NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations (Ex 9.5) Exercise 9.5

The Central Board of Secondary Education (CBSE) Board is responsible for conducting board examinations of Class 12 students. The Class 12 Board examinations are crucial for deciding the future of Class 12 students. All the subjects of Class 12 should be prepared well for scoring higher marks in the board examinations. Nowadays, it has become important to access online resources to prepare for exams. All the online resources should be reviewed from time to time during the preparation period. Students are required to make a study timetable for learning the chapters of a subject.

Mathematical concepts can sometimes be challenging to learn. To learn Mathematics chapters, it is important to understand the concepts and keep practising questions at regular intervals.

Mathematics is an essential component of human intellect and logic. It promotes logical thinking and mental rigidity and is useful for building mental discipline. Additionally, studying Mathematics is crucial for understanding other subjects like Physics, Social Science, and even Music and Arts. Mathematical concepts are significant in finding solutions for real-world problems. It is necessary to learn the fundamentals of Mathematics in school. The CBSE Board students of Class 12 need to study some broad concepts of Mathematics like Integrals, Differential Equations, Probability, etc. All the students must go through each of the Class 12 Mathematics topics to prepare effectively for the Mathematics board exam.

The students of Class 12 are advised to thoroughly revise the chapters of Mathematics to secure higher marks in the exam. All the topics and subtopics should be consistently practised. It is necessary to practise chapters to enhance the knowledge of students. Students are expected to solve the problems regularly to score higher marks in the board exam of Mathematics. Revision is crucial in a subject like Mathematics. Some concepts of Mathematics are used in other concepts as well. It becomes necessary to revise them from time to time. Regularly practising exercise problems can help students understand the concepts.It is also useful for enhancing the memory of formulas, definitions, theorems, etc.

Before preparing for the mathematics board exam, students should review the mathematics syllabus.

The Class 12 Mathematics Syllabus can be accessed from the Extramarks’ website and mobile application. The students of Class 12 Central Board of Secondary Education (CBSE) Board are required to get an overview of all the topics and subtopics covered in the Mathematics syllabus. The syllabus is crucial for the students to prepare a study plan for learning Mathematics topics.

It is advisable that students practise the sample papers and past years’ papers in Mathematics to improve their preparation for the exam. Practising sample papers and previous years’ papers helps students understand the mathematics marking scheme.

With the help of sample papers and previous years’ papers in mathematics, students can learn to answer questions from the perspective of the board exam.

All the revision notes of Class 12 chapters need to be consistently reviewed. Students can access the revision notes of Mathematics from the Extramarks’ website and mobile application. It is important to prepare a study plan for learning Mathematics chapters.. All the chapters are important from the perspective of the exam.  Students need to solve the exercise problems after learning the concepts. In Mathematics, it is critical to learn definitions, formulas, theorems, graphs, etc. to understand the concepts effectively.

The topic covered in Chapter 9 of Class 12 Mathematics is Differential Equations. It is necessary to recall the concepts of differentiation from Class 11 while learning the Differential Equations topics. Students must practise the exercise questions after understanding the concepts of Differential Equations. Exercise 9.5 is based on the topic of Homogeneous Differential Equations. The questions of Class 12th Exercise 9.5 are important from the board exam perspective. Class 12 students of the CBSE Board are expected to solve the Exercise 9.5 questions regularly. The students can solve the Ex 9.5 Class 12 questions with the help of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. Students can access the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the Extramarks’ website and mobile application in PDF format. Students must go through the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 one by one and practise Exercise 9.5 Class 12 problems.

Students are required to include the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 in their learning process. Some of the topics in Chapter 9 are difficult to understand. It is necessary to focus more on difficult topics. Students of the Class 12 Central Board of Secondary Education (CBSE) are supposed to make a list of all the difficult topics and spend more time preparing them.

There are a total of 17 questions in Exercise 9.5.All the questions are based on the Homogeneous Differential Equations topic. The students need to understand the requirements of each question before solving them. All the required formulas, definitions, and theorems need to be applied to solve the Exercise 9.5 questions effectively. Students must go through each of the topics in Class 12 Mathematics from the perspective of the exam. The topicsshould be studied one by one to build the concepts gradually.

The mathematical concepts learned at the Class 12 level are significant for understanding the  topics at the next level. Class 12 Mathematics concepts help prepare for competitive exams like JEE Mains, JEE Advance, etc. It is important to practise the Class 12 Mathematics concepts thoroughly to learn the advanced concepts of Mathematics in various courses like Engineering, Bachelor of Science, etc. Students should focus on improving their problem-solving skills to solve Mathematics related questions.

Students must solve the Exercise 9.5 questions. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 help solve the Exercise 9.5 questions. Students are advised to utilise the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 during the board exam preparation of Mathematics.

Questions asked in the Mathematics board exam of Class 12 can be daunting to solve. Students can practice well for the Mathematics exam with the help of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. Students of the Class 12 Central Board of Secondary Education must access the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the Extramarks’ website and mobile application in PDF format. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are accessible in PDF format and can be viewed in offline mode as well.

NCERT Solutions are made available by Extramarks for all CBSE Board classes. From  Extramarks’ website and mobile application, students can download the NCERT solutions in PDF format. Students can get help from Extramarks in getting ready for competitive exams like the JEE Mains, JEE Advanced, CUET, NEET, etc. On  Extramarks’ website and mobile application, students may access all the study materials necessary for gearing up for the different competitive tests. The Extramarks’ website and mobile application provide access to study materials for students belonging to the ICSE, CBSE, and  various state boards. To get better grades in examinations, students must continually refer to all the study resources.

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations (Ex 9.5) Exercise 9.5

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 can be downloaded from the Extramarks’ website and mobile application in PDF format. Students having problems in solving the questions of Exercise 9.5 are advised to refer to the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. Practising Exercise 9.5 questions with the help of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 helps prepare effectively for the board exam of Mathematics. All the solutions of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are prepared by expert Mathematics teachers.

The solutions help boost the confidence of students for the board exam of Mathematics. All the topics need to be covered in detail. Students are advised to keep revising the topics to get in-depth knowledge of the concepts. All the topics of Chapter 9 are crucial from the board exam point of view.

Students are encouraged to make use of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 to prepare well for the Mathematics examination. All the solutions given in the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 can be found just below their respective questions.

Mathematics is a subject that can fetch higher marks in exams. Students should practise well for the upcoming board exam of Mathematics to score higher marks. All the students are required to go through the topics consistently and practise the exercise questions. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are beneficial for enhancing the answer writing capacity of the students. Students of the Class 12 CBSE Board should keep referring to the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 to boost their preparations for the board exam of Mathematics.

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 help analyse the preparation for the Mathematics exam. Students can download the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the Extramarks’ website and mobile application in PDF format.

Question 17 of Exercise 9.5 requires students to find the Homogeneous Differential Equation from the given equations. To solve question 17 efficiently it is important to make use of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5.

Practice is crucial in preparing for the board exam in Mathematics. All the exercise questions related to the Differential Equations chapter should be practised well before the Mathematics exam. Students are advised to learn the topics thoroughly before solving the exercise questions. All points of a topic should be revised several times.Students are advised to keep studying the theory of the chapters and increase their understanding of them. Students must improve their writing speed to score well in the Mathematics exam. Students must solve the exercise questions from time to time to increase their problem-solving speed in Mathematics.

It is crucial for students to learn the appropriate implementation of formulas and theorems. Students are advised to solve the problems regularly to learn the exact methods of solving a problem. Students should make use of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 to learn how to apply the correct formulas to the questions and get the desired results. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are beneficial for enhancing the problem-solving skills of students.

Students must access the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the website in PDF format. Students can make use of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 to understand the correct procedures for solving problems in Mathematics. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are crucial for having a self-assessment of the ongoing preparations for the Mathematics exam.

Extramarks offers highly reliable and simple-to-understand learning materials. With the help of Extramarks, students’ learning processes can be made simpler. On the Extramarks website and mobile application, live lessons are available for all subjects. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are available for download in PDF format. Live classes are very interactive, and all subject matter specialists are readily available to help students with their doubts. On the Extramarks website and mobile application, you can access the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 in PDF format.

Important Topics

Important topics in Chapter 9 need to be covered very carefully. Students should practise the questions on significant topics more often. The important topics are significant for scoring higher marks in the board exam of Mathematics. Each chapter’s major questions must be answered by students. Students must use the Extramarks website and mobile application to obtain the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. Experienced Mathematics teachers at Extramarks have prepared the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. The solutions are useful for breaking complex problems into easier-to-understand, simpler, and smaller steps. It is suggested that students create a thorough list of all the topics and study them regularly to perform well in the Mathematics exam.

To increase students’ self-confidence, NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 is beneficial. Students of the Central Board of Secondary Education (CBSE) Board in Class 12 are advised to review the CBSE Mathematics Syllabus. It is advisable to create a separate strategy for each topic in Mathematics. The Syllabus can be used to create a learning plan for the various chapters.

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are useful for effectively grasping the Homogeneous Differential Equations topic. Applying formulas to Exercise 9.5 questions can be learned by using the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5. The Differential Equations chapter’s exercises should all be consistently practised.

Tips to solve NCERT Class 12 Maths Chapter 9 Exercise 9.5

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 can be easily accessed from the Extramarks’ website and mobile application in PDF format.

Access NCERT Solutions for Class 12 Maths Chapter 9 –Differential Equations

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.5

It is crucial to access the online study materials from credible sources to prepare effectively for the Class 12 Mathematics Exam. The resources available on  Extramarks’ website and mobile application are very reliable and trustworthy. Students of Class 12 CBSE Board can access the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5.

To solve the questions of Exercise 9.5, it is necessary to keep revising the concepts of Homogeneous Differential Equations at regular intervals.Students are advised to practise the questions based on the Homogeneous Differential Equations topic. There are solved examples given in the NCERT textbook of Class 12 Mathematics related to the concepts of Chapter 9. The solved examples are meant for students to get an idea of how questions can be solved related to each topic. Students need to thoroughly review the solved examples from time to time. The exercise questions are asked based on concepts and should be readily practised by the students. The questions in Exercise 9.5 can be solved with the help of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5.

Students are advised to follow the study plan for Mathematics regularly to be on the right track for Mathematics exam preparation. Students need to access all the study materials that help in preparing effectively for the Mathematics exam. All the study materials are available on the Extramarks website and mobile application. Students need to keep referring to the study materials while preparing for the Mathematics exam.

NCERT Solutions for Class 12 Maths PDF Download

The NCERT solutions are extremely useful as study resources for the mathematics exam.The Class 12 students of the Central Board of Secondary Education can download the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the learning app in PDF format. Students are advised to make use of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 to enhance their ongoing preparations for the board exam of Mathematics.

The NCERT textbooks are the main source of studying for Class 12 chapters. It is recommended that students rely on the NCERT textbooks to study Class 12 Mathematics chapters. The students are advised to keep evaluating their preparation for the Mathematics exams at regular intervals. Evaluation is crucial for identifying the challenges, and students can overcome those challenges with the help of better planning.

Extramarks provides NCERT Solutions for all the classes of the CBSE Board.

NCERT Solutions Class 12

NCERT Solutions Class 11

NCERT Solutions Class 10

NCERT Solutions Class 9

NCERT Solutions Class 8

NCERT Solutions Class 7

NCERT Solutions Class 6

NCERT Solutions Class 5

NCERT Solutions Class 4

NCERT Solutions Class 3

NCERT Solutions Class 2

NCERT Solutions Class 1

Q.1 Show that the given differential equation is homogeneous and solve it.

(x2 + xy) dy = (x2 + y2) dx

Ans

The given differential equation is:    (x2+xy)dy=(x2+y2)dx  dydx=(x2+y2)(x2+xy)    ...(i)Let         F(x,y)=(x2+y2)(x2+xy)Now,  f(λx,λy)=(λ2x2+λ2y2)(λ2x2+λ2xy)=λ2(x2+y2)λ2(x2+xy)=λ0F(x,y)Therefore, F(x,y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.Substituting y=vx then dydx=v+xdvdx in equation(i), we get    v+xdvdx=(x2+v2x2)(x2+xvx)=x2(1+v2)x2(1+v)xdvdx=(1+v2)(1+v)v=1+v2vv2(1+v)

  xdvdx=1v1+v    1+v1vdv=dxx2(1v)1vdv=dxx    (21v1)dv=dxxIntegrating both sides, we get  (21v1)dv=dxx2log(1v)v=logx+logk                              v=2log(1v)logxlogk                              v=log{(1v)2xk}yx=log{(1yx)2xk}[Put v=yx]  (1yx)2xk=eyx  (xyx)2xk=eyx  (xy)2kx=eyx      (xy)2=xkeyx      (xy)2=Cxeyx[Let C=1k]This is the required solution of the given differential equation.

Q.2 Show that the given differential equation is homogeneous and solve each of them.

y= x+y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa83jaiaa=1dadaWcaaqaaiaa=HhacaWFRaGaa8xE aaqaaiaa=Hhaaaaaaa@3F27@

Ans

The given differential equation is:        y=x+yx      dydx=x+yx  ...(i)Let  F(x, y)=x+yxNow,F(λx, λy)=λx+λyλx=λ(x+y)λx=x+yx=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx, we get  v+xdvdx=x+vxx=x(1+v)x  v+xdvdx=(1+v)          xdvdx=(1+v)v

          xdvdx=1    dv=dxxIntegrating both sides, we get      v=logx+C      yx=logx+C      y=xlogx+CxThis is the required solution of the given differential equation.

Q.3 Show that the given differential equation is homogeneous and solve it.

(x – y)dy – (x + y) dx = 0

Ans

The given differential equation is:(xy)dy(x+y)dx=0        dydx=x+yxy...(i)Let F(x,y)=x+yxyNow,    F(λx,λy)=λx+λyλxλy    =λ(x+y)λ(xy)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,

we get    v+xdvdx=x+vxxvx    =x(1+v)x(1v)            xdvdx=1+vv+v21v    =1+v21v    1v1+v2dv=dxx    (11+v2v1+v2)dv=dxxIntegrating both sides, we get11+v2dvv1+v2dv=1xdx  tan1v12log(1+v2)=logx+C                          tan1(yx)=12log(1+yx22)+12.2logx+C                          tan1(yx)=12log(x2+y2x2.x2)+C                          tan1(yx)=12log(x2+y2)+CThis is the required solution of the given differential equation.

Q.4 Show that the given differential equation is homogeneous and solve it.

(x2 – y2)dx + 2xy dy = 0

Ans

The given differential equation is:  (x2y2)dx+2xy dy=0        dydx=x2y22xy...(i)Let F(x,y)=x2y22xyNow,    F(λx,λy)=λ2x2λ2y22λ2xy    =λ2(x2y2)λ2(2xy)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero.So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get    v+xdvdx=x2v2x22x(vx)  =(1v2)x22x2v  =(1v2)2v            xdvdx=(v21)2vv

  =(v21)2v22v            xdvdx=(1+v2)2v2v(1+v2)dv=dxxIntegrating both sides, we get      2v(1+v2)dv=1xdx        log(1+v2)=logx+logC        log(1+v2)=log(Cx)    (1+y2x2)=Cx  (x2+y2)=CxThis is the required solution of the given differential equation.

Q.5 Show that the given differential equation is homogeneous and solve it.

x2dydx=x22y2+xy

Ans

The given differential equation is:  x2dydx=x22y2+xy        dydx=x22y2+xyx2...(i)

Let F(x,y)=x22y2+xyx2Now,F(λx,λy)=λ2x22λ2y2+λ2xyλ2x2=λ2(x22y2+xy)λ2(x2)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,we getv+xdvdx=x22v2x2+xvxx2=(12v2+v)x2x2=12v2+vxdvdx=12v2+vvxdvdx=12v2dv12v2=dxxIntegrating both sides, we get

1 2 1 ( 1 2 ) 2 -v 2 dv= dx x 1 2 × 1 1 2 log( 1 2 +v 1 2 -v )=logx+C 1 2 2 log( 1 2 + y x 1 2 y x )=logx+C 1 2 2 log( x+ 2 y x- 2 y )=logx+C This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaabg daaeaacaqGYaaaamaapeaabaWaaSaaaeaacaqGXaaabaWaaeWaaeaa daWcaaqaaiaabgdaaeaadaGcaaqaaiaabkdaaSqabaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaqGYaaaaOGaaeylaiaabAhadaahaaWc beqaaiaabkdaaaaaaaqabeqaniabgUIiYdGccaaMc8UaaeizaiaabA hacaqG9aWaa8qaaeaadaWcaaqaaiaabsgacaqG4baabaGaaeiEaaaa aSqabeqaniabgUIiYdGccaaMc8oabaWaaSaaaeaacaqGXaaabaGaae OmaaaacaqGxdWaaSaaaeaacaqGXaaabaGaaeOmaiaabEnadaWcaaqa aiaabgdaaeaadaGcaaqaaiaabkdaaSqabaaaaaaakiaabYgacaqGVb Gaae4zamaabmaabaWaaSaaaeaadGaAaUaaaeacObOaiGgGbgdaaeac Ob4aiGgGkaaabGaAakacObyGYaaaleqcObiaaaGccGaAag4kaiacOb yG2baabaWaiGgGlaaabGaAakacObyGXaaabGaAaoacObOcaaqaiGgG cGaAagOmaaWcbKaAacaaaOGaaeylaiacObyG2baaaaGaayjkaiaawM caaiaab2dacaqGSbGaae4BaiaabEgacaqG4bGaae4kaiaaboeaaeaa caWLjaWaaSaaaeaacaqGXaaabaGaaeOmamaakaaabaGaaeOmaaWcbe aaaaGccaqGSbGaae4BaiaabEgadaqadaqaamaalaaabaWaiGgGlaaa bGaAakacObyGXaaabGaAaoacObOcaaqaiGgGcGaAagOmaaWcbKaAac aaaOGaiGgGbUcadaWcaaqaaiaabMhaaeaacaqG4baaaaqaamacOb4c aaqaiGgGcGaAagymaaqaiGgGdGaAaQaaaeacObOaiGgGbkdaaSqajG gGaaaakiaab2cadaWcaaqaaiaabMhaaeaacaqG4baaaaaaaiaawIca caGLPaaacaqG9aGaaeiBaiaab+gacaqGNbGaaeiEaiaabUcacaqGdb aabaGaaCzcamaalaaabaGaaeymaaqaaiaabkdadaGcaaqaaiaabkda aSqabaaaaOGaaeiBaiaab+gacaqGNbWaaeWaaeaadaWcaaqaaiaabI hacGaAag4kamacObOcaaqaiGgGcGaAagOmaaWcbKaAacGccaqG5baa baGaaeiEaiaab2cadGaAaQaaaeacObOaiGgGbkdaaSqajGgGaOGaae yEaaaaaiaawIcacaGLPaaacaqG9aGaaeiBaiaab+gacaqGNbGaaeiE aiaabUcacaqGdbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabccaca qGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaa bwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaae 4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqG GaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOz aiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHb GaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMga caqGVbGaaeOBaiaab6caaaaa@08FD@

Q.6 Show that the given differential equation is homogeneous and solve it.

x dy y dx= x 2 + y 2 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF4bGaa8hiaiaa=rgacaWF5bGaeyOeI0Iaa8hiaiaa=Lha caWFGaGaa8hzaiaa=HhacaWF9aWaaOaaaeaacaWF4bWaaWbaaSqabe aacaWFYaaaaOGaey4kaSIaaCyEamaaCaaaleqabaGaaCOmaaaaaeqa aOGaaGPaVlaahsgacaWH4baaaa@4A9F@

Ans

The given differential equation is:    xdyydx=x2+y2dx        xdy=x2+y2dx+ydx        dydx=x2+y2+yx...(i)Let F(x,y)=x2+y2+yxNow,    F(λx,λy)=λ2x2+λ2y2+λyλx

    =λ(x2+y2+y)λx=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,we get    v+xdvdx=x2+v2x2+vxx  =(1+v2+v)xx    v+xdvdx=1+v2+v            xdvdx=1+v2      dv1+v2=dxxIntegrating both sides, we get          log|v+1+v2|=log|x|+logC          log|yx+1+y2x2|=logC|x|                |yx+1+y2x2|=C|x|

                |yx+1+y2x2|=C|x|                  y+x2+y2=Cx2This is the required solution of given differential equation.

Q.7 Show that the given differential equation is homogeneous and solve each of them.

xcosyx+ysinyxydx=ysinyxxcosyxxdy

Ans

The given differential equation is:{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdy      dydx={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x...(i)Let F(x,y)={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}xNow,        F(λx,λy)={λxcos(λyλx)+λysin(λyλx)}λy{λysin(λyλx)λxcos(λyλx)}λx

= λ 2 y{ x cos( y x )+y sin( y x ) } λ 2 x{ y sin( y x )x cos( y x ) } = λ 0 F( x,y ) Therefore, F( x,y ) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. For solving equation ( i ), substitute y=vx and dy dx =v+x dv dx , we get v+x dv dx = vx{ x cos( vx x )+vx sin( vx x ) } x{ vx sin( vx x )x cos( vx x ) } = v{ cos( v )+v sin( v ) } { v sin( v ) cos( v ) } x dv dx = vcosv+ v 2 sinv v sinv cosv v x dv dx = vcosv+ v 2 sinv v 2 sinv+v cosv v sinv cosv x dv dx = 2vcosv v sinv cosv ( v sinv cosv ) dv vcosv = 2dx x Integrating both sides, we get v sinv vcosv dv cosv vcosv dv=2 1 x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7 caaMc8Uaeyypa0ZaaSaaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaa GccaWG5bWaaiWaaeaacaWG4bacbeGaa8hiaiGacogacaGGVbGaai4C amaabmaabaWaaSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPa aacqGHRaWkcaWG5bGaa8hiaiGacohacaGGPbGaaiOBamaabmaabaWa aSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPaaaaiaawUhaca GL9baaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG4bWaaiWa aeaacaWG5bGaa8hiaiGacohacaGGPbGaaiOBamaabmaabaWaaSaaae aacaWG5baabaGaamiEaaaaaiaawIcacaGLPaaacqGHsislcaWG4bGa a8hiaiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacaWG5baaba GaamiEaaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGaeyypa0Ja eq4UdW2aaWbaaSqabeaacaaIWaaaaOGaaGPaVlaabAeadaqadaqaai aadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaqaaiaabsfacaqGObGa aeyzaiaabkhacaqGLbGaaeOzaiaab+gacaqGYbGaaeyzaiaabYcaca qGGaGaaeOramaabmaabaGaamiEaiaabYcacaaMe8UaamyEaaGaayjk aiaawMcaaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabI gacaqGVbGaaeyBaiaab+gacaqGNbGaaeyzaiaab6gacaqGVbGaaeyD aiaabohacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPb Gaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeizaiaabwga caqGNbGaaeOCaiaabwgacaqGLbGaaeiiaiaabQhacaqGLbGaaeOCai aab+gacaqGUaGaaeiiaiaabofacaqGVbGaaeilaiaabccaaeaacaqG 0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6 gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyz aiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXb GaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMga caqGZbGaaeiiaiaabggacaqGGaGaaeiAaiaab+gacaqGTbGaae4Bai aabEgacaqGLbGaaeOBaiaab+gacaqG1bGaae4CaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGUaaabaGaaeOraiaab+gaca qGYbGaaeiiaiaabohacaqGVbGaaeiBaiaabAhacaqGPbGaaeOBaiaa bEgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae 4Baiaab6gacaqGGaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaGaaeil aiaabccacaqGZbGaaeyDaiaabkgacaqGZbGaaeiDaiaabMgacaqG0b GaaeyDaiaabshacaqGLbGaaeiiaiaadMhacqGH9aqpcaqG2bGaaeiE aiaabccacaqGHbGaaeOBaiaabsgacaqGGaWaaSaaaeaacaWGKbGaam yEaaqaaiaadsgacaWG4baaaiabg2da9iaabAhacqGHRaWkcaqG4bWa aSaaaeaacaWGKbGaamODaaqaaiaadsgacaWG4baaaiaabYcaaeaaca qG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaabAhacqGHRaWkcaqG4bWaaSaaaeaacaWGKbGaamODaaqa aiaadsgacaWG4baaaiabg2da9maalaaabaGaaeODaiaabIhadaGada qaaiaadIhacaWFGaGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqa aiaabAhacaqG4baabaGaamiEaaaaaiaawIcacaGLPaaacqGHRaWkca qG2bGaaeiEaiaa=bcaciGGZbGaaiyAaiaac6gadaqadaqaamaalaaa baGaaeODaiaabIhaaeaacaWG4baaaaGaayjkaiaawMcaaaGaay5Eai aaw2haaaqaaiaadIhadaGadaqaaiaabAhacaqG4bGaa8hiaiGacoha caGGPbGaaiOBamaabmaabaWaaSaaaeaacaqG2bGaaeiEaaqaaiaadI haaaaacaGLOaGaayzkaaGaeyOeI0IaamiEaiaa=bcaciGGJbGaai4B aiaacohadaqadaqaamaalaaabaGaaeODaiaabIhaaeaacaWG4baaaa GaayjkaiaawMcaaaGaay5Eaiaaw2haaaaaaeaacaWLjaGaaCzcaiaa xMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabg2da9maalaaabaGaaeODamaacmaabaGaa8hiaiGacogacaGG VbGaai4CamaabmaabaGaamODaaGaayjkaiaawMcaaiabgUcaRiaabA hacaWFGaGaci4CaiaacMgacaGGUbWaaeWaaeaacaWG2baacaGLOaGa ayzkaaaacaGL7bGaayzFaaaabaWaaiWaaeaacaqG2bGaa8hiaiGaco hacaGGPbGaaiOBamaabmaabaGaamODaaGaayjkaiaawMcaaiabgkHi Tiaa=bcaciGGJbGaai4BaiaacohadaqadaqaaiaadAhaaiaawIcaca GLPaaaaiaawUhacaGL9baaaaaabaGaaCzcaiaaxMaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabIha daWcaaqaaiaadsgacaWG2baabaGaamizaiaadIhaaaGaeyypa0ZaaS aaaeaacaWG2bGaci4yaiaac+gacaGGZbGaamODaiabgUcaRiaabAha daahaaWcbeqaaiaabkdaaaGccaWFGaGaci4CaiaacMgacaGGUbGaam ODaaqaaiaabAhacaWFGaGaci4CaiaacMgacaGGUbGaamODaiabgkHi Tiaa=bcaciGGJbGaai4BaiaacohacaWG2baaaiabgkHiTiaadAhaae aacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaeiEamaalaaabaGaamizaiaadAhaaeaa caWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaadAhaciGGJbGaai4Bai aacohacaWG2bGaey4kaSIaaeODamaaCaaaleqabaGaaeOmaaaakiaa =bcaciGGZbGaaiyAaiaac6gacaWG2bGaeyOeI0IaaeODamaaCaaale qabaGaaeOmaaaakiGacohacaGGPbGaaiOBaiaadAhacqGHRaWkcaWG 2bGaa8hiaiGacogacaGGVbGaai4CaiaadAhaaeaacaqG2bGaa8hiai GacohacaGGPbGaaiOBaiaadAhacqGHsislcaWFGaGaci4yaiaac+ga caGGZbGaamODaaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeiEamaalaaaba GaamizaiaadAhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaa ikdacaWG2bGaci4yaiaac+gacaGGZbGaamODaaqaaiaabAhacaWFGa Gaci4CaiaacMgacaGGUbGaamODaiabgkHiTiaa=bcaciGGJbGaai4B aiaacohacaWG2baaaaqaamaabmaabaGaaeODaiaa=bcaciGGZbGaai yAaiaac6gacaWG2bGaeyOeI0Iaa8hiaiGacogacaGGVbGaai4Caiaa dAhaaiaawIcacaGLPaaadaWcaaqaaiaadsgacaWG2baabaGaamODai GacogacaGGVbGaai4CaiaadAhaaaGaeyypa0ZaaSaaaeaacaaIYaGa amizaiaadIhaaeaacaWG4baaaaqaaiaabMeacaqGUbGaaeiDaiaabw gacaqGNbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeii aiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKb GaaeyzaiaabohacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEga caqGLbGaaeiDaaqaamaapeaabaWaaSaaaeaacaqG2bGaa8hiaiGaco hacaGGPbGaaiOBaiaadAhaaeaacaWG2bGaci4yaiaac+gacaGGZbGa amODaaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadAhacqGHsi sldaWdbaqaamaalaaabaGaci4yaiaac+gacaGGZbGaamODaaqaaiaa dAhaciGGJbGaai4BaiaacohacaWG2baaaaWcbeqab0Gaey4kIipaki aaykW7caWGKbGaamODaiabg2da9iaaikdadaWdbaqaamaalaaabaGa aGymaaqaaiaadIhaaaaaleqabeqdcqGHRiI8aOGaaGPaVlaadsgaca WG4baaaaa@AB7A@

logsecvlog| v |=2log| x |+logC log( secv v )=logC x 2 sec y x y x =C x 2 xsec y x =C x 2 y xycos( y x )= 1 C =k [ Letk= 1 C ] xycos( y x )=k This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7ciGGSbGaai4BaiaacEgaciGGZbGaaiyzaiaacogacaWG2bGa eyOeI0IaciiBaiaac+gacaGGNbWaaqWaaeaacaWG2baacaGLhWUaay jcSdGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zamaaemaabaGaamiE aaGaay5bSlaawIa7aiabgUcaRiGacYgacaGGVbGaai4zaiaadoeaae aacqGHshI3caWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaciiBaiaac+gacaGGNbWaaeWaaeaada WcaaqaaiGacohacaGGLbGaai4yaiaadAhaaeaacaWG2baaaaGaayjk aiaawMcaaiabg2da9iGacYgacaGGVbGaai4zaiaadoeacaWG4bWaaW baaSqabeaacaaIYaaaaaGcbaGaeyO0H4TaaCzcaiaaxMaacaWLjaGa aCzcamaalaaabaGaci4CaiaacwgacaGGJbWaaSaaaeaacaWG5baaba GaamiEaaaaaeaadaWcaaqaaiaadMhaaeaacaWG4baaaaaacqGH9aqp caWGdbGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkDiElaaxM aacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamiEaiGacohacaGGLbGaai4yamaalaaabaGaam yEaaqaaiaadIhaaaGaeyypa0Jaam4qaiaadIhadaahaaWcbeqaaiaa ikdaaaGccaWG5baabaGaeyO0H4TaaCzcaiaaxMaacaWLjaGaamiEai aadMhaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGaamyEaaqa aiaadIhaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaaba Gaam4qaaaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaykW7 caaMc8UaaGPaVlabg2da9iaadUgacaWLjaGaaCzcaiaaxMaadaWada qaaiaabYeacaqGLbGaaeiDaiaaykW7caaMc8Uaam4Aaiabg2da9maa laaabaGaeyymaedabaGaam4qaaaaaiaawUfacaGLDbaaaeaacqGHsh I3caWLjaGaaCzcaiaaxMaacaWG4bGaamyEaiGacogacaGGVbGaai4C amaabmaabaWaaSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPa aacqGH9aqpcaWGRbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCai aabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGa ae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBaiaab6caaaaa@266C@

Q.8 Show that the given differential equation is homogeneous and solve each of them.

xdydxy+xsin(yx)=0

Ans

The given differential equation is:                xdydxy+xsin(yx)=0      dydx=yxsin(yx)x...(i)

Let F( x,y )= yxsin( y x ) x Now, F( λx,λy )= λyλxsin( λy λx ) λx = λ{ y-xsin( y x ) } λx 0 F( x,y ) Therefore, F( x,y ) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. For solving equation ( i ), substitute y = vx and dy dx =v+x dv dx , we get v+x dv dx = vxxsin( vx x ) x = { vsinv }x x x dv dx =vsinvv dv sinv = dx x cosecvdv= dx x Integrating both sides, we get

cosecv dv= 1 x dx log| cosecvcotv |=log| x |+logC log| cosecvcotv |=log C | x | cosec y x cot y x = C x 1 sin y x cos y x sin y x = C x x{ 1cos( y x ) }=Csin( y x ) This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aapeaabaGaci4yaiaac+gacaGGZbGaaiyzaiaacogacaWG2baaleqa beqdcqGHRiI8aOGaaGPaVlaadsgacaWG2bGaeyypa0JaeyOeI0Yaa8 qaaeaadaWcaaqaaiaaigdaaeaacaWG4baaaaWcbeqab0Gaey4kIipa kiaaykW7caWGKbGaamiEaaqaaiabgkDiElaaykW7ciGGSbGaai4Bai aacEgadaabdaqaaiGacogacaGGVbGaai4CaiaacwgacaGGJbGaamOD aiabgkHiTiGacogacaGGVbGaaiiDaiaadAhaaiaawEa7caGLiWoacq GH9aqpcqGHsislciGGSbGaai4BaiaacEgadaabdaqaaiaadIhaaiaa wEa7caGLiWoacqGHRaWkciGGSbGaai4BaiaacEgacaWGdbaabaGaey O0H4TaaGPaVlGacYgacaGGVbGaai4zamaaemaabaGaci4yaiaac+ga caGGZbGaaiyzaiaacogacaWG2bGaeyOeI0Iaci4yaiaac+gacaGG0b GaamODaaGaay5bSlaawIa7aiabg2da9iGacYgacaGGVbGaai4zamaa laaabaGaam4qaaqaamaaemaabaGaamiEaaGaay5bSlaawIa7aaaaae aacqGHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlGacogacaGGVbGaai4CaiaacwgacaGGJbWaaSaaaeaaca WG5baabaGaamiEaaaacqGHsislciGGJbGaai4BaiaacshadaWcaaqa aiaadMhaaeaacaWG4baaaiabg2da9maalaaabaGaam4qaaqaaiaadI haaaaabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaaca aIXaaabaGaci4CaiaacMgacaGGUbWaaSaaaeaacaWG5baabaGaamiE aaaaaaGaeyOeI0YaaSaaaeaaciGGJbGaai4BaiaacohadaWcaaqaai aadMhaaeaacaWG4baaaaqaaiGacohacaGGPbGaaiOBamaalaaabaGa amyEaaqaaiaadIhaaaaaaiabg2da9maalaaabaGaam4qaaqaaiaadI haaaaabaGaeyO0H4TaaCzcaiaaykW7caaMc8UaaGPaVlaadIhadaGa daqaaiaaigdacqGHsislciGGJbGaai4Baiaacohadaqadaqaamaala aabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaacaGL7bGaayzF aaGaeyypa0Jaam4qaiaaykW7caWGZbGaamyAaiaad6gadaqadaqaam aalaaabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaabaGaaeiv aiaabIgacaqGPbGaae4CaiaabccacaqGPbGaae4CaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMga caqGYbGaaeyzaiaabsgacaqGGaGaae4Caiaab+gacaqGSbGaaeyDai aabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGa aeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgaca qGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaa bwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaae yCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaab6caaaaa @3F95@

Q.9 Show that the given differential equation is homogeneous and solve it.

ydx+xlog(yx)dy2xdy=0

Ans

The given differential equation is: y d x + x l o g ( y x ) d y 2 x d y = 0 y d x + { x l o g ( y x ) 2 x } d y = 0 d y d x = y { 2 x x l o g ( y x ) } . . . ( i )

L e t F ( x , y ) = y { 2 x x l o g ( y x ) } N o w , F ( λ x , λ y ) = λ y { 2 λ x λ x l o g ( λ y λ x ) } = λ y λ { 2 x x l o g ( y x ) } = λ 0 F ( x , y ) Therefore, F ( x , y ) is a homogenous function of degree zero . S o , the given differential equation is a homogenous differential e q u a t i o n . For solving equation ( i ) , s u b s t i t u t e y = v x a n d d y d x = v + x d v d x , w e g e t v + x d v d x = v x { 2 x x l o g ( v x x ) } x d v d x = v 2 l o g v v x d v d x = v 2 v + v l o g v 2 l o g v x d v d x = v l o g v v 2 l o g v { 2 l o g v v ( l o g v 1 ) } d v = d x x

{ 1 + ( 1 l o g v ) v ( l o g v 1 ) } d v = d x x { 1 v ( l o g v 1 ) 1 v } d v = d x x I n t e g r a t i n g b o t h s i d e s , w e g e t 1 v ( l o g v 1 ) d v 1 v d v = 1 x d x l o g | l o g v 1 | l o g | v | = l o g | x | + l o g C l o g ( l o g v 1 ) v = l o g C x ( l o g v 1 ) v = C x x y ( l o g y x 1 ) = C x l o g ( y x ) 1 = C y T h i s i s t h e r e q u i r e d s o l u t i o n o f t h e g i v e n d i f f e r e n t i a l e q u a t i o n .

Q.10 Show that the given differential equation is homogeneous and solve each of them.

(1+exy)dx+exy(1xy)dy=0

Ans

The given differential equation is:(1+exy)dx+exy(1xy)dy=0

              dydx=(1+exy)exy(1xy)              dxdy=exy(1xy)(1+exy)...(i)Let F(x,y)=exy(1xy)(1+exy)Now,        F(λx,λy)=eλxλy(1λxλy)(1+eλxλy)          =exy(1xy)(1+exy)=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadMhaaeaacaWGKbGa amiEaaaacqGH9aqpcqGHsisldaWcaaqaamaabmaabaGaaGymaiabgU caRiaadwgadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMhaaaaa aaGccaGLOaGaayzkaaacbeGaa8hiaaqaaiaa=bcacaWGLbWaaWbaaS qabeaadaWcaaqaaiaadIhaaeaacaWG5baaaaaakmaabmaabaGaaGym aiabgkHiTmaalaaabaGaamiEaaqaaiaadMhaaaaacaGLOaGaayzkaa aaaaqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadIhaaeaacaWGKbGa amyEaaaacqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaam aalaaabaGaamiEaaqaaiaadMhaaaaaaOWaaeWaaeaacaaIXaGaeyOe I0YaaSaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaacaWFGa aabaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaWaaSaa aeaacaWG4baabaGaamyEaaaaaaaakiaawIcacaGLPaaaaaGaaGPaVl aaxMaacaqGUaGaaeOlaiaab6cadaqadaqaaiaabMgaaiaawIcacaGL PaaaaeaacaqGmbGaaeyzaiaabshacaqGGaGaaCzcaiaaxMaacaWLja GaaCzcaiaaykW7caqGgbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaa wIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbe qaamaalaaabaGaamiEaaqaaiaadMhaaaaaaOWaaeWaaeaacaaIXaGa eyOeI0YaaSaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaaca WFGaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaWa aSaaaeaacaWG4baabaGaamyEaaaaaaaakiaawIcacaGLPaaaaaaaba GaaeOtaiaab+gacaqG3bGaaeilaiaaykW7caWLjaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caqGgbWaaeWaae aacqaH7oaBcaWG4bGaaiilaiabeU7aSjaadMhaaiaawIcacaGLPaaa cqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaamaalaaaba Gaeq4UdWMaamiEaaqaaiabeU7aSjaadMhaaaaaaOWaaeWaaeaacaaI XaGaeyOeI0YaaSaaaeaacqaH7oaBcaWG4baabaGaeq4UdWMaamyEaa aaaiaawIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGaey4kaSIa amyzamaaCaaaleqabaWaaSaaaeaacqaH7oaBcaWG4baabaGaeq4UdW MaamyEaaaaaaaakiaawIcacaGLPaaaaaaabaGaaCzcaiaaxMaacaWL jaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaeyOeI0YaaSaaaeaa caWGLbWaaWbaaSqabeaadaWcaaqaaiaadIhaaeaacaWG5baaaaaakm aabmaabaGaaGymaiabgkHiTmaalaaabaGaamiEaaqaaiaadMhaaaaa caGLOaGaayzkaaGaa8hiaaqaamaabmaabaGaaGymaiabgUcaRiaadw gadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMhaaaaaaaGccaGL OaGaayzkaaaaaiabg2da9iabeU7aSnaaCaaaleqabaGaaGimaaaaki aaykW7caqGgbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGL PaaaaeaacaqGubGaaeiAaiaabwgacaqGYbGaaeyzaiaabAgacaqGVb GaaeOCaiaabwgacaqGSaGaaeiiaiaabAeadaqadaqaaiaadIhacaqG SaGaaGjbVlaadMhaaiaawIcacaGLPaaacaqGGaGaaeyAaiaabohaca qGGaGaaeyyaiaabccacaqGObGaae4Baiaab2gacaqGVbGaae4zaiaa bwgacaqGUbGaae4BaiaabwhacaqGZbGaaeiiaiaabAgacaqG1bGaae OBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqG MbGaaeiiaiaabsgacaqGLbGaae4zaiaabkhacaqGLbGaaeyzaiaabc cacaqG6bGaaeyzaiaabkhacaqGVbGaaeOlaiaabccacaqGtbGaae4B aiaabYcacaqGGaaabaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgaca qGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaa bAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaae iBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqG VbGaaeOBaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabI gacaqGVbGaaeyBaiaab+gacaqGNbGaaeyzaiaab6gacaqGVbGaaeyD aiaabohacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYb Gaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaa bwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae Olaaaaaa@9359@

For solving equation ( i ), substitute x = vy and dx dy =v+y dv dy , we get v+y dv dy = e vy y ( 1 vy y ) ( 1+ e vy y ) = e v ( 1v ) ( 1+ e v ) y dv dy = e v ( 1v ) ( 1+ e v ) v = v e v e v vv e v ( 1+ e v ) = ( e v +v ) ( 1+ e v ) ( 1+ e v ) ( e v +v ) dv= dy y Integrating both sides, we get ( 1+ e v ) ( e v +v ) dv= 1 y dy log| v+ e v |=logy+logC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabAeacaqGVbGaaeOCaiaabccacaqGZbGaae4BaiaabYga caqG2bGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabmaabaGaaeyA aaGaayjkaiaawMcaaiaabYcacaqGGaGaae4CaiaabwhacaqGIbGaae 4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyzaiaabccacaWG 4bGaaeiiaiaab2dacaqGGaGaamODaiaadMhacaqGGaGaaeyyaiaab6 gacaqGKbGaaeiiamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamyE aaaacqGH9aqpcaqG2bGaey4kaSIaaeyEamaalaaabaGaamizaiaadA haaeaacaWGKbGaamyEaaaacaqGSaaabaGaae4DaiaabwgacaqGGaGa ae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaWLjaGaaeODaiabgU caRiaabMhadaWcaaqaaiaadsgacaWG2baabaGaamizaiaadMhaaaGa eyypa0JaeyOeI0YaaSaaaeaacaWGLbWaaWbaaSqabeaadaWcaaqaai aabAhacaqG5baabaGaaeyEaaaaaaGcdaqadaqaaiaaigdacqGHsisl daWcaaqaaiaabAhacaqG5baabaGaaeyEaaaaaiaawIcacaGLPaaaae aaieqacaWFGaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqa baWaaSaaaeaacaqG2bGaaeyEaaqaaiaabMhaaaaaaaGccaGLOaGaay zkaaGaa8hiaaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9a qpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaaiaadAhaaaGcdaqa daqaaiaaigdacqGHsislcaWG2baacaGLOaGaayzkaaGaa8hiaaqaam aabmaabaGaaGymaiabgUcaRiaadwgadaahaaWcbeqaaiaadAhaaaaa kiaawIcacaGLPaaaaaaabaGaaCzcaiaaxMaacaWLjaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caqG5bWaaSaaaeaacaWGKbGaamODaaqa aiaadsgacaWG5baaaiabg2da9iabgkHiTmaalaaabaGaamyzamaaCa aaleqabaGaamODaaaakmaabmaabaGaaGymaiabgkHiTiaadAhaaiaa wIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyzam aaCaaaleqabaGaamODaaaaaOGaayjkaiaawMcaaaaacqGHsislcaWG 2baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaa caWG2bGaamyzamaaCaaaleqabaGaamODaaaakiabgkHiTiaadwgada ahaaWcbeqaaiaadAhaaaGccqGHsislcaWG2bGaeyOeI0IaamODaiaa dwgadaahaaWcbeqaaiaadAhaaaGccaWFGaaabaWaaeWaaeaacaaIXa Gaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaayjkaiaawMca aaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqGHsisl daWcaaqaamaabmaabaGaamyzamaaCaaaleqabaGaamODaaaakiabgU caRiaadAhaaiaawIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGa ey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaayjkaiaawMcaaa aaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVpaalaaabaWaaeWa aeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaay jkaiaawMcaaaqaamaabmaabaGaamyzamaaCaaaleqabaGaamODaaaa kiabgUcaRiaadAhaaiaawIcacaGLPaaaaaGaamizaiaadAhacqGH9a qpcqGHsisldaWcaaqaaiaadsgacaWG5baabaGaamyEaaaaaeaacaqG jbGaaeOBaiaabshacaqGLbGaae4zaiaabkhacaqGHbGaaeiDaiaabM gacaqGUbGaae4zaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeii aiaabohacaqGPbGaaeizaiaabwgacaqGZbGaaeilaiaabccacaqG3b GaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzcamaa peaabaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcaWGLbWaaWbaaS qabeaacaWG2baaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWGLbWa aWbaaSqabeaacaWG2baaaOGaey4kaSIaamODaaGaayjkaiaawMcaaa aaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadAhacqGH9aqpcqGH sisldaWdbaqaamaalaaabaGaaGymaaqaaiaadMhaaaaaleqabeqdcq GHRiI8aOGaaGPaVlaadsgacaWG5baabaGaeyO0H4TaaCzcaiaaxMaa caaMc8UaaGPaVlaaykW7caaMc8UaciiBaiaac+gacaGGNbWaaqWaae aacaWG2bGaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaay5b SlaawIa7aiabg2da9iabgkHiTiGacYgacaGGVbGaai4zaiaadMhacq GHRaWkciGGSbGaai4BaiaacEgacaWGdbaaaaa@19D6@

log| x y + e x y |=log C y x y + e x y = C y x+y e x y =C This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPa VlGacYgacaGGVbGaai4zamaaemaabaWaaSaaaeaacaWG4baabaGaam yEaaaacqGHRaWkcaWGLbWaaWbaaSqabeaadaWcaaqaaiaadIhaaeaa caWG5baaaaaaaOGaay5bSlaawIa7aiabg2da9iGacYgacaGGVbGaai 4zamaalaaabaGaam4qaaqaaiaadMhaaaaabaGaeyO0H4TaaCzcaiaa xMaacaWLjaGaaGPaVlaaykW7daWcaaqaaiaadIhaaeaacaWG5baaai abgUcaRiaadwgadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMha aaaaaOGaeyypa0ZaaSaaaeaacaWGdbaabaGaamyEaaaaaeaacqGHsh I3caWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlaadIhacqGHRaWkcaWG 5bGaamyzamaaCaaaleqabaWaaSaaaeaacaWG4baabaGaamyEaaaaaa GccqGH9aqpcaWGdbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCai aabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGa ae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBaiaab6caaaaa@ADC6@

Q.11 For the differential equation, find the particular situation satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1

Ans

The given differential equation is:(x+y)dy+(xy)dx=0    (x+y)dy=(xy)dx      dydx=(yx)x+y  ...(i)Let F(x,y)=(yx)x+yNow,        F(λx, λy)=(λyλx)λx+λy        =λ(yx)λ(x+y)=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differential

equation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get                        v+xdvdx=vxxx+vx                      =(v1)x(1+v)x                                xdvdx=(v1)(1+v)v                      =v1vv2(1+v)                                xdvdx=(1+v2)(1+v)                    (1+v)(1+v2)dv=dxxIntegrating both sides, we get              11+v2dv+v1+v2dv=1xdx                tan1v+12log(1+v2)=logx+k                2tan1v+log(1+v2)=2logx+2k2tan1v+log(1+v2)+2logx=2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+ga caqGUbGaaeOlaaqaaiaabAeacaqGVbGaaeOCaiaabccacaqGZbGaae 4BaiaabYgacaqG2bGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqG XbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabm aabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4Caiaabwha caqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyzai aabccacaWG5bGaaGjbVlaab2dacaaMe8UaamODaiaadIhacaqGGaGa aeyyaiaab6gacaqGKbGaaeiiamaalaaabaGaamizaiaadMhaaeaaca WGKbGaamiEaaaacqGH9aqpcaqG2bGaey4kaSIaaeiEamaalaaabaGa amizaiaadAhaaeaacaWGKbGaamiEaaaacaqGSaaabaGaae4Daiaabw gacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqG2bGaey 4kaSIaaeiEamaalaaabaGaamizaiaadAhaaeaacaWGKbGaamiEaaaa cqGH9aqpdaWcaaqaaiaadAhacaWG4bGaeyOeI0IaamiEaaqaaiaadI hacqGHRaWkcaWG2bGaamiEaaaaaeaacaWLjaGaaCzcaiaaxMaacaWL jaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maala aabaWaaeWaaeaacaWG2bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaa dIhaaeaadaqadaqaaiaaigdacqGHRaWkcaWG2baacaGLOaGaayzkaa GaamiEaaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaeiEamaalaaabaGaamizaiaadAha aeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaamaabmaabaGaamODai abgkHiTiaaigdaaiaawIcacaGLPaaaaeaadaqadaqaaiaaigdacqGH RaWkcaWG2baacaGLOaGaayzkaaaaaiabgkHiTiaadAhaaeaacaWLja GaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGH9aqpdaWcaaqaaiaadAhacqGHsislcaaIXaGaey OeI0IaamODaiabgkHiTiaadAhadaahaaWcbeqaaiaaikdaaaaakeaa daqadaqaaiaaigdacqGHRaWkcaWG2baacaGLOaGaayzkaaaaaaqaai aaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqG4bWaaSaaaeaacaWGKbGaamODaaqaaiaadsgacaWG 4baaaiabg2da9maalaaabaGaeyOeI0YaaeWaaeaacaaIXaGaey4kaS IaamODamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaamaa bmaabaGaaGymaiabgUcaRiaadAhaaiaawIcacaGLPaaaaaaabaGaaC zcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaamaa bmaabaGaaGymaiabgUcaRiaadAhaaiaawIcacaGLPaaaaeaadaqada qaaiaaigdacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaaiaadsgacaWG2bGaeyypa0JaeyOeI0YaaSaaaeaaca WGKbGaamiEaaqaaiaadIhaaaaabaGaaeysaiaab6gacaqG0bGaaeyz aiaabEgacaqGYbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGa GaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsga caqGLbGaae4CaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zai aabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWdbaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWG2bWa aWbaaSqabeaacaaIYaaaaaaaaeqabeqdcqGHRiI8aOGaaGPaVlaads gacaWG2bGaey4kaSYaa8qaaeaadaWcaaqaaiaadAhaaeaacaaIXaGa ey4kaSIaamODamaaCaaaleqabaGaaGOmaaaaaaaabeqab0Gaey4kIi pakiaaykW7caWGKbGaamODaiabg2da9iabgkHiTmaapeaabaWaaSaa aeaacaaIXaaabaGaamiEaaaaaSqabeqaniabgUIiYdGccaaMc8Uaam izaiaadIhaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaamODaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa GaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaGaey4kaSIaamODamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTi GacYgacaGGVbGaai4zaiaadIhacqGHRaWkcaWGRbaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI YaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaamODaiabgUcaRiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiab gUcaRiaadAhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacq GH9aqpcqGHsislcaaIYaGaciiBaiaac+gacaGGNbGaamiEaiabgUca RiaaikdacaWGRbaabaGaaGOmaiGacshacaGGHbGaaiOBamaaCaaale qabaGaeyOeI0IaaGymaaaakiaadAhacqGHRaWkciGGSbGaai4Baiaa cEgadaqadaqaaiaaigdacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaiGacYgacaGGVbGaai4z aiaadIhacqGH9aqpcaaIYaGaam4Aaaaaaa@956E@

2 tan 1 y x +log( 1+ y x 2 2 ) x 2 =2k 2 tan 1 y x +log( x 2 + y 2 )=2k( ii ) Now, putting y=1atx=1. 2 tan 1 1 1 +log( 1 2 + 1 2 )=2k 2 tan 1 1+log( 2 )=2k 2( π 4 )+log2=2k ( π 2 )+log2=2k Substituting the value of 2k in equation( ii ), we get 2 tan 1 y x +log( x 2 + y 2 )=( π 2 )+log2 This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIYaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaSaaaeaacaWG5baabaGaamiEaaaacqGHRaWkciGGSbGaai4B aiaacEgadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadMhaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaaaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH9a qpcaaIYaGaam4AaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaikdaci GG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWc aaqaaiaadMhaaeaacaWG4baaaiabgUcaRiGacYgacaGGVbGaai4zam aabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMha daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpcaaIYa Gaam4AaiaaykW7caaMc8UaaiOlaiaac6cacaGGUaWaaeWaaeaacaWG PbGaamyAaaGaayjkaiaawMcaaaqaaiaab6eacaqGVbGaae4DaiaabY cacaqGGaGaaeiCaiaabwhacaqG0bGaaeiDaiaabMgacaqGUbGaae4z aiaabccacaqG5bGaeyypa0JaaGymaiaaykW7caaMc8Uaamyyaiaads hacaaMc8UaamiEaiabg2da9iaaigdacaGGUaaabaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGOmaiGacshacaGGHbGaaiOBamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaalaaabaGaaGymaaqaaiaaigdaaaGaey4kaS IaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGymamaaCaaaleqabaGaaGOmaaaaaOGaayjkai aawMcaaiabg2da9iaaikdacaWGRbaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaIYaGaciiDaiaacggacaGGUbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaaGymaiabgUcaRiGacYgacaGG VbGaai4zamaabmaabaGaaGOmaaGaayjkaiaawMcaaiabg2da9iaaik dacaWGRbaabaGaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8Ua aGOmamaabmaabaWaaSaaaeaaiiaacqWFapaCaeaacaaI0aaaaaGaay jkaiaawMcaaiabgUcaRiGacYgacaGGVbGaai4zaiaaikdacqGH9aqp caaIYaGaam4AaaqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaWaaSaaaeaacqWF apaCaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiGacYgacaGGVb Gaai4zaiaaikdacqGH9aqpcaaIYaGaam4AaaqaaiaabofacaqG1bGa aeOyaiaabohacaqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgaca qGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeODaiaa bggacaqGSbGaaeyDaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaae OmaiaabUgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyzaiaabghacaqG 1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaca qGPbaacaGLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabcca caqGNbGaaeyzaiaabshaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI YaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaO WaaSaaaeaacaWG5baabaGaamiEaaaacqGHRaWkciGGSbGaai4Baiaa cEgadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca WG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0Za aeWaaeaadaWcaaqaaiab=b8aWbqaaiaaikdaaaaacaGLOaGaayzkaa Gaey4kaSIaciiBaiaac+gacaGGNbGaaGOmaaqaaiaabsfacaqGObGa aeyAaiaabohacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgaca qGLbGaaeiiaiaabkhacaqGLbGaaeyCaiaabwhacaqGPbGaaeOCaiaa bwgacaqGKbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaae yAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabc cacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOB aiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1b GaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@B9A5@

Q.12 For the differential equation, find the particular situation satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

Ans

The given differential equation is:    x2dy+(xy+y2)dx=0      x2dy=(xy+y2)dx              dydx=(xy+y2)x2  ...(i)Let         F(x, y)=(xy+y2)x2

Now,    F(λx,λy)=(λ2xy+λ2y2)λ2x2            =λ2(xy+y2)λ2x2=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=(xvx+v2x2)x2            =(v+v2)x2x2            xdvdx=vv2v            =v22v      dvv(v+2)=dxx12{(v+2)v}dvv(v+2)=dxx  12(1v1v+2)dv=dxxIntegrating both sides, we get121vdv121v+2dv=1xdx

12log|v|12log|v+2|=log|x|+logC        log(vv+2)=2log(Cx)          log(yxyx+2)=log(Cx)2        log(yy+2x)=log(Cx)2        yy+2x=(Cx)2        x2yy+2x=C2...(ii)Now,  y=1 when x=1        12(1)1+2(1)=C2            13=C2Substituting value of C2 in equation (ii), we get          x2yy+2x=13      3x2y=y+2x  y+2x=3x2yThis is the required solution of the given differential equation.

Q.13 For the differential equations, find the particular situation satisfying the given condition:

[xsin2(yx)y] dx+xdy=0; y=π when x=1

Ans

The given differential equation is:    [xsin2(yx)y]dx+xdy=0      xdy=[xsin2(yx)y]dx              dydx=[xsin2(yx)y]x  ...(i)Let         F(x,y)=[xsin2(yx)y]xNow,    F(λx,λy)=[λxsin2(λyλx)λy]λx            =λ[xsin2(yx)y]λx=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.

For solving equation (i), substitute y=vx and dydx=v+xdvdx,we get      v+xdvdx=[xsin2(vxx)vx]x            xdvdx=sin2v+vv        cosec2vdv=dxxIntegrating both sides, we get      cosec2vdv=1xdx      cotv=log|x|+logC          cotyx=log|Cx|...(ii)Now, y=π4 at x=1      cot(π4)1=log|C.1|      1=log|C|C=eSubstituting value of C in equation (ii), we get          cotyx=log|ex|This is the required solution of the given differential equation.

Q.14 For the differential equations, find the particular situation satisfying the given condition:

dydxyx+cosec(yx)=0; y=0 when x=1

Ans

The given differential equation is:dydxyx+cosec(yx)=0              dydx=yxcosec(yx)  ...(i)Let         F(x,y)=yxcosec(yx)Now,    F(λx,λy)=λyλxcosec(λyλx)            =yxcosec(yx)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=vxxcosec(vxx)            xdvdx=vcosecvv    dvcosecv=dxxIntegrating both sides, we get  sinvdv=1xdx              cosv=log|x|+logC                  cos(yx)=log|Cx|...(ii)

Now, y=0 at x=1          cos(01)=log|C.1|                  cos0=logC                          1=logC                              C=ePutting C = e in equation (ii), we get                  cos(yx)=log|ex|This is the required solution of the given differential equation.

Q.15 For the differential equation given below, find a particular situation satisfying the given condition:

2xy+y22x2dydx=0;​y=2whenx=1

Ans

The given differential equation is:    2xy+y22x2dydx=0  2x2dydx=(2xy+y2)              dydx=(2xy+y2)2x2  ...(i)Let         F(x,y)=(2xy+y2)2x2Now,    F(λx,λy)=(λ22xy+λ2y2)2λ2x2            =λ2(2xy+y2)2λ2x2=λ0F(x,y)

Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=(2xvx+v2x2)2x2            =(2v+v2)x22x2            xdvdx=2v+v22v            =v22          dvv2=dx2xIntegrating both sides, we get            2v2dv=1xdx      2v11=log|x|+C        2v=log|x|+C        2(yx)=log|x|+C

        2xy=log|x|+C...(ii)Now,y=2 at x=1.        2(1)2=log|1|+CC=1Substituting C = –1 in equation(ii), we get        2xy=log|x|1    y=2x1log|x|(x0,xe)This is the required solution of the given differential equation.

Q.16

A homogeneous differential equation of the form dydx=h(xy)can be solved by making the substitution.(A)y=vx (B)v=yx (C)x=vy (D)x=v

Ans

A homogeneous differential equation of the form dydx=h(xy)can be solved by making the substitutionas x=vy.Hence, the correct option is C.

Q.17 Which of the following is a homogeneous differential equation?
(A) (4x + 6y + 5)dy – (3y + 2x + 4) dx = 0

(B) (xy) dx – (x3 + y3) dy = 0

(C) (x3 + 2y2) dx + 2xy dy = 0

(D) y2 dx + (x2– xy – y2) dy = 0

Ans

A function F(x, y) is said to be homogeneous function of degree n if F(λx, λy)= λn F(x, y) for any nonzero constant λ.

Let us check option D, y2dx+(x2xyy2)dy=0    (x2xyy2)dy=y2dxdydx=y2(x2xyy2)Let    F(x,y)=y2(x2xyy2)then        F(λx,λy)=λ2y2(λ2x2λ2xyλ2y2)    =λ2λ2y2(x2xyy2)=λ0F(x,y)Thus, the given differential equation in option D ishomogenous equation.

Please register to view this section

FAQs (Frequently Asked Questions)

1. Where can a student download the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5?

Students can download the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from the Extramarks’ website and mobile application in PDF format. Students can get easy and reliable solutions for Exercise 9.5 with the help of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5.

2. What are the benefits of accessing the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 from Extramarks?

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 available on the website are developed by expert Mathematics teachers and are intended to help students in their board exam preparation for Mathematics. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are given in a simple and understandable format.

3. How can a student prepare effectively for the Class 12 board exam of Mathematics?

Students can make use of the essential study materials that help in preparing well for the board exams. The students can access all the necessary study materials from the Extramarks’ website and mobile application. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.5 are also available on Extramarks to help students in preparing well for the Mathematics exam.

4. Where can a student get access to the latest CBSE syllabus of Class 12 Mathematics?

Class 12 students of the Central Board of Secondary Education (CBSE) can access the latest syllabus of Mathematics from Extramarks in PDF format. The syllabus provided by Extramarks is very reliable and helpful in boosting Mathematics exam preparation.

5. What are the other resources available on the Extramarks for Class 12 CBSE Board students?

The students of Class 12 CBSE Board can access the sample papers, past years’ papers, revision notes, important questions, and many other resources from the Extramarks’ website and mobile application. All the resources help them score higher marks in the Class 12 board exams.