NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.6) Exercise 7.6

NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.6) Exercise 7.6

NCERT solutions for Class 6 are crucial for students who want to excel in their preparation for the CBSE Class 6 test. These solutions were created by knowledgeable teachers and subject-matter experts and offer dependable and authentic sources of NCERT solutions for Class 6. Students benefit from the NCERT solutions for Class 6 in that they can solve problems more effectively and quickly and more easily understand the key concepts and theories included in the Methods Class 6 syllabus.

To create strong foundations for the several subjects studied in Class 6, the NCERT Class 6 solutions employ a creative and comprehensive logical approach. These solutions are up-to-date with the most recent textbook and syllabus versions and comply with the rules and standards of the CBSE board. Students will simply overcome any difficulties linked to the numerous courses covered by the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6, which can also be utilised for short reviews before exams.

Fractions are referred to as the components of a whole in Maths. A single thing or a collection of objects might be entire. When anyone cuts a slice of cake in real life from the entire cake, the part that is cut represents the percent of the cake. The word “Fraction” is derived from Latin. “Fractus” means “broken” in Latin. In earlier times, the Fraction was expressed verbally. It is afterward presented in numerical form. Students might be amazed to find that Fractions have been around since the time of ancient Egypt, one of the earliest civilizations in history. However, Fractions are not considered to be numbers by the Egyptians. In reality, Fractions are used to compare whole numbers with Fractions. Fractions were used by the Egyptians to preserve the history of the region.

The depiction of a Fraction on a Number Line, Proper Fractions, Improper Fractions, and Mixed Fractions are only a few of the topics covered by the term “Fractions.” A Fraction is referred to as a piece of a whole. For instance, if a pizza is cut into five equal pieces, each piece is equal to one-fifth of the whole. In Maths, a “Fraction” is a term used to define a specific area of a larger total. It shows the same components of a whole number. The two primary components of a Fraction are a fixed Numerator and a fixed Denominator. One of the most crucial chapters for exams is the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 on Fractions.

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 for Class 6 Fractions will teach students how to add and subtract. Students frequently run into problems when Fractions have distinct Denominators. The LCM of two Integers is one of the topics that students need to review to understand how to add and subtract, unlike with Fractions. By identifying the Equivalent Fractions that correspond to such Fractions, one can also conduct operations on Unlike Fractions. There are nine questions in the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6.

By effectively resolving all the problems about addition and subtraction of Like and Unlike Fractions, the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 aids students in understanding their knowledge of like and unlike Fractions.

Students learn how to add and subtract Mixed Fractions in the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. Mixed Fractions can be expressed as an Improper Fraction or as a whole portion plus a Proper Fraction. Mixed Fractions can be added or subtracted in two different ways. The first step is to perform each operation on each portion independently. The Mixed Fractions can also be written as Improper Fractions and added or subtracted directly from there. For students who wish to thoroughly understand Fractions, the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are a holistic resource. Learners can review all the principles and learn about the subject by reading the chapter summary.

Access Other Exercises of Class 6 Maths Chapter 7

Chapter 7 – Fractions Exercises
Exercise 7.1
11 Questions & Solutions
Exercise 7.2
3 Questions & Solutions
Exercise 7.3
9 Questions & Solutions
Exercise 7.4
10 Questions & Solutions
Exercise 7.5
5 Questions & Solutions

NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.6) Exercise 7.6

There are several advantages of having the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 on hand. To prevent students from getting confused, Extramarks’ solutions are arranged according to the Class 6th Math Exercise 7.6 in the chapter. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6  make studying easier for Class 6 students who are already under a lot of strain. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 and NCERT solutions are written with the utmost care and focus by specialised faculty members at Extramarks. For review and clarification of concepts, students must use the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 and other learning resources. NCERT textbooks and NCERT solutions are crucial tools for the CBSE Board exams. It helps students get ready for the real test.

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are available in PDF format. Students ought to use the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 for a better knowledge of the topics and to understand the concepts and problems in the Maths Class 6 Chapter 7 Exercise 7.6.

NCERT Solutions for Class 6 Maths Chapter 7 Fractions Exercise 7.6

Extramarks provides study materials that are highly authentic and trustworthy for all courses. To better prepare for exams, students can purchase study resources from the Extramarks website and mobile application. Among these  significant state boards are ICSE, CBSE, and others. Extramarks regularly checks its study materials for inconsistencies and updates them in line with the curriculum. Students can continue to refer to the study resources as they get ready for exams to boost their confidence. The Extramarks mobile application has every instrument required for competitive test preparation. Students can prepare for a range of competitive examinations, such as JEE Mains, NEET, JEE Advance, CUET, etc., with the help of Extramarks. All the resources needed to improve competitive examinations are easily accessible on the Extramarks website and mobile app. Students can view live lectures on any subject on the Extramarks website and mobile application. These in-person courses have a lot of interaction and are often updated. The questions that students have throughout these sessions on Extramarks can simply be resolved.

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 introduces Class 6 students to a crucial mathematical concept, namely Fractions. A Fraction is a number that represents all or a portion of another number. In Chapter 2 Whole Numbers, students learned about the Number Line. It was previously advised to understand the Number Line since Fractions heavily rely on it. On a Number Line, Fractions can be represented. Every Fraction has a location on the Number Line that corresponds to it. The Numerator and Denominator are the two major concepts of a Fraction. Fractions can be of two sorts, namely, Proper Fractions and Improper Fractions, depending on the values of the Numerator and Denominator. The Numerator is smaller than the Denominator when referring to a correct Fraction. Improper Fractions are those in which the Numerator is higher than the Denominator. Mixed Fractions can also be used to represent Improper Fractions. A Mixed Fraction is an Improper Fraction that is represented as a mixture of a whole and a portion of a number. Students who have completed the Fractions chapter will be able to understand subsequent chapters like decimals and percentages, which have roots in the Fractions chapter.

Students will master the step-by-step process for decimal division by using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. All of the questions in Maths Class 6 Chapter 7 Exercise 7.6  are curated by subject matter experts. This is why students should use these NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 to learn and study.

Students can practice the various sorts of questions with the help of NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. Extramarks has created this in a well-structured way with the greatest problem-solving strategies to guarantee ideal accuracy. For the tests, it is suggested that students practise the mathematical problems from the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. Additionally, it will lay a concrete foundation for all of these ideas for classes at a higher level.

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are regarded as the best option for CBSE students preparing for the academic examinations. Class 6th Math Exercise 7.6 could be difficult for students to complete. On the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 website, students can get the NCERT Maths Class 6 Chapter 7 Exercise 7.6 Answers. If necessary, students can obtain the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6  from the Extramarks website or mobile application.

 NCERT Solutions for Class 6 Maths Chapter 7 Fractions Exercise 7.6

The National Council for Educational Research and Training, sometimes known as “NCERT,” is an independent agency of the Indian government that creates educational materials for both the state and federal governments, including textbooks. The NCERT books provide students with enough information to understand the basics of all the subjects they cover. Students are given practise exercises and test questions after each chapter or topic. Students can use these exercises and questions to prepare for class, board, and competitive examinations. In addition to providing NCERT solutions for all topics for classes 1 through 12, Extramarks also offers video explanations of challenging and significant questions. This NCERT solution aids students in grasping concepts, doing their assignments, and learning new chapters and topics.

Each chapter must be thoroughly studied by students, who are also required to understand the definitions of all the themes and subtopics. Understanding the principles of each chapter is crucial to successfully preparing the chapters. Solving problems is the best way to understand the foundational concepts of Maths. Students should deal with the easy questions first before moving on to the challenging ones. All students must adequately prepare for the board exams. Students must become familiar with the syllabus before beginning their preparation for the maths test. The syllabus is necessary to design a strategy for learning the Maths chapters. For time management, the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are quite helpful. The explanations for the steps in the replies provide students with a clear understanding of how to manage their time. With the help of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6, students can easily study and perform better in examinations.

Important topics included in NCERT solutions for Class 6 maths Chapter 7, are as follows

  • Proper Fractions

A Fraction is said to be Proper if the Numerator is less than the Denominator.

  •  Improper Fractions

Improper Fractions are those in which the Numerator is larger than the Denominator.

  • Mixed Fractions

A Mixed Fraction is a Fraction and a natural number combined. In essence, it is an Improper Fraction. The above concept is mentioned in the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 for better understanding.

  •  Equivalent Fractions

When two or more Fractions represent the same share of the total and provide the same result after simplification, they are said to be equivalent Fractions and are equal. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 have brief explanations with examples to help students understand the topic properly.

Maths Class 6 Ex 7.6 for Class 6 numerous arithmetic procedures are required for Fractions. If they wish to perform well on exams with regard to the Maths Class 6 Chapter 7 Exercise 7.6, they need to practise more. Students must study the theory and become familiar with the formulas used in Class 6 Math 7.6, first and foremost. To have an in-depth understanding of the concepts, students must go through solving each example and the practise questions. When conducting the calculation, students can verify their response and approach from the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 once they have solved the issue.

For better exam preparation, students are recommended to download the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 from the Extramarks website. If they already have the app loaded on their phones, they can download the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 from there also. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are of the highest quality. It can be used both offline and online, or as per the student’s requirements.

Q.1

a23+17b310+715c49+27d57+13e25+16f45+23g3413h5613i23+34+12j12+13+16k113+323l423+314m16575n4312

Ans.

(a) 2 3 + 1 7 The L.C.M. of 3 and 7 is 21. = 7×2+1×3 21 = 14+3 21 = 17 21 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGHbGaaeykaiaabccadaWcaaqaaiaaikdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiEdaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqGZaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG3aGaaeiiaiaabMgacaqGZbGaaeiiaiaabkdacaqGXaGaaeOlaaqaaiaab2dadaWcaaqaaiaaiEdacqGHxdaTcaaIYaGaey4kaSIaaGymaiabgEna0kaaiodaaeaacaaIYaGaaGymaaaaaeaacqGH9aqpdaWcaaqaaiaaigdacaaI0aGaey4kaSIaaG4maaqaaiaaikdacaaIXaaaaaqaaiabg2da9maalaaabaGaaGymaiaaiEdaaeaacaaIYaGaaGymaaaaaaaa@6980@

(b) 3 10 + 7 15 The L.C.M. of 10 and 15 is 30. = 3×3+2×7 30 = 9+14 30 = 23 30 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGIbGaaeykaiaabccadaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacqGHRaWkdaWcaaqaaiaaiEdaaeaacaaIXaGaaGynaaaaaeaacaqGubGaaeiAaiaabwgacaqGGaGaaeitaiaab6cacaqGdbGaaeOlaiaab2eacaqGUaGaaeiiaiaab+gacaqGMbGaaeiiaiaabgdacaqGWaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGXaGaaeynaiaabccacaqGPbGaae4CaiaabccacaqGZaGaaeimaiaab6caaeaacaqG9aWaaSaaaeaacaaIZaGaey41aqRaaG4maiabgUcaRiaaikdacqGHxdaTcaaI3aaabaGaaG4maiaaicdaaaaabaGaeyypa0ZaaSaaaeaacaaI5aGaey4kaSIaaGymaiaaisdaaeaacaaIZaGaaGimaaaaaeaacqGH9aqpdaWcaaqaaiaaikdacaaIZaaabaGaaG4maiaaicdaaaaaaaa@6C61@

(c) 4 9 + 2 7 The L.C.M. of 9 and 7 is 63. = 7×4+9×2 63 = 28+18 63 = 46 63 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGJbGaaeykaiaabccadaWcaaqaaiaaisdaaeaacaaI5aaaaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiEdaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG5aGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG3aGaaeiiaiaabMgacaqGZbGaaeiiaiaabAdacaqGZaGaaeOlaaqaaiaab2dadaWcaaqaaiaaiEdacqGHxdaTcaaI0aGaey4kaSIaaGyoaiabgEna0kaaikdaaeaacaaI2aGaaG4maaaaaeaacqGH9aqpdaWcaaqaaiaaikdacaaI4aGaey4kaSIaaGymaiaaiIdaaeaacaaI2aGaaG4maaaaaeaacqGH9aqpdaWcaaqaaiaaisdacaaI2aaabaGaaGOnaiaaiodaaaaaaaa@6A79@

(d) 5 7 + 1 3 The L.C.M. of 3 and 7 is 21. = 5×3+1×7 21 = 15+7 21 = 22 21 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGKbGaaeykaiaabccadaWcaaqaaiaaiwdaaeaacaaI3aaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqGZaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG3aGaaeiiaiaabMgacaqGZbGaaeiiaiaabkdacaqGXaGaaeOlaaqaaiaab2dadaWcaaqaaiaaiwdacqGHxdaTcaaIZaGaey4kaSIaaGymaiabgEna0kaaiEdaaeaacaaIYaGaaGymaaaaaeaacqGH9aqpdaWcaaqaaiaaigdacaaI1aGaey4kaSIaaG4naaqaaiaaikdacaaIXaaaaaqaaiabg2da9maalaaabaGaaGOmaiaaikdaaeaacaaIYaGaaGymaaaaaaaa@698A@

(e) 2 5 + 1 6 The L.C.M. of 5 and 6 is 30. = 6×2+5×1 30 = 12+5 30 = 17 30 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGLbGaaeykaiaabccadaWcaaqaaiaaikdaaeaacaaI1aaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiAdaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG1aGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG2aGaaeiiaiaabMgacaqGZbGaaeiiaiaabodacaqGWaGaaeOlaaqaaiaab2dadaWcaaqaaiaaiAdacqGHxdaTcaaIYaGaey4kaSIaaGynaiabgEna0kaaigdaaeaacaaIZaGaaGimaaaaaeaacqGH9aqpdaWcaaqaaiaaigdacaaIYaGaey4kaSIaaGynaaqaaiaaiodacaaIWaaaaaqaaiabg2da9maalaaabaGaaGymaiaaiEdaaeaacaaIZaGaaGimaaaaaaaa@6987@

(f) 4 5 + 2 3 The L.C.M. of 5 and 3 is 15. = 4×3+5×2 15 = 12+10 15 = 22 15 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGMbGaaeykaiaabccadaWcaaqaaiaaisdaaeaacaaI1aaaaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiodaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG1aGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGZaGaaeiiaiaabMgacaqGZbGaaeiiaiaabgdacaqG1aGaaeOlaaqaaiaab2dadaWcaaqaaiaaisdacqGHxdaTcaaIZaGaey4kaSIaaGynaiabgEna0kaaikdaaeaacaaIXaGaaGynaaaaaeaacqGH9aqpdaWcaaqaaiaaigdacaaIYaGaey4kaSIaaGymaiaaicdaaeaacaaIXaGaaGynaaaaaeaacqGH9aqpdaWcaaqaaiaaikdacaaIYaaabaGaaGymaiaaiwdaaaaaaaa@6A43@

(g) 3 4 1 3 The L.C.M. of 4 and 3 is 12. = 3×34×1 12 = 94 12 = 5 12 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGNbGaaeykaiaabccadaWcaaqaaiaaiodaaeaacaaI0aaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG0aGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGZaGaaeiiaiaabMgacaqGZbGaaeiiaiaabgdacaqGYaGaaeOlaaqaaiaab2dadaWcaaqaaiaaiodacqGHxdaTcaaIZaGaeyOeI0IaaGinaiabgEna0kaaigdaaeaacaaIXaGaaGOmaaaaaeaacqGH9aqpdaWcaaqaaiaaiMdacqGHsislcaaI0aaabaGaaGymaiaaikdaaaaabaGaeyypa0ZaaSaaaeaacaaI1aaabaGaaGymaiaaikdaaaaaaaa@682E@

(h) 5 6 1 3 The L.C.M. of 6 and 3 is 6. = 1×52×1 6 = 52 6 = 3 6 = 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGObGaaeykaiaabccadaWcaaqaaiaaiwdaaeaacaaI2aaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG2aGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGZaGaaeiiaiaabMgacaqGZbGaaeiiaiaabAdacaqGUaaabaGaaeypamaalaaabaGaaGymaiabgEna0kaaiwdacqGHsislcaaIYaGaey41aqRaaGymaaqaaiaaiAdaaaaabaGaeyypa0ZaaSaaaeaacaaI1aGaeyOeI0IaaGOmaaqaaiaaiAdaaaaabaGaeyypa0ZaaSaaaeaacaaIZaaabaGaaGOnaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaaaaaa@67E3@

(i) 2 3 + 3 4 + 1 2 The L.C.M. of 2, 3 and 4 is 12. = 2×4+3×3+6×1 12 = 8+9+6 12 = 23 12 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGPbGaaeykaiaabccadaWcaaqaaiaaikdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaG4maaqaaiaaisdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaeaacaqGubGaaeiAaiaabwgacaqGGaGaaeitaiaab6cacaqGdbGaaeOlaiaab2eacaqGUaGaaeiiaiaab+gacaqGMbGaaeiiaiaabkdacaqGSaGaaeiiaiaabodacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabsdacaqGGaGaaeyAaiaabohacaqGGaGaaeymaiaabkdacaqGUaaabaGaaeypamaalaaabaGaaGOmaiabgEna0kaaisdacqGHRaWkcaaIZaGaey41aqRaaG4maiabgUcaRiaaiAdacqGHxdaTcaaIXaaabaGaaGymaiaaikdaaaaabaGaeyypa0ZaaSaaaeaacaaI4aGaey4kaSIaaGyoaiabgUcaRiaaiAdaaeaacaaIXaGaaGOmaaaaaeaacqGH9aqpdaWcaaqaaiaaikdacaaIZaaabaGaaGymaiaaikdaaaaaaaa@7355@

(j) 1 2 + 1 3 + 1 6 The L.C.M. of 2, 3 and 6 is 6. = 1×3+1×2+1×1 6 = 3+2+1 6 = 6 6 =1 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGQbGaaeykaiaabccadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOnaaaaaeaacaqGubGaaeiAaiaabwgacaqGGaGaaeitaiaab6cacaqGdbGaaeOlaiaab2eacaqGUaGaaeiiaiaab+gacaqGMbGaaeiiaiaabkdacaqGSaGaaeiiaiaabodacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabAdacaqGGaGaaeyAaiaabohacaqGGaGaaeOnaiaab6caaeaacaqG9aWaaSaaaeaacaaIXaGaey41aqRaaG4maiabgUcaRiaaigdacqGHxdaTcaaIYaGaey4kaSIaaGymaiabgEna0kaaigdaaeaacaaI2aaaaaqaaiabg2da9maalaaabaGaaG4maiabgUcaRiaaikdacqGHRaWkcaaIXaaabaGaaGOnaaaaaeaacqGH9aqpdaWcaaqaaiaaiAdaaeaacaaI2aaaaiabg2da9iaaigdaaaaa@716F@

(k) 1 1 3 +3 2 3 Converting the given fraction into improper fraction = 4 3 + 11 3 = 11+4 3 = 15 3 =5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGRbGaaeykaiaabccacaqGXaWaaSaaaeaacaaIXaaabaGaaG4maaaacqGHRaWkcaaIZaWaaSaaaeaacaaIYaaabaGaaG4maaaaaeaacaqGdbGaae4Baiaab6gacaqG2bGaaeyzaiaabkhacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGaaeOCaiaabggacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaaeOBaiaabshacaqGVbGaaeiiaiaabMgacaqGTbGaaeiCaiaabkhacaqGVbGaaeiCaiaabwgacaqGYbGaaeiiaiaabAgacaqGYbGaaeyyaiaabogacaqG0bGaaeyAaiaab+gacaqGUbaabaGaaeypamaalaaabaGaaGinaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIXaGaaGymaaqaaiaaiodaaaaabaGaeyypa0ZaaSaaaeaacaaIXaGaaGymaiabgUcaRiaaisdaaeaacaaIZaaaaaqaaiabg2da9maalaaabaGaaGymaiaaiwdaaeaacaaIZaaaaiabg2da9iaaiwdaaaaa@7F77@

(l) 4 2 3 +3 1 4 Converting the given fraction into improper fraction = 14 3 + 13 4 The L.C.M. of 3 and 4 is 12 = 14×4+3×13 12 = 56+39 12 = 95 12 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGSbGaaeykaiaabccacaqG0aWaaSaaaeaacaaIYaaabaGaaG4maaaacqGHRaWkcaaIZaWaaSaaaeaacaaIXaaabaGaaGinaaaaaeaacaqGdbGaae4Baiaab6gacaqG2bGaaeyzaiaabkhacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGaaeOCaiaabggacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaaeOBaiaabshacaqGVbGaaeiiaiaabMgacaqGTbGaaeiCaiaabkhacaqGVbGaaeiCaiaabwgacaqGYbGaaeiiaiaabAgacaqGYbGaaeyyaiaabogacaqG0bGaaeyAaiaab+gacaqGUbaabaGaaeypamaalaaabaGaaGymaiaaisdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGymaiaaiodaaeaacaaI0aaaaaqaaiaabsfacaqGObGaaeyzaiaabccacaqGmbGaaeOlaiaaboeacaqGUaGaaeytaiaab6cacaqGGaGaae4BaiaabAgacaqGGaGaae4maiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeinaiaabccacaqGPbGaae4CaiaabccacaqGXaGaaeOmaaqaaiabg2da9maalaaabaGaaGymaiaaisdacqGHxdaTcaaI0aGaey4kaSIaaG4maiabgEna0kaaigdacaaIZaaabaGaaGymaiaaikdaaaaabaGaeyypa0ZaaSaaaeaacaaI1aGaaGOnaiabgUcaRiaaiodacaaI5aaabaGaaGymaiaaikdaaaGaeyypa0ZaaSaaaeaacaaI5aGaaGynaaqaaiaaigdacaaIYaaaaaaaaa@A1AC@

(m) 16 5 7 5 = 167 5 = 9 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGTbGaaeykaiaabccadaWcaaqaaiaaigdacaaI2aaabaGaaGynaaaacqGHsisldaWcaaqaaiaaiEdaaeaacaaI1aaaaaqaaiaab2dadaWcaaqaaiaaigdacaaI2aGaeyOeI0IaaG4naaqaaiaaiwdaaaaabaGaeyypa0ZaaSaaaeaacaaI5aaabaGaaGynaaaaaaaa@4816@

(n) 4 3 1 2 The L.C.M. of 3 and 2 is 6 = 4×21×3 6 = 83 6 = 5 6 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaabIcacaqGUbGaaeykaiaabccadaWcaaqaaiaaisdaaeaacaaIZaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabYeacaqGUaGaae4qaiaab6cacaqGnbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqGZaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGYaGaaeiiaiaabMgacaqGZbGaaeiiaiaabAdaaeaacaqG9aWaaSaaaeaacaaI0aGaey41aqRaaGOmaiabgkHiTiaaigdacqGHxdaTcaaIZaaabaGaaGOnaaaaaeaacqGH9aqpdaWcaaqaaiaaiIdacqGHsislcaaIZaaabaGaaGOnaaaaaeaacqGH9aqpdaWcaaqaaiaaiwdaaeaacaaI2aaaaaaaaa@64A9@

Q.2 Sarita bought

2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaadaWcaaqaaGqabiaa=jdaaeaacaWF1aaaaaaa@3A90@

metre of ribbon and Lalita bought

3 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaadaWcaaqaaGqabiaa=ndaaeaacaWF0aaaaaaa@3A90@

metre of ribbon. What is the total length of the ribbon they bought?

Ans.

Length of ribbon bought by Sarita =

2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaI1aaaaaaa@3A98@

Length of ribbon bought by Lalita =

3 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaadaWcaaqaaiaaiodaaeaacaaI0aaaaaaa@3A98@

Total length of ribbon

= 25+34=2×4+5×320=8+1520=2320m

Q.3 Naina was given

1 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaaieqacaWFXaWaaSaaaeaacaWFXaaabaGaa8Nmaaaaaaa@3B3E@

piece of cake and Najma was given

1 1 3 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaaieqacaWFXaWaaSaaaeaacaWFXaaabaGaa83maaaaaaa@3B3F@

piece of cake. Find the total amount of cake was given to both of them.

Ans.

Piece of cake given to Naina =

1 1 2 = 3 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaacaaIXaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaaaa@3DDE@

Piece of cake given to Najma =

1 1 3 = 4 3 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakeaacaaIXaWaaSaaaeaacaaIXaaabaGaaG4maaaacqGH9aqpdaWcaaqaaiaaisdaaeaacaaIZaaaaaaa@3DE1@

Total amount of cake given

= 3 2 + 4 3 = 3×3+4×2 6 = 9+8 6 = 17 6 =2 5 6 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaqaafaaakqaabeqaaiaab2dacaqGGaGaaeiiamaalaaabaGaaG4maaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaI0aaabaGaaG4maaaaaeaacqGH9aqpdaWcaaqaaiaaiodacqGHxdaTcaaIZaGaey4kaSIaaGinaiabgEna0kaaikdaaeaacaaI2aaaaaqaaiabg2da9maalaaabaGaaGyoaiabgUcaRiaaiIdaaeaacaaI2aaaaaqaaiabg2da9maalaaabaGaaGymaiaaiEdaaeaacaaI2aaaaiabg2da9iaaikdadaWcaaqaaiaaiwdaaeaacaaI2aaaaaaaaa@53CC@

Q.4

a58=14   b  15=12  c12=16

Ans.

(a) 58=14=14+58=2×1+5×18=78(b) 15=12=15+12=1×2+1×510=710(c) 12=16=1216=316=26

Q.5 Complete the addition-subtraction box.

Ans.

(a) 2 3 + 4 3 = 6 3 =2 1 3 + 2 3 = 3 3 =1 2 3 1 3 = 1 3 4 3 2 3 = 2 3 21=1 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaabIcacaqGHbGaaeykaiaabccadaWcaaqaaiaaikdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGinaaqaaiaaiodaaaGaeyypa0ZaaSaaaeaacaaI2aaabaGaaG4maaaacqGH9aqpcaaIYaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccadaWcaaqaaiaaigdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiodaaaGaeyypa0ZaaSaaaeaacaaIZaaabaGaaG4maaaacqGH9aqpcaaIXaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccadaWcaaqaaiaaikdaaeaacaaIZaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaabaGaaGinaaqaaiaaiodaaaGaeyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaacqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaaIYaGaeyOeI0IaaGymaiabg2da9iaaigdaaeaacaqGGaGaaeiiaiaabccacaqGGaaaaaa@6E55@

(b) 1 2 + 1 3 = 5 6 1 3 + 1 4 = 7 12 1 2 1 3 = 1 6 1 3 1 4 = 1 12 5 6 7 12 = 3 12 = 1 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaabIcacaqGIbGaaeykaiaabccadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodaaaGaeyypa0ZaaSaaaeaacaaI1aaabaGaaGOnaaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaabaGaaGymaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacqGH9aqpdaWcaaqaaiaaiEdaaeaacaaIXaGaaGOmaaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI2aaaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaWaaSaaaeaacaaIXaaabaGaaG4maaaacqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiabg2da9maalaaabaGaaGymaaqaaiaaigdacaaIYaaaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaWaaSaaaeaacaaI1aaabaGaaGOnaaaacqGHsisldaWcaaqaaiaaiEdaaeaacaaIXaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaiodaaeaacaaIXaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaabccacaqGGaGaaeiiaiaabccaaaaa@7177@

Q.6 A piece of wire

7 8 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=DdaaeaacaWF4aaaaaaa@3A99@

metre long broke into two pieces. One piece was

1 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=fdaaeaacaWF0aaaaaaa@3A8F@

metre long. How long is the other piece?

Ans.

Length of one piece =

1 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaa@3A97@

Length of other piece is equal to the difference of the length of the wire and the length of the first piece of wire.

So, length of other piece

=7814=728=58m

Q.7 Nandini’s house is

9 10 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=LdaaeaacaWFXaGaa8hmaaaaaaa@3B45@

km from her school. She walked some distance and then took a bus for

1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=fdaaeaacaWFYaaaaaaa@3A8D@

km to reach the school. How far did she walk?

Ans.

Distance walked by Nandini
= Total distance – Distance for which she took the bus

= 9 10 1 2 = 95 10 = 4 10 = 2 5 km MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaab2dacaqGGaWaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaeaacqGH9aqpdaWcaaqaaiaaiMdacqGHsislcaaI1aaabaGaaGymaiaaicdaaaaabaGaeyypa0ZaaSaaaeaacaaI0aaabaGaaGymaiaaicdaaaaabaGaeyypa0ZaaSaaaeaacaaIYaaabaGaaGynaaaacaqGGaGaam4Aaiaad2gaaaaa@4C8F@

Distance walked by Nandini
= Total distance – Distance for which she took the bus

= 9 10 1 2 = 95 10 = 4 10 = 2 5 km MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaab2dacaqGGaWaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaeaacqGH9aqpdaWcaaqaaiaaiMdacqGHsislcaaI1aaabaGaaGymaiaaicdaaaaabaGaeyypa0ZaaSaaaeaacaaI0aaabaGaaGymaiaaicdaaaaabaGaeyypa0ZaaSaaaeaacaaIYaaabaGaaGynaaaacaqGGaGaam4Aaiaad2gaaaaa@4C8F@

Q.8 Asha and Samuel have bookshelves of the same size partly filled with books. Asha’s shelf is

5 6 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=vdaaeaacaWF2aaaaaaa@3A95@

th full and Samuel’s shelf is

2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=jdaaeaacaWF1aaaaaaa@3A91@

th full. Whose bookshelf is more full? By what fraction

Ans.

Fraction of Asha’s shelf that is full =

5 6 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiwdaaeaacaaI2aaaaaaa@3A9D@

Fraction of Samuel’s shelf that is full =

2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaI1aaaaaaa@3A99@

Converting both fractions into like fractions :

5 6 = 5×5 6×5 = 25 30 2 5 = 2×6 5×6 = 12 30 Here, 5 6 > 2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaamaalaaabaGaaGynaaqaaiaaiAdaaaGaeyypa0ZaaSaaaeaacaaI1aGaey41aqRaaGynaaqaaiaaiAdacqGHxdaTcaaI1aaaaiabg2da9maalaaabaGaaGOmaiaaiwdaaeaacaaIZaGaaGimaaaaaeaadaWcaaqaaiaaikdaaeaacaaI1aaaaiabg2da9maalaaabaGaaGOmaiabgEna0kaaiAdaaeaacaaI1aGaey41aqRaaGOnaaaacqGH9aqpdaWcaaqaaiaaigdacaaIYaaabaGaaG4maiaaicdaaaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaqGGaWaaSaaaeaacaaI1aaabaGaaGOnaaaacqGH+aGpdaWcaaqaaiaaikdaaeaacaaI1aaaaaaaaa@5DC0@

Hence, Asha’s bookshelf is more full.

Difference= 25 30 12 30 = 2512 30 = 13 30 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaabccacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabogacaqGLbGaeyypa0JaaeiiaiaabccadaWcaaqaaiaaikdacaaI1aaabaGaaG4maiaaicdaaaGaeyOeI0YaaSaaaeaacaaIXaGaaGOmaaqaaiaaiodacaaIWaaaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqGH9aqpdaWcaaqaaiaaikdacaaI1aGaeyOeI0IaaGymaiaaikdaaeaacaaIZaGaaGimaaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaeyypa0ZaaSaaaeaacaaIXaGaaG4maaqaaiaaiodacaaIWaaaaaaaaa@6ACC@

Q.9 Jaidev takes

2 1 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaaieqacaWFYaWaaSaaaeaacaWFXaaabaGaa8xnaaaaaaa@3B43@

minutes to walk across the school ground. Rahul takes

7 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=DdaaeaacaWF0aaaaaaa@3A95@

minutes to do the same. Who takes less time and by what fraction?

Ans.

Time taken by Jaidev =

215 minutes =115 minutes

Time taken by Rahul =

74 minutes

Converting both fractions into like fractions :

11 5 = 11×4 5×4 = 44 20 7 4 = 7×5 4×5 = 35 20 Here, 11 5 > 7 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaamaalaaabaGaaGymaiaaigdaaeaacaaI1aaaaiabg2da9maalaaabaGaaGymaiaaigdacqGHxdaTcaaI0aaabaGaaGynaiabgEna0kaaisdaaaGaeyypa0ZaaSaaaeaacaaI0aGaaGinaaqaaiaaikdacaaIWaaaaaqaamaalaaabaGaaG4naaqaaiaaisdaaaGaeyypa0ZaaSaaaeaacaaI3aGaey41aqRaaGynaaqaaiaaisdacqGHxdaTcaaI1aaaaiabg2da9maalaaabaGaaG4maiaaiwdaaeaacaaIYaGaaGimaaaaaeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaabccadaWcaaqaaiaaigdacaaIXaaabaGaaGynaaaacqGH+aGpdaWcaaqaaiaaiEdaaeaacaaI0aaaaaaaaa@5FEE@

Hence, Rahul takes lesser time.

Difference= 44 20 35 20 = 4435 20 = 9 20 min MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaabccacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabogacaqGLbGaeyypa0JaaeiiaiaabccadaWcaaqaaiaaisdacaaI0aaabaGaaGOmaiaaicdaaaGaeyOeI0YaaSaaaeaacaaIZaGaaGynaaqaaiaaikdacaaIWaaaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqGH9aqpdaWcaaqaaiaaisdacaaI0aGaeyOeI0IaaG4maiaaiwdaaeaacaaIYaGaaGimaaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaeyypa0ZaaSaaaeaacaaI5aaabaGaaGOmaiaaicdaaaGaaeiiaiaab2gacaqGPbGaaeOBaaaaaa@6D8F@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Why is understanding the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 so important?

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 aim to deepen the student’s knowledge of Fractions. Students must make sure they complete all of the questions in the exercises for this chapter. Students can refer to the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 to reinforce the foundations. Since problems are methodically and precisely answered, there are no difficulties for students. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 are available for download from the website of Extramarks. These can be found on the mobile application of Extramarks as well.

2. How many chapters are there in the NCERT solutions for Maths in class 6?

There are a total of 14 chapters in the NCERT Solutions Class 6 which are as follows:

  •  Chapter 1 Knowing Our Numbers
  • Chapter 2 Whole Numbers
  • Chapter 3 Playing with Numbers
  • Chapter 4 Basic Geometrical Ideas
  • Chapter 5 Understanding Elementary Shape
  • Chapter 6 Integers
  • Chapter 7 Fractions
  • Chapter 8 Decimals
  • Chapter 9 Data Handling
  • Chapter 10 Mensuration
  • Chapter 11 Algebra
  • Chapter 12 Ratio and Proportion
  • Chapter 13 Symmetry
  • Chapter 14 Practical Geometry

3. What is the best way to cover NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6?

The best way to start studying for Class 6 Maths Chapter 7 Exercise 7.6 is to use the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. Utilising the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 materials will help the student save time. To evaluate their notes as they are being prepared, the student should also be in the habit of taking notes. Students can help themselves remember what they have learned by taking notes and referring to the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6 regularly.

4. How many questions are there in the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6?

There are a total of 9 questions in the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6. Each question has significance in its own way. The more challenging ones provide conceptual understanding and the easier ones enhance efficiency. All the questions must thus be given equal weight if one is to comprehend the chapter’s material better and perform well on exams. Visit the Extramarks website for further details on the materials offered for each chapter. For exam preparation, students can also review the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.6.

5. How can one efficiently prepare for a Maths exam?

For students to perform better on the Maths test, it is crucial to keep going over the chapters and finishing as many practice problems as they can. Students are required to complete sample tests and papers regularly. It is suggested that students use the revision notes as a guide for editing the chapters.