NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.1) Exercise 10.1

Mathematics is purely based on concepts and requires a considerable amount of practice. Students must understand the basics of the curriculum to achieve good grades. It is not just a subject, but also the foundation for many scientific theories and subjects. Class 7 Mathematics involves a wide range of concepts, therefore, it is sometimes challenging for learners to have a good command of all the concepts in the subject’s curriculum.In mathematics, students’ scores are primarily determined by the amount of practise they put in. To have a thorough understanding of Chapter 10 Practical Geometry, Extramarks provides students with NCERT Class 7 Maths Chapter 10 Exercise 10.1 Solutions To the Ex 10.1 Class 7. It is important to learn the NCERT Textbook by heart to build strong mathematics fundamentals. To help students achieve their academic goals and attain success in the Class 7 examinations, Extramarks provides them with the Class 7 Maths Chapter 10 Exercise 10.1 Solutions. Class 7 students learn the basic concepts of every subject in this academic session, so they should be very careful with their academics. The Extramarks e-learning platform provides learners with all the resources they need to succeed in their academic careers. Therefore, the learning website provides them with Class 7 Maths Ch 10 Ex 10.1.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry (EX 10.1) Exercise 10.1

Many students find Mathematics intimidating. To prepare for the Class 7 Mathematics examination, young learners must thoroughly review the NCERT curriculum. In NCERT textbooks, however, the answers to the questions are not included. Therefore, Extramarks provides students with the Maths Class 7 Chapter 10 Exercise 10.1 to assist them in preparing for their examinations. Extramarks’ solutions assist students in understanding each step of the solution, as well as the logic and concept behind it.

Students can solve problems more accurately and efficiently by practising Class 7 Maths Ex 10.1. As a result, they can perform in better way in their examinations. Additionally, all the NCERT solutions for Class 7 Mathematics can be found on Extramarks. It provides students with easy access to the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. Students need to practise Mathematics regularly to improve their concepts. One of the best resources for preparing for the examinations is the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by Extramarks. Since these solutions are in PDF format, they can be accessed on a variety of devices. Extramarks provides learners with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 so that they can get reliable and accurate solutions without having to look anywhere else. They need to practise the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 thoroughly to be able to solve any question related to that chapter easily. To achieve academic goals and excel in any examination, Extramarks provides students with complete and convenient study materials. NCERT covers the entire syllabus of the subject, so learners must have access to the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. As NCERT books are written by highly qualified subject experts, students will be able to grasp all the concepts of the chapter if they thoroughly review the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. These solutions for Class 7 Math Chapter 10 Exercise 10.1 make them ready and maintain their confidence so that they can do wonders in their examinations. Along with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1, the solutions of all the other exercises inthe chapter are available at Extramarks.

Access NCERT Solutions for Class 7 Chapter 10- Practical Geometry

The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by Extramarks are curated by its in-house expert educators. The Extramarks website provides students with accurate and detailed study material that is convenient and authentic. Extramarks suggests students download the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 from the Extramarks website so that they can comprehend the concepts of the chapter and then practise them thoroughly. Students can solve all difficult problems in Chapter 10 Practical Geometry with precision and speed when they have a steady pace and strong concepts, which they can build with the help of these solutions. Extramarks’ NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 make it easy for students to understand the complicated operations and concepts of the chapter. Extramarks provides students with expert solutions and problem-solving classes so that they can resolve all their doubts, learn effectively, andperform better in their examinations. The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by Extramarks are extremely useful for quick revisions, as they are simplified answers compiled in an easy-to-understand language. In Mathematics, students can also score marks based on step-by-step marking. Therefore, Extramarks provides them with the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 which are properly detailed step-by-step solutions.

Students can access convenient and trustworthy NCERT Solutions For Class 7 Maths Chapter 10 Exercise 10.1 on the Extramarks website. There are numerous significant properties in the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. For them to succeed in the examinations, they must remain familiar with these concepts. Students can refer to the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by Extramarks to keep up with the concepts and operations of this chapter. The holistic development of students is the aim of Extramarks. It offers young learners comprehensive study material with which they can learn, practise and excel in their academic careers. NCERT forms the base of students, therefore, Extramarks offers students these solutions. Students can also refer to the learning website for access to the NCERT Solutions Class 12, NCERT Solutions Class 11, NCERT Solutions Class 10 etc and various other reliable learning resources.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry Exercise 10.1

The NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 involves the construction of a parallel line to a given line, through a point not on this line, using a ruler and a compass only. The exercise also involves the construction of a parallel line to a given line through a perpendicular at a given distance. Students may find it difficult to understand the logic behind the solutions of this exercise. Practical Geometry is one of the more complicated chapters of the curriculum of Class 7, so learners should be very careful when going through the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. Students of Class 7 must be thorough with the NCERT curriculum. This is the first step in building and clarifying their fundamentals and basic concepts. Credible NCERT solutions should be available to students so that they do not have to waste their time searching for them.

Q.1 Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only.

Ans.

The steps of construction are as follows: (i) Draw a line AB. Take a point P on it. Take a point C outsidethis line. Join C to P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbgeabjabbkeacjabb6caUiabbccaGiabbsfaujabbggaHjabbUgaRjabbwgaLjabbccaGiabbggaHjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabbccaGiabb+gaVjabb6gaUjabbccaGiabbMgaPjabbsha0jabb6caUiabbccaGiabbsfaujabbggaHjabbUgaRjabbwgaLjabbccaGiabbggaHjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabboeadjabbccaGiabb+gaVjabbwha1jabbsha0jabbohaZjabbMgaPjabbsgaKjabbwgaLbqaaiabbsha0jabbIgaOjabbMgaPjabbohaZjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabb6caUiabbccaGiabbQeakjabb+gaVjabbMgaPjabb6gaUjabbccaGiabboeadjabbccaGiabbsha0jabb+gaVjabbccaGiabbcfaqjabb6caUaaaaa@DC25@

(ii) Taking P as centre and with a convenient radius, draw arc intersecting line AB at point D and PC at point E.

(iii) Taking C as centre and with the same radius as before, draw an arc FG intersecting PC at H. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqGPbqAcqqGPbqAcqqGPbqAcqqGPaqkcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGdbWqcqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGJbWycqqGLbqzcqqGUbGBcqqG0baDcqqGYbGCcqqGLbqzcqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqG3bWDcqqGPbqAcqqG0baDcqqGObaAcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGZbWCcqqGHbqycqqGTbqBcqqGLbqzcqqGGaaicqqGYbGCcqqGHbqycqqGKbazcqqGPbqAcqqG1bqDcqqGZbWCcqqGGaaicqqGHbqycqqGZbWCcqqGGaaicqqGIbGycqqGLbqzcqqGMbGzcqqGVbWBcqqGYbGCcqqGLbqzcqqGSaalcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGUbGBcqqGGaaicqqGHbqycqqGYbGCcqqGJbWycqqGGaaicqqGgbGrcqqGhbWrcqqGGaaicqqGPbqAcqqGUbGBcqqG0baDcqqGLbqzcqqGYbGCcqqGZbWCcqqGLbqzcqqGJbWycqqG0baDcqqGPbqAcqqGUbGBcqqGNbWzcqqGGaaicqqGqbaucqqGdbWqcqqGGaaicqqGHbqycqqG0baDcqqGGaaicqqGibascqqGUaGlaaa@B714@

(iv) Adjust the compasses up to the length of DE. Without changing the opening of the compasses and taking H as the cenre, draw an arc to intersect the previously draw arc FG at point I. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbAha2jabbMcaPiabbccaGiabbgeabjabbsgaKjabbQgaQjabbwha1jabbohaZjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbwha1jabbchaWjabbccaGiabbsha0jabb+gaVjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabb+gaVjabbAgaMjabbccaGiabbseaejabbweafjabb6caUiabbccaGiabbEfaxjabbMgaPjabbsha0jabbIgaOjabb+gaVjabbwha1jabbsha0jabbccaGaqaaiabbogaJjabbIgaOjabbggaHjabb6gaUjabbEgaNjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbwgaLjabb6gaUjabbMgaPjabb6gaUjabbEgaNjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsha0jabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbIeaijabbccaGiabbggaHjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLbqaaiabbogaJjabbwgaLjabb6gaUjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbsha0jabb+gaVjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbYgaSjabbMha5jabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbkhaYjabbogaJbqaaiabbAeagjabbEeahjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjGbcMgaPjabc6gaUjabcsha0jabbccaGiabbMeajjabb6caUiabbccaGaaaaa@26CC@

(v) Join the points C and I to draw a line l. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGZbWCcqqGGaaicqqGdbWqcqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGjbqscqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqWGSbaBcqGGUaGlaaa@76FB@

This is the required line which is parallel to AB. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGubavcqqGObaAcqqGPbqAcqqGZbWCcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqqG3bWDcqqGObaAcqqGPbqAcqqGJbWycqqGObaAcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqGWbaCcqqGHbqycqqGYbGCcqqGHbqycqqGSbaBcqqGSbaBcqqGLbqzcqqGSbaBcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGbbqqcqqGcbGqcqqGUaGlaaa@7FE7@

Q.2

Draw a line l. Draw a perpendicular to l at any point on l.On this perpendicular choose a point X, 4 cm away from l.Through X, draw a line m parallel to l.

Ans.

The steps of construction are as follows: (i) Draw a line l and take a point P on the line l. Then draw a perpendicular at point P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabdYgaSjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsha0jabbggaHjabbUgaRjabbwgaLjabbccaGiabbggaHjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabbccaGiabb+gaVjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabdYgaSjabb6caUiabbccaGiabbsfaujabbIgaOjabbwgaLjabb6gaUjabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGaqaaiabbchaWjabbwgaLjabbkhaYjabbchaWjabbwgaLjabb6gaUjabbsgaKjabbMgaPjabbogaJjabbwha1jabbYgaSjabbggaHjabbkhaYjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbcfaqjabb6caUaaaaa@E131@

(ii) Adjusting the compasses up to the length of 4 cm, draw an arc to intersect this perpendicular at point X. Choose any point Y on the line l. Join X to Y. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMcaPiabbccaGiabbgeabjabbsgaKjabbQgaQjabbwha1jabbohaZjabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbwha1jabbchaWjabbccaGiabbsha0jabb+gaVjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsda0iabbccaGiabbogaJjabb2gaTjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUbqaaiabbggaHjabbkhaYjabbogaJjabbccaGiabbsha0jabb+gaVjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbsha0jabbIgaOjabbMgaPjabbohaZjabbccaGiabbchaWjabbwgaLjabbkhaYjabbchaWjabbwgaLjabb6gaUjabbsgaKjabbMgaPjabbogaJjabbwha1jabbYgaSjabbggaHjabbkhaYjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbIfayjabb6caUiabbccaGiabboeadjabbIgaOjabb+gaVjabb+gaVjabbohaZjabbwgaLjabbccaGiabbggaHjabb6gaUjabbMha5jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0bqaaiabbMfazjabbccaGiabb+gaVjabb6gaUjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabdYgaSjabb6caUiabbccaGiabbQeakjabb+gaVjabbMgaPjabb6gaUjabbccaGiabbIfayjabbccaGiabbsha0jabb+gaVjabbccaGiabbMfazjabb6caUaaaaa@002A@

(iii) Taking Y as centre and with a convenient radius, draw an arc intersecting l at A and XY at B. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbMfazjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbggaHjabbccaGiabbogaJjabb+gaVjabb6gaUjabbAha2jabbwgaLjabb6gaUjabbMgaPjabbwgaLjabb6gaUjabbsha0jabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3bqaaiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabdYgaSjabbccaGiabbggaHjabbsha0jabbccaGiabbgeabjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbIfayjabbMfazjabbccaGiabbggaHjabbsha0jabbccaGiabbkeacjabb6caUaaaaa@B928@

(iv) Taking X as centre and with same radius as before, draw an arc CD cutting XY at E. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbAha2jabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbIfayjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbohaZjabbggaHjabb2gaTjabbwgaLjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbggaHjabbohaZjabbccaGiabbkgaIjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGaqaaiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabboeadjabbseaejabbccaGiabbogaJjabbwha1jabbsha0jabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabbIfayjabbMfazjabbccaGiabbggaHjabbsha0jabbccaGiabbweafjabb6caUiabbccaGaaaaa@AB54@

(v) Adjust the compasses upto the length of AB. Wothout changing the opening of the compasses and taking E as the centre, draw an arc intersecting the previous arc CD t F. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbAha2jabbMcaPiabbccaGiabbgeabjabbsgaKjabbQgaQjabbwha1jabbohaZjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbwha1jabbchaWjabbsha0jabb+gaVjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabb+gaVjabbAgaMjabbccaGiabbgeabjabbkeacjabb6caUiabbccaGiabbEfaxjabb+gaVjabbsha0jabbIgaOjabb+gaVjabbwha1jabbsha0bqaaiabbogaJjabbIgaOjabbggaHjabb6gaUjabbEgaNjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbwgaLjabb6gaUjabbMgaPjabb6gaUjabbEgaNjabbccaGiabb+gaVjabbAgaMjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsha0jabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbweafjabbccaGiabbggaHjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLbqaaiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabboeadjabbseaejabbccaGiabbsha0jabbccaGiabbAeagjabb6caUaaaaa@1455@

(vi) Join the point X and F to draw a line m. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqG2bGDcqqGPbqAcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGybawcqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGgbGrcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqWGTbqBcqqGUaGlaaa@770C@ Line m is the required line parallel to l. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGmbatcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqWGTbqBcqqGGaaicqqGPbqAcqqGZbWCcqqGGaaicqqG0baDcqqGObaAcqqGLbqzcqqGGaaicqqGYbGCcqqGLbqzcqqGXbqCcqqG1bqDcqqGPbqAcqqGYbGCcqqGLbqzcqqGKbazcqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqqGWbaCcqqGHbqycqqGYbGCcqqGHbqycqqGSbaBcqqGSbaBcqqGLbqzcqqGSbaBcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqWGSbaBcqqGUaGlaaa@7621@

Q.3

Let l be a line and P be a point not on l. Through P, drawa line m parallel to l. Now join P to any point Q on l. Chooseany other point R on m. Through R, draw a line parallel to PQ.Let this meet l at S. What shape do the two sets of parallellines enclose?

Ans.

The steps of construction are as follows: (i) Draw a line l and take a point A on it. Take a point P not on l and join A to P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbsfaujabbIgaOjabbwgaLjabbccaGiabbohaZjabbsha0jabbwgaLjabbchaWjabbohaZjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb6gaUjabbohaZjabbsha0jabbkhaYjabbwha1jabbogaJjabbsha0jabbMgaPjabb+gaVjabb6gaUjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbggaHjabbohaZjabbccaGiabbAgaMjabb+gaVjabbYgaSjabbYgaSjabb+gaVjabbEha3jabbohaZjabbQda6aqaaiabbIcaOiabbMgaPjabbMcaPiabbccaGiabbseaejabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbYgaSjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsha0jabbggaHjabbUgaRjabbwgaLjabbccaGiabbggaHjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbgeabjabbccaGiaaygW7cqqGVbWBcqqGUbGBcqqGGaaicqqGPbqAcqqG0baDcqqGUaGlcqqGGaaicqqGubavcqqGHbqycqqGRbWAcqqGLbqzcqqGGaaicqqGHbqycqqGGaaicqqGWbaCcqqGVbWBcqqGPbqAcqqGUbGBcqqG0baDcqqGGaaicqqGqbaucqqGGaaicqqGUbGBcqqGVbWBcqqG0baDaeaacqqGVbWBcqqGUbGBcqqGGaaicqWGSbaBcqqGGaaicqqGHbqycqqGUbGBcqqGKbazcqqGGaaicqqGQbGAcqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGbbqqcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGqbaucqqGUaGlaaaa@D8ED@

(ii) Taking A as centre and with a convenient radius, draw an arc cutting l at B and AP at C. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbgeabjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbggaHjabbccaGiabbogaJjabb+gaVjabb6gaUjabbAha2jabbwgaLjabb6gaUjabbMgaPjabbwgaLjabb6gaUjabbsha0jabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUbqaaiabbggaHjabbkhaYjabbogaJjabbccaGiabbogaJjabbwha1jabbsha0jabbsha0jabbMgaPjabb6gaUjabbEgaNjabbccaGiabdYgaSjabbccaGiabbggaHjabbsha0jabbccaGiabbkeacjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbgeabjabbcfaqjabbccaGiabbggaHjabbsha0jabbccaGiabboeadjabb6caUaaaaa@B09E@

(iii) Taking P as centre and with the same radius as before, draw an arc DE to intersect AP at F. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbMgaPjabbMgaPjabbMcaPiabbccaGiabbsfaujabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbcfaqjabbccaGiabbggaHjabbohaZjabbccaGiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbEha3jabbMgaPjabbsha0jabbIgaOjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbohaZjabbggaHjabb2gaTjabbwgaLjabbccaGiabbkhaYjabbggaHjabbsgaKjabbMgaPjabbwha1jabbohaZjabbccaGiabbggaHjabbohaZjabbccaGiabbkgaIjabbwgaLjabbAgaMjabb+gaVjabbkhaYjabbwgaLjabbYcaSaqaaiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbseaejabbweafjabbccaGiabbsha0jabb+gaVjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbgeabjabbcfaqjabbccaGiabbggaHjabbsha0jabbccaGiabbAeagjabb6caUaaaaa@B5E8@

(iv) Adust the compasses up to the length of BC. Without changing the opening of compasses and taking F as the centre, draw an arc to intersect the previously draw arc DE at point G. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbMgaPjabbAha2jabbMcaPiabbccaGiabbgeabjabbsgaKjabbwha1jabbohaZjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbwha1jabbchaWjabbccaGiabbsha0jabb+gaVjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbYgaSjabbwgaLjabb6gaUjabbEgaNjabbsha0jabbIgaOjabbccaGiabb+gaVjabbAgaMjabbccaGiabbkeacjabboeadjabb6caUiabbccaGiabbEfaxjabbMgaPjabbsha0jabbIgaOjabb+gaVjabbwha1jabbsha0jabbccaGaqaaiabbogaJjabbIgaOjabbggaHjabb6gaUjabbEgaNjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabb+gaVjabbchaWjabbwgaLjabb6gaUjabbMgaPjabb6gaUjabbEgaNjabbccaGiabb+gaVjabbAgaMjabbccaGiabbogaJjabb+gaVjabb2gaTjabbchaWjabbggaHjabbohaZjabbohaZjabbwgaLjabbohaZjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbsha0jabbggaHjabbUgaRjabbMgaPjabb6gaUjabbEgaNjabbccaGiabbAeagjabbccaGiabbggaHjabbohaZjabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGaqaaiabbogaJjabbwgaLjabb6gaUjabbsha0jabbkhaYjabbwgaLjabbYcaSiabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabb6gaUjabbccaGiabbggaHjabbkhaYjabbogaJjabbccaGiabbsha0jabb+gaVjabbccaGiabbMgaPjabb6gaUjabbsha0jabbwgaLjabbkhaYjabbohaZjabbwgaLjabbogaJjabbsha0jabbccaGiabbsha0jabbIgaOjabbwgaLjabbccaGiabbchaWjabbkhaYjabbwgaLjabbAha2jabbMgaPjabb+gaVjabbwha1jabbohaZjabbYgaSjabbMha5jabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabbccaGiabbggaHjabbkhaYjabbogaJbqaaiabbseaejabbweafjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbEeahjabb6caUaaaaa@21E5@

(v) Join P to G to draw a line m. Line m will be parallel to line l. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqqGOaakcqqG2bGDcqqGPaqkcqqGGaaicqqGkbGscqqGVbWBcqqGPbqAcqqGUbGBcqqGGaaicqqGqbaucqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGhbWrcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGKbazcqqGYbGCcqqGHbqycqqG3bWDcqqGGaaicqqGHbqycqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqqGTbqBcqqGUaGlcqqGGaaicqqGmbatcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqWGTbqBcqqGGaaicqqG3bWDcqqGPbqAcqqGSbaBcqqGSbaBcqqGGaaicqqGIbGycqqGLbqzcqqGGaaicqqGWbaCcqqGHbqycqqGYbGCcqqGHbqycqqGSbaBcqqGSbaBcqqGLbqzcqqGSbaBcqqGGaaicqqG0baDcqqGVbWBcqqGGaaicqqGSbaBcqqGPbqAcqqGUbGBcqqGLbqzcqqGGaaicqWGSbaBcqqGUaGlaaa@9225@

(vi) Join P to any point Q on line . Choose another point R on line m. Similarly, a line can be drawn through point R and parallel to PQ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbIcaOiabbAha2jabbMgaPjabbMcaPiabbccaGiabbQeakjabb+gaVjabbMgaPjabb6gaUjabbccaGiabbcfaqjabbccaGiabbsha0jabb+gaVjabbccaGiabbggaHjabb6gaUjabbMha5jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbgfarjabbccaGiabb+gaVjabb6gaUjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabb6caUiabbccaGiabboeadjabbIgaOjabb+gaVjabb+gaVjabbohaZjabbwgaLjabbccaGiabbggaHjabb6gaUjabb+gaVjabbsha0jabbIgaOjabbwgaLjabbkhaYjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbkfasjabbccaGiabb+gaVjabb6gaUbqaaiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabd2gaTjabb6caUiabbccaGiabbofatjabbMgaPjabb2gaTjabbMgaPjabbYgaSjabbggaHjabbkhaYjabbYgaSjabbMha5jabbYcaSiabbccaGiabbggaHjabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabbogaJjabbggaHjabb6gaUjabbccaGiabbkgaIjabbwgaLjabbccaGiabbsgaKjabbkhaYjabbggaHjabbEha3jabb6gaUjabbccaGiabbsha0jabbIgaOjabbkhaYjabb+gaVjabbwha1jabbEgaNjabbIgaOjabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbkfasjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGaqaaiabbchaWjabbggaHjabbkhaYjabbggaHjabbYgaSjabbYgaSjabbwgaLjabbYgaSjabbccaGiabbsha0jabb+gaVjabbccaGiabbcfaqjabbgfarjabb6caUaaaaa@E6FB@

Let it meet line l at point S. In quadrilateral PQRS, opposite lines are parallel to each other. PQRS and PRQS. Thus PQRS is a parallelogram.MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfKttLearuGu1bxzLbIrVjxyKLwyUbqeduuDJXwAKbYu51MyVXgatCvAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiabbYeamjabbwgaLjabbsha0jabbccaGiabbMgaPjabbsha0jabbccaGiabb2gaTjabbwgaLjabbwgaLjabbsha0jabbccaGiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbccaGiabdYgaSjabbccaGiabbggaHjabbsha0jabbccaGiabbchaWjabb+gaVjabbMgaPjabb6gaUjabbsha0jabbccaGiabbofatjabb6caUiabbccaGiabbMeajjabb6gaUjabbccaGiabbghaXjabbwha1jabbggaHjabbsgaKjabbkhaYjabbMgaPjabbYgaSjabbggaHjabbsha0jabbwgaLjabbkhaYjabbggaHjabbYgaSjabbccaGiabbcfaqjabbgfarjabbkfasjabbofatjabbYcaSiabbccaGiabb+gaVjabbchaWjabbchaWjabb+gaVjabbohaZjabbMgaPjabbsha0jabbwgaLbqaaiabbYgaSjabbMgaPjabb6gaUjabbwgaLjabbohaZjabbccaGiabbggaHjabbkhaYjabbwgaLjabbccaGiabbchaWjabbggaHjabbkhaYjabbggaHjabbYgaSjabbYgaSjabbwgaLjabbYgaSjabbccaGiabbsha0jabb+gaVjabbccaGiabbwgaLjabbggaHjabbogaJjabbIgaOjabbccaGiabb+gaVjabbsha0jabbIgaOjabbwgaLjabbkhaYjabb6caUiabbccaGiabbcfaqjabbgfarjablwIiqjabbkfasjabbofatjabbccaGiabbggaHjabb6gaUjabbsgaKjabbccaGiabbcfaqjabbkfasjablwIiqjabbgfarjabbofatjabb6caUaqaaiabbsfaujabbIgaOjabbwha1jabbohaZjabbccaGiabbcfaqjabbgfarjabbkfasjabbofatjabbccaGiabbMgaPjabbohaZjabbccaGiabbggaHjabbccaGiabbchaWjabbggaHjabbkhaYjabbggaHjabbYgaSjabbYgaSjabbwgaLjabbYgaSjabb+gaVjabbEgaNjabbkhaYjabbggaHjabb2gaTjabb6caUaaaaa@EE36@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Are the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 difficult?

No, the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by the Extramarks website are not difficult for students. Subject experts at Extramarks present these solutions in a very straightforward and easy-to-understand manner. These solutions are well-structured, and well-explained so that students can easily understand the basics behind the concepts of the chapter.

2. Is it necessary to practice all the questions of the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1?

Yes, students should practice all the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 as these solutions assist them in building strong fundamentals of the subject’s curriculum. In addition, practising them provides learners with a steady pace and increases their efficiency. Every question of the exercise helps students in improving their construction skills and builds their confidence so that they may avoid small mistakes that occur while solving the problems in the examination.

3. How can students clear their doubts about the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1?

Students can refer to the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 provided by Extramarks to resolve their queries related to the exercise. Moreover, they can subscribe to Extramarks to have access to live doubt-solving sessions, K12 live classes, and expert teachers’ guidance to help them clear all their doubts and achieve academic success.

4. Where can students find the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1?

Students can find the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1 on the Extramarks website. Additionally, it offers students comprehensive study materials such as revision notes, sample papers, important questions, and more, which can assist them in preparing systematically and effortlessly for their examinations. They can learn more about the learning modules offered by Extramarks by visiting the website.

5. How can students prepare for the Class 7 Mathematics examination?

The first and foremost step that students must take for the preparation of their Class 7 Mathematics examination is to thoroughly go through the NCERT Solutions Class 7 Maths Chapter 10 Exercise 10.1. After that, they should review the curriculum’s important questions, extra questions, and revision notes. Thus, students can determine their preparation level and their strong and weak areas of the curriculum. These tools highlight the key points of the chapter, and they are extremely useful for students who need to revise quickly. Furthermore, they should review past years’ papers and sample papers on the subject. During this process, students will develop a strong conceptual understanding of the subject and be able to solve any complicated problems that may arise during their examinations. Students can also benefit by practising sample papers and past years’ papers to get a better understanding of the examination pattern, which will help them avoid last-minute challenges and perform better in their examinations.