NCERT Solutions Class 7 Maths Chapter 10
Home » NCERT Solutions » NCERT Solutions Class 7 Maths Chapter 10
-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
NCERT Solutions for Class 7 Mathematics Chapter 10 Practical Geometry
By now, students should be familiar with the basic shapes and how to draw lines in geometry. The NCERT Mathematics Class 7 Chapter 10 builds on this learning by teaching them how to draw parallel lines and triangles with the various measurements. It explains in detail how to construct geometric figures.
Quick Links
ToggleSome questions in the Practical Geometry Class 7 chapter may seem difficult if they are not explained clearly. Extramarks strives to deliver its concepts in a straightforward and engaging manner. The NCERT Solution for Class 7 Mathematics Chapter 10 provided by our subject matter experts includes a step-by-step explanation of the answers that will make your learning experience interesting as well as comfortable.
NCERT Solutions for Class 7 Mathematics Chapter 10
Access NCERT Solutions for Class 7 Mathematics Chapter 10 – Practical Geometry
Chapter 10 – Practical Geometry Exercise | |
Exercise 10.1 | Questions & Solutions |
Exercise 10.2 | Questions & Solutions |
Exercise 10.3 | Questions & Solutions |
Exercise 10.4 | Questions & Solutions |
Exercise 10.5 | Questions & Solutions |
NCERT Solutions for Class 7 Mathematics –
NCERT Class 7 Mathematics Chapter 10 covers the topic of practical geometry. It includes the following topics:
UNIT | TOPIC |
10.1 | Introduction |
10.2 | Construction of a Line Parallel to a Given Line, and a Point Not on the Line |
10.3 | Construction of Triangles |
10.4 | Constructing a Triangle When the Lengths of its Three Sides are Known (SSS Criterion) |
10.5 | Constructing a Triangle When the Lengths of Two Sides and the Measure of the Angle Between Them are Known (SAS Criterion) |
10.6 | Constructing a Triangle When the Measures of Two of its Angles and the Length of the Side Included Between Them is Given (ASA Criterion) |
10.7 | Constructing a Right-Angled Triangle When the Length of One Leg and its Hypotenuse are Given (RHS Criterion) |
NCERT Solutions for Class 7 Mathematics Chapter 10
10.1 Introduction
This section of the chapter explains what Practical Geometry is and how to construct the different types of geometrical figures.
10.2 Construction of a Line Parallel to a Given Line, and a Point Not on The Line
In this section, students will learn how to draw a pair of lines that are parallel to each other. Parallel lines are those lines that always stay at some distance (never intersect) from each other. How to construct parallel lines is a basic concept for all and students should be well versed with it. It is critical in some fields like architecture.
The process for drawing two parallel lines is as follows:
- Two lines that are parallel to each other should not intersect even if those lines are extended to infinity in any direction.
- The distance between two parallel lines remains the same at all times.
For constructing a parallel line, you need some simple tools like a ruler and a compass. Apart from this, you also need a line segment and a point outside the line from where the parallel lines can be drawn. The steps for such construction are:
- Choose any point on the line segment, say AB and then join it to the outside point Z.
- Use X as the centre and with any suitable radius, draw an arc to cut the line segment ZX. Let this point be M on the line ZX, and N be the point that cuts AB.
- Now use Z as the centre and use the same radius used before drawing an arc. Let’s name this EF, that cuts the line segment ZX on the point say Y.
- Use Y as the centre and with the same radius used before drawing an arc. An arc so drawn will cut the arc EF at the point say R.
- Now join R and Z and it will give the line segment CD. Such a line segment will be the required parallel line.
10.3 Construction of Triangles
Before you proceed to this section, it is important for you to first recall the properties of triangles and the congruence of triangles taught in the previous chapters. Triangles can be classified based on their sides and angles. Here are some important features of triangles are:
- The exterior angle of any triangle is always equal to the sum of its opposite interior angles.
- The sum of the three angles of a triangle is always 180°.
- The sum of any two sides of the triangle is always more than the length of its third side.
- If a triangle is a right-angled triangle, then the square of its hypotenuse is equal to the sum of the square of its other two sides.
The Congruence of Triangles shows how a triangle can be drawn if any of the following measurements are given:
- The three sides of a triangle
- Two sides and the angle lying between them
- Values of two angles and the side that is between the angles
- The hypotenuse and the length of a right-angled triangle
10.4 Constructing a Triangle When the Lengths of its Three Sides are Known (SSS Criterion)
It is possible to construct a triangle when all its three sides are known by the following steps:
- When all three sides are given, the students first need to identify the side with the longest measure that is given.
- The side with the longest measure is made the base of the triangle.
- Use the other given measurements and mark the arcs of the triangle by using the endpoints of the base as vertices.
- By joining the arc intersection with the endpoints of the base, you will get the required triangle.
10.5 Constructing a Triangle When the Lengths of Two Sides and the Measure of the Angle Between Them are Known (SAS Criterion)
This section explains how to construct a triangle when any two sides of a triangle and one angle are given. The tools needed for such construction are a ruler and a compass.
To construct a triangle with the SAS provided, students need to follow the steps given below:
- Draw a straight line and mark the left endpoint as point D.
- Set the compass to the width of one of the sides and place the compass on point D, cut an arc on the line drawn.
- Name the point where the arc cuts the line as B.
- Construct an angle with the information provided on the line DB at point D.
- Now set the compass to the length of the second side provided.
- Then, placing the pointer head of the compass on point D, cut an arc on the angle line drawn.
- The point where the arc crosses the line is named as C.
- The points B and C should now be joined with a ruler and the required triangle will be obtained.
10.6 Constructing a Triangle When the Measures of Two of its Angles and the Length of the Side Included Between Them is Given (ASA Criterion)
This section deals with how to draw a triangle using the ASA criterion.
To satisfy such conditions, the given side has to be the one that is enclosed by the known angles. If any other side of the triangle has been given, a triangle with the ASA method cannot be drawn. To draw the required triangle, use a protractor and a ruler as follows:
- Use the ruler and draw a line segment with the length provided.
- Now using the protractor, draw a ray at point P, making one of the angles given.
- Similarly, draw the ray of the other angle provided at another point Q.
- The point where both the rays meet should be marked (in this case marking it as R).
Thus, the required triangle QPR will be obtained by joining all the points.
10.7 Constructing a Right-Angled Triangle When the Length of One Leg and its Hypotenuse are Given (RHS Criterion)
This section explains how to construct a right-angled triangle where a hypotenuse and one of the sides are given. To construct such a triangle, we require a ruler and a compass. Assuming the right angle is formed at point C, follow the given steps to obtain the required triangle:
- Draw a horizontal line of any length and mark the point of the right angle, say C, on it.
- Now set the compass according to the length of the side given. Place the head of the compass on point C and mark an arc on both sides. Name the points as Z and Q where the arc crosses the line.
- Now set the compass to the hypotenuse’s length and place the head of the compass on the point Z to mark an arc above C.
- Do the same step from point Q and name this point as S, which will be the point where both the arcs will cross each other.
- Join Q to C and S to C to obtain the required right-angled triangle.
Key Features of the NCERT Solution for Class 7 Mathematics Chapter 10
Students who are looking for correct answers to these practise questions have come to the right place. The NCERT Solutions provided by Extramarks will assist them in the following ways:
- Subject matter experts have meticulously written these solutions in a well-structured manner, making it easier for students to learn.
- These answers are written in accordance with the most recent CBSE curriculum and guidelines.
- Studying the solutions carefully will help students understand how to approach the various questions of Practical Geometry and boost their confidence.
NCERT Solutions for Class 7 Mathematics
Students can access the NCERT Solutions of Class 7 Mathematics from Extramarks and practise the NCERT textbook questions and even use them for last-minute preparation.. They need not look elsewhere for any help to supplement their studies. NCERT Solutions are reliable and accurate and they are complete in every way.
NCERT Solutions for Class 7
Extramarks provides textbook solutions, particularly for Class 7, which provide simplified answers to textbook questions for each chapter. These answers are reliable and in-depth as subject matter experts create our CBSE Class 7 study materials. Students can access the link given below to find solutions for all other subjects of Class 7.
Q.1 Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only.
Ans
Q.2
Ans
Q.3
Ans
Q.4
Ans
Q.5
Ans
Q.6
Ans
Q.7
Ans
Q.8
Ans
Q.9
Ans
Q.10
Ans
Q.11
Ans
Q.12
Ans
Q.13
Ans
Q.14
Ans
Q.15 Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long.
Ans
Q.16
Ans
Please register to view this section
FAQs (Frequently Asked Questions)
1. Are there any tips for performing better in practical geometry?
Students can follow the tips given below to perform better in practical geometry:
- The pencil used for construction must be sharp. It’s good to use HB or 2B pencil which has a dark lead.
- Avoid drawing thick lines as much as possible. Drawing dark lines does not mean the same thing as drawing thick lines.
- Always make sure you only use a small pencil in a compass (to avoid miscalculation).
- Remember that all the measurements marked in your protractor and scale are clear to get exact calculations.
- You should mark clearly for better results.
- While writing proofs, you must ensure that all the related theorems are specified as part of your proof.
- While giving proof you must include all these points- given data, theorems and a concluding statement.
2. Is practical geometry easy?
The chapter on Practical Geometry will be easy for you if your basics are clear. Therefore, you must work hard towards building a strong foundation in geometry. Once you are familiar with all the principles of geometry taught in your previous chapters, you will be able to deal with this chapter easily.
In case your basics are not clear yet, it is not too late to start working on them. Having a strong command of the geometry section will surely make a difference in your performance.