NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.2) Exercise 10.2

Chapter 10 of Class 7 Mathematics in the NCERT textbook is Practical Geometry. Exercise 10.2 of the chapter includes the Construction of Triangles. It includes the Construction of a Triangle when the lengths of its three sides are known. The Class 7 Maths Chapter 10 Exercise 10.2 provided by the Extramarks website is accurate and well-detailed so that students can have access to authentic and credible study material. Extramarks recommends they download Class 7 Maths Chapter 10 Exercise 10.2 Solutions to understand the chapter’s concepts and resolve their queries. The concepts of the chapter can be challenging for some students. They can easily understand the complicated problems related to Chapter 10; Practical Geometry using  Class 7th Math Exercise 10.2 which is available on the Extramarks website.

Students can easily download the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 from the Extramarks website on a variety of devices. It is easy to find these solutions on the internet, but the solutions need to be updated and trustworthy. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 provided by Extramarks are reliable solutions that are adequately detailed and explained in a step-by-step manner. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 can be accessed effortlessly as they are available in PDF format. With Extramarks, students have access to convenient study materials that can be accessed from anywhere and at any time.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.2) Exercise 10.2

In every aspect, it contributes to the growth of students. To achieve good scores in any in-school or competitive examination, Extramarks provides them with all the learning tools they need. Besides the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2, Extramarks also provides students with study material like K12 study material, solved sample papers, past years’ papers, extra questions, revision notes, and much more. Some of the most important tools for students to prepare for their examinations are sample papers and past years papers. They must have knowledge of the exam patterns before appearing in their examinations. Furthermore, the past years papers provide students with insight into the types of questions they may encounter in the examinations, since similar questions may appear repeatedly. Therefore, Extramarks recommends that students review past years’ papers and sample papers before the examinations.

Along with study material such as the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2, Extramarks provides students with learning tools, like Live Doubt Solving Classes and K12 Live Classes by the in-house experts of Extramarks. There is a tendency among learners to avoid asking their questions in class among their peers. Therefore, Extramarks help them resolve their doubts individually. The Extramarks website not only provides students with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 but also offers them all the resources that are essential to obtaining the maximum marks in the Class 7 Mathematics examinations. To have access to all the learning modules that assist students in excelling in their studies, it is advisable for students to join Extramarks right away. For students, additional questions and question banks are not sufficient; they need detailed and step-by-step solutions. Therefore, Extramarks provides them with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2. Most of the questions in the question bank are derived from NCERT textbooks. Students can prepare better for their examinations by using the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 provided by Extramarks. A proper understanding of these NCERT solutions helps students in enhancing their preparation. To avoid any confusion and queries related to the chapter, students should thoroughly review the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 provided by Extramarks. Learning Mathematics can be enjoyable and simple with the tools provided by the Learning App.

Access NCERT Solutions for Class 7 Maths Chapter 10- Practical Geometry

The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 provided by Extramarks is easily accessible online and offline. As a result, students can review the solutions whenever they want. They may find the steps in NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 difficult at times.They need to be very careful with the steps involved in this exercise. Some portals might not provide students with accurate and credible NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2. It is important to access these solutions from a credible source in order to make sure that the learning process is authentic. Students can rely on the Extramarks website if they want to access the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2. Extramarks also provides students with the NCERT solutions for all the exercises of the chapter. Students who find Class 7 Chapter 10 challenging can find the study material available on the Extramarks website helpful. Extramarks provides students with learning tools such as the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 for structuring their fundamentals so that they do not struggle with the subject any further. They are provided with a flexible learning environment with Extramarks, which provides them with a number of benefits. Students can access the portal from anywhere and at any time. They can access authentic study material without seeking help elsewhere. The Extramarks website provides students with comprehensive courses which are affordable. As a result, students perform better in their studies and have better career prospects.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry Exercise 10.2

Along with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2, students can also review the exercises of every unit and chapter on the Extramarks website to ensure that they do not miss anything crucial. Moreover, Extramarks provides a number of learning modules that can help students succeed in their examinations, apart from the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2. It offers students the opportunity to self-learn at their own pace. As the students practise customisable tests, they can track their own progress.  Sometimes, students are not able to prepare their entire curriculum on time, due to which some important topics on the syllabus may get missed. The Extramarks website provides students with complete syllabus coverage to help them  finish their entire curriculum on time. This helps them score well in theirexaminations. To assist students with self-evaluation, Extramarks offers chapter-wise worksheets, interactive activities, unlimited practise questions, and more. This allows students to evaluate their academic performance and preparation level. The Learning App provides them with credible and organised study material like the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2. Extramarks make students’ learning process enjoyable with their captivating graphics and animations so that they do not find their studies boring. Extramarks provide students with highly experienced and qualified professionals who are best at their subjects.

Class 7 Maths 10.2 consists of four questions based on the concepts of line segment and triangle construction.

Students in Class 7 should have a solid understanding of the NCERT curriculum. These books are the first important step for students to build their fundamentals of the Mathematics Class 7 curriculum. It is essential for students to have the solutions to NCERT questions available all the time so that they do not waste time searching for them. Extramarks provides them with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.2 so that they can have access to comprehensive study material without having to look anywhere else. Extramarks provides students with complete learning material.

Q.1

Construct an equilateral triangle of side 5.5 cm.

Ans.

Since, we need to construct an equilateral triangle so all sides should be equal. So, AB=BC=CA=5.5 cm The steps of construction are as follows: (i) Draw a line segment BC of length 5.5 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbofatjabbMgaPjabb6gaUjabbogaJjabbwgaLjabbYcaSiabbccaGiabbEha3jabbwgaLjabbccaGiabb6gaUjabbwgaLjabbwgaLjabbsgaKjabbccaGiabbsha0jabb+gaVjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbccaGiabbggaHjabb6gaUjabbccaGiabbwgaLjabbghaXjabbwha1jabbMgaPjabbYgaSjabbggaHjabbsha0jabbwgaLjabbkhaYjabbggaHjabbYgaSjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbohaZjabb+gaVjabbccaGiabbggaHjabbYgaSjabbYgaSjabbccaGiabbohaZjabbMgaPjabbsgaKjabbwgaLjabbohaZjabbccaGaqaaiabbohaZjabbIgaOjabb+gaVjabbwha1jabbYgaSjabbsgaKjabbccaGiabbkgaIjabbwgaLjabbccaGiabbwgaLjabbghaXjabbwha1jabbggaHjabbYgaSjabb6caUaqaaiabbofatjabb+gaVjabbYcaSiabbccaGiabbgeabjabbkeacjabg2da9iabbkeacjabboeadjabg2da9iabboeadjabbgeabjabg2da9iabbwda1iabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTbqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbkeacjabboeadjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbwda1iabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@2301@

(ii) Taking B as centre, draw an arc of 5.5 cm radius. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGcbGqcqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGJbWycqqGLbqzcqqGUbGBcqqG0baDcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGYbGCcqqGJbWycqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqG1aqncqqGUaGlcqqG1aqncqqGGaaicqqGJbWycqqGTbqBcqqGGaaicqqGYbGCcqqGHbqycqqGKbazcqqGPbqAcqqG1bqDcqqGZbWCcqqGUaGlaaa@813B@

(iii) Taking C as centre, draw an arc of 5.5 cm radius to meet previous arc at point A. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabboeadjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbwda1iabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVbqaaiabb2gaTjabbwgaLjabbwgaLjabbsha0jabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbgeabjabb6caUaaaaa@A978@

(iv) Join A to B and C.

Therefore, ABC is the required triangle.MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqGLbqzcqqGYbGCcqqGLbqzcqqGMbGzcqqGVbWBcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGbbqqcqqGcbGqcqqGdbWqcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqG0baDcqqGYbGCcqqGPbqAcqqGHbqycqqGUbGBcqqGNbWzcqqGSbaBcqqGLbqzcqqGUaGlaaa@73B5@

Q.2

Draw ΔPQR with PQ=4 cm, QR=3.5 cm and PR=4cm.What type of triangle is this?

Ans.

The steps of construction are as follows: (i) Draw a line segment QR of length 3.5 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbgfarjabbkfasjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbodaZiabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@A9A3@

(ii) Taking Q as centre, draw an arc of 4 cm radius. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGrbqucqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGJbWycqqGLbqzcqqGUbGBcqqG0baDcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGYbGCcqqGJbWycqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqG0aancqqGGaaicqqGJbWycqqGTbqBcqqGGaaicqqGYbGCcqqGHbqycqqGKbazcqqGPbqAcqqG1bqDcqqGZbWCcqqGUaGlaaa@7F83@

(iii) Taking R as centre, draw an arc of 4 cm radius to meet previous arc at point P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbkfasjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsda0iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVbqaaiabb2gaTjabbwgaLjabbwgaLjabbsha0jabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabb6caUaaaaa@A7DE@

(iv) Join P to Q and R. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGqbaucqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGrbqucqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGsbGucqqGUaGlaaa@5BBC@

Therefore, PQR is the required triangle. Since two sides of required triangle are equal, so it is an isosceles triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbcfaqjabbgfarjabbkfasjabbccaGiabbMgaPjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaqaaiabbofatjabbMgaPjabb6gaUjabbogaJjabbwgaLjabbccaGiabbsha0jabbEha3jabb+gaVjabbccaGiabbohaZjabbMgaPjabbsgaKjabbwgaLjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbwgaLjabbghaXjabbwha1jabbggaHjabbYgaSjabbYcaSaqaaiabbohaZjabb+gaVjabbccaGiabbMgaPjabbsha0jabbccaGiabbMgaPjabbohaZjabbccaGiabbggaHjabb6gaUjabbccaGiabbMgaPjabbohaZjabb+gaVjabbohaZjabbogaJjabbwgaLjabbYgaSjabbwgaLjabbohaZjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaaaaa@D681@

Q.3

Draw ΔPQR with PQ=4 cm, QR=3.5 cm and PR=4cm.What type of triangle is this?

Ans.

The steps of construction are as follows: (i) Draw a line segment QR of length 3.5 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbgfarjabbkfasjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbodaZiabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@A9A3@

(ii) Taking Q as centre, draw an arc of 4 cm radius. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGrbqucqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGJbWycqqGLbqzcqqGUbGBcqqG0baDcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGYbGCcqqGJbWycqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqG0aancqqGGaaicqqGJbWycqqGTbqBcqqGGaaicqqGYbGCcqqGHbqycqqGKbazcqqGPbqAcqqG1bqDcqqGZbWCcqqGUaGlaaa@7F83@

(iii) Taking R as centre, draw an arc of 4 cm radius to meet previous arc at point P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbkfasjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsda0iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVbqaaiabb2gaTjabbwgaLjabbwgaLjabbsha0jabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabb6caUaaaaa@A7DE@

(iv) Join P to Q and R. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGqbaucqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGrbqucqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGsbGucqqGUaGlaaa@5BBC@

Therefore, PQR is the required triangle. Since two sides of required triangle are equal, so it is an isosceles triangle. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbcfaqjabbgfarjabbkfasjabbccaGiabbMgaPjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaqaaiabbofatjabbMgaPjabb6gaUjabbogaJjabbwgaLjabbccaGiabbsha0jabbEha3jabb+gaVjabbccaGiabbohaZjabbMgaPjabbsgaKjabbwgaLjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbwgaLjabbghaXjabbwha1jabbggaHjabbYgaSjabbYcaSaqaaiabbohaZjabb+gaVjabbccaGiabbMgaPjabbsha0jabbccaGiabbMgaPjabbohaZjabbccaGiabbggaHjabb6gaUjabbccaGiabbMgaPjabbohaZjabb+gaVjabbohaZjabbogaJjabbwgaLjabbYgaSjabbwgaLjabbohaZjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaaaaa@D681@

Q.4

Construct ΔABC such that AB=2.5cm, BC=6 cm and AC=6.5 cm. Measure B.

Ans.

The steps of construction are as follows: (i) Draw a line segment BC of length 6 cm. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbohaZjabbwgaLjabbEgaNjabb2gaTjabbwgaLjabb6gaUjabbsha0jabbccaGiabbkeacjabboeadjabbccaGiabb+gaVjabbAgaMjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabbAda2iabbccaGiabbogaJjabb2gaTjabb6caUaaaaa@A799@

(ii) Taking C as centre, draw an arc of 6.5 cm radius. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGdbWqcqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGJbWycqqGLbqzcqqGUbGBcqqG0baDcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGYbGCcqqGJbWycqqGGaaicqqGVbWBcqqGMbGzcqqGGaaicqqG2aGncqqGUaGlcqqG1aqncqqGGaaicqqGJbWycqqGTbqBcqqGGaaicqqGYbGCcqqGHbqycqqGKbazcqqGPbqAcqqG1bqDcqqGZbWCcqqGUaGlaaa@813F@

(iii) Taking B as centre, draw an arc of 2.5 cm radius to meet previous arc at point A. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbkeacjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabb+gaVjabbAgaMjabbccaGiabbkdaYiabb6caUiabbwda1iabbccaGiabbogaJjabb2gaTjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbsha0jabb+gaVbqaaiabb2gaTjabbwgaLjabbwgaLjabbsha0jabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbgeabjabb6caUaaaaa@A970@

(iv) Join A to B and C. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGbbqqcaaMb8UaeeiiaaIaeeiDaqNaee4Ba8MaeeiiaaIaeeOqaiKaeeiiaaIaeeyyaeMaeeOBa4MaeeizaqMaeeiiaaIaee4qamKaeeOla4caaa@5CEC@

Therefore, ABC is the required triangle. B can be measured with the help of a protractor and it comes out to be 90°. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbkhaYjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbgeabjabbkeacjabboeadjabbccaGiabbMgaPjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbkhaYjabbwgaLjabbghaXjabbwha1jabbMgaPjabbkhaYjabbwgaLjabbsgaKjabbccaGiabbsha0jabbkhaYjabbMgaPjabbggaHjabb6gaUjabbEgaNjabbYgaSjabbwgaLjabb6caUaqaaiabgcIiqlabbkeacjabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabb2gaTjabbwgaLjabbggaHjabbohaZjabbwha1jabbkhaYjabbwgaLjabbsgaKjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbIgaOjabbwgaLjabbYgaSjabbchaWjabbccaGiabb+gaVjabbAgaMjabbccaGiabbggaHjabbccaGiabbchaWjabbkhaYjabb+gaVjabbsha0jabbggaHjabbogaJjabbsha0jabb+gaVjabbkhaYjabbccaGiabbggaHjabb6gaUjabbsgaKbqaaiabbMgaPjabbsha0jabbccaGiabbogaJjabb+gaVjabb2gaTjabbwgaLjabbohaZjabbccaGiabb+gaVjabbwha1jabbsha0jabbccaGiabbsha0jabb+gaVjabbccaGiabbkgaIjabbwgaLjabbccaGiabbMda5iabbcdaWiabgclaWkabb6caUaaaaa@CF15@

Please register to view this section