4CamNaeeyzauMaee4zaCMaeeyBa0MaeeyzauMaeeOBa4MaeeiDaqNaeeiiaaIaeeiuaaLaeeyuaeLaeeiiaaIaee4Ba8MaeeOzayMaeeiiaaIaeeiBaWMaeeyzauMaeeOBa4Maee4zaCMaeeiDaqNaeeiAaGMaeeiiaaIaeeynauJaeeiiaaIaee4yamMaeeyBa0MaeeOla4caaaa@79C4@

(ii) At P, draw a ray PX making an angle of 35° with PQ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGqbaucqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGqbaucqqGybawcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGZaWmcqqG1aqncqGHWcaScqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGqbaucqqGrbqucqqGUaGlaaa@8332@

(iii) At Q, draw a ray QY making an angle of 105° with PQ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGbbqqcqqG0baDcqqGGaaicqqGrbqucqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGYbGCcqqGHbqycqqG5bqEcqqGGaaicqqGrbqucqqGzbqwcqqGGaaicqqGTbqBcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqGXaqmcqqGWaamcqqG1aqncqGHWcaScqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqGqbaucqqGrbqucqqGUaGlaaa@8574@

(iv) Point R has to lie on both the ray, PX and QY. Therefore, R is the point of intersectin of these two rays. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbAha2jabbMcaPiabbccaGiabbcfaqjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbkfasjabbccaGiabbIgaOjabbggaHjabbohaZjabbccaGiabbsha0jabb+gaVjabbccaGiabbYgaSjabbMgaPjabbwgaLjabbccaGiabb+gaVjabb6gaUjabbccaGiabbkgaIjabb+gaVjabbsha0jabbIgaOjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbggaHjabbMha5jabbYcaSiabbccaGiabbcfaqjabbIfayjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbgfarjabbMfazjabb6caUiabbccaGiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSaqaaiabbkfasjabbccaGiabbMgaPjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabb+gaVjabbAgaMjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbMgaPjabb6gaUjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbohaZjabbwgaLjabbccaGiabbsha0jabbEha3jabb+gaVjabbccaGiabbkhaYjabbggaHjabbMha5jabbohaZjabb6caUaaaaa@C7A2@

Thus, PQR is the required triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqGqbaucqqGrbqucqqGsbGucqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@6D6C@

Q.3

Examine whether you can construct ΔDEF such that EF=7.2 cm, m E=110° and m F=80°. Justify your answer.

Ans.

We are given, E=110° and F=80° Using angle sum property to get D+E+F=180° D+110°+80°=180° D+190°=180° Since Dcan not be zero and it does not satisfy angle sum property. Thus, we can not construct ΔDEF. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbEfaxjabbwgaLjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbEgaNjabbMgaPjabbAha2jabbwgaLjabb6gaUjabbYcaSaqaaiabgcIiqlabbweafjabg2da9iabbgdaXiabbgdaXiabbcdaWiabgclaWkabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabgcIiqlabbAeagjabg2da9iabbIda4iabbcdaWiabgclaWcqaaiabbwfavjabbohaZjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbohaZjabbwha1jabb2gaTjabbccaGiabbchaWjabbkhaYjabb+gaVjabbchaWjabbwgaLjabbkhaYjabbsha0jabbMha5jabbccaGiabbsha0jabb+gaVjabbccaGiabbEgaNjabbwgaLjabbsha0bqaaiabgcIiqlabbseaejabbUcaRiabgcIiqlabbweafjabbUcaRiabgcIiqlabbAeagjabb2da9iabbgdaXiabbIda4iabbcdaWiabgclaWcqaaiabgcIiqlabdseaejabgUcaRiabigdaXiabigdaXiabicdaWiabgclaWkabgUcaRiabiIda4iabicdaWiabgclaWkabg2da9iabigdaXiabiIda4iabicdaWiabgclaWcqaaiabgcIiqlabdseaejabgUcaRiabigdaXiabiMda5iabicdaWiabgclaWkabg2da9iabigdaXiabiIda4iabicdaWiabgclaWcqaaiabbofatjabbMgaPjabb6gaUjabbogaJjabbwgaLjabbccaGiabgcIiqlabbseaejaaysW7cqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGUbGBcqqGVbWBcqqG0baDcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqG6bGEcqqGLbqzcqqGYbGCcqqGVbWBcqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGPbqAcqqG0baDcqqGGaaicqqGKbazcqqGVbWBcqqGLbqzcqqGZbWCcqqGGaaicqqGUbGBcqqGVbWBcqqG0baDcqqGGaaicqqGZbWCcqqGHbqycqqG0baDcqqGPbqAcqqGZbWCcqqGMbGzcqqG5bqEcqqGGaaicqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGGaaicqqGZbWCcqqG1bqDcqqGTbqBaeaacqqGWbaCcqqGYbGCcqqGVbWBcqqGWbaCcqqGLbqzcqqGYbGCcqqG0baDcqqG5bqEcqqGUaGlaeaacqqGubavcqqGObaAcqqG1bqDcqqGZbWCcqqGSaalcqqGGaaicqqG3bWDcqqGLbqzcqqGGaaicqqGJbWycqqGHbqycqqGUbGBcqqGGaaicqqGUbGBcqqGVbWBcqqG0baDcqqGGaaicqqGJbWycqqGVbWBcqqGUbGBcqqGZbWCcqqG0baDcqqGYbGCcqqG1bqDcqqGJbWycqqG0baDcqqGGaaicqGHuoarcqqGebarcqqGfbqrcqqGgbGrcqqGUaGlaaaa@3BA0@

Also, it can be observed that point D should lie on both rays, EX and FY, for the constructing the required triangle. However, both rays are not intersecting each other. Therefore, the required triangle can not be formed. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbgeabjabbYgaSjabbohaZjabb+gaVjabbYcaSiabbccaGiabbMgaPjabbsha0jabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabb+gaVjabbkgaIjabbohaZjabbwgaLjabbkhaYjabbAha2jabbwgaLjabbsgaKjabbccaGiabbsha0jabbIgaOjabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbseaejabbccaGiabbohaZjabbIgaOjabb+gaVjabbwha1jabbYgaSjabbsgaKjabbccaGiabbYgaSjabbMgaPjabbwgaLjabbccaGiabb+gaVjabb6gaUjabbccaGiabbkgaIjabb+gaVjabbsha0jabbIgaOjabbccaGiabbkhaYjabbggaHjabbMha5jabbohaZjabbYcaSaqaaiabbweafjabbIfayjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbAeagjabbMfazjabbYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaqaaiabbIeaijabb+gaVjabbEha3jabbwgaLjabbAha2jabbwgaLjabbkhaYjabbYcaSiabbccaGiabbkgaIjabb+gaVjabbsha0jabbIgaOjabbccaGiabbkhaYjabbggaHjabbMha5jabbohaZjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabb6gaUjabb+gaVjabbsha0jabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabbwgaLjabbggaHjabbogaJjabbIgaOjabbccaGiabb+gaVjabbsha0jabbIgaOjabbwgaLjabbkhaYjabb6caUaqaaiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabb6gaUjabb+gaVjabbsha0jabbccaGiabbkgaIjabbwgaLjabbccaGiabbAgaMjabb+gaVjabbkhaYjabb2gaTjabbwgaLjabbsgaKjabb6caUaaaaa@5270@

Please register to view this section