NCERT Solutions Class 12 Mathematics Chapter 9

The fundamentals of calculus are used to present a new topic called Differential Equations in NCERT Solutions for class 12 mathematics chapter 9. Students were previously taught how to differentiate a function f about an independent variable, that is, how to find f ′(x) for a given function f at each x in its domain of definition. Students were also taught how to find a function f whose derivative is the function g. An equation containing the derivative of the dependent variable concerning the independent variable can be expressed as a formal definition for differential equations using these concepts. These equations can also be classified as:

  • Ordinary Differential Equations – Differential Equations that involve derivatives of the dependent variable concerning only one independent variable.
  • Partial Differential Equations – Differential Equations that involve derivatives concerning many independent variables. 

These Equations have been explained in-depth with example problems in NCERT solutions for class 12 Mathematics chapter 9. Another aspect of calculus shown in NCERT answers for class 12 Mathematics chapter 9 is that students can effortlessly make a transition to solving the problems in this lesson once they are familiar with the various ways of differentiating and integrating a function. Differential equations in NCERT Solutions class 12 Mathematics chapter 9 have applications in determining population growth and decay, glucose absorption by the body, gauging epidemic spread, and solving various geometric questions involving various types of curves.

Key Topics Covered in NCERT Solutions Class 12 Mathematics Chapter 9

This chapter introduces students to the fundamentals of differential equations. The various topics covered in this chapter assist students in comprehending the real-world applications of differential equations. Students can learn the definition of differential equations here, which can aid in their understanding of the concepts. The order and degree of differential equations are also taught to students. The creation of ordinary differential equations and the solution of a differential equation are two additional essential concepts addressed in this chapter. These are crucial elements for students to understand as they prepare for the main exam.

Every topic in NCERT Solutions Class 12 Mathematics Chapter 9 is equally essential because it focuses on distinct elements of differential equations. Furthermore, each section is linked to the next. Thus, students must devote equal and enough time to all sections of this chapter, so as to avoid any superficial knowledge or learning gaps. It also gives a good review of the previous topic matter covered in the session.

List of NCERT Solutions Class 12 Mathematics Chapter 9 Exercises

Because of Gottfried Wilhelm Freiherr Leibnitz (1646 – 1716), who gave the calculus identity to Mathematics, the concept of differential equations was born on November 11, 1675. Leibnitz was more engaged in finding a curve with stipulated tangents. As a result, he discovered a slew of related differential equation principles. The equations took on their current shape due to various researchers working on the topic’s intricacy. Many of these facts and advice to help youngsters overcome boredom and study with excitement may be found in the NCERT solutions for class 12 Mathematics chapter 9.

Differential equations in NCERT Solutions Class 12 Mathematics Chapter 9 are challenging and have lengthy lessons. As a result, the only method to master the chapter is to review the contents frequently. It will be easier for students to progress through the chapter and build clear concepts if they have a strong foundation in the fundamentals. Extramarks has provided a full examination of all the exercise questions below to assist students in pursuing high-quality education.

Class 12 Mathematics Chapter No. 9 Ex 9.1 Solutions – 12 Questions

Class 12 Mathematics Chapter No. 9 Ex 9.2 Solutions – 12 Questions

Class 12 Mathematics Chapter No. 9 Ex 9.3 Solutions – 12 Questions

Class 12 Mathematics Chapter No. 9 Ex 9.4 Solutions – 23 Questions

Class 12 Mathematics Chapter No. 9 Ex 9.5 Solutions – 17 Questions

Class 12 Mathematics Chapter No. 9 Ex 9.6 Solutions – 19 Questions

Class 12 Mathematics Chapter No. 9 Miscellaneous Ex – 18 Questions

NCERT Solutions Class 12 Mathematics Chapter 9 Formula List

NCERT solutions class 12 Mathematics chapter 9 solves differential equations using the formulas provided in earlier calculus lessons. This chapter focuses on formulating and solving differential equations under particular conditions. As a result, to successfully combine both lectures, it is critical to review the calculus concepts taught previously. There are some terminologies in the NCERT solutions for class 12 Mathematics chapter 9 that students should be familiar with. A  few of which are as under:

  • The General form of a differential equation: dy/dx = g(x), where y = f(x).
  • The general form of nth order derivative: dny/dxn.
  • The general form of a linear differential equation: dy/dx + Py = Q

Class 12 NCERT Mathematics Syllabus

Term – 1

Unit Name

 

Chapter Name
 

Relations and Function

Relations and Functions

Inverse Trigonometric Functions

Algebra

 

Matrices

Determinants

Calculus

 

Continuity and Differentiability

Application of Derivatives 

Linear Programming Linear Programming

Term – 2

Unit Name Chapter Name
 

Calculus

 

Integrals

Application of Integrals

Differential Equations

Vectors and Three-Dimensional Geometry  Vector Algebra

Three Dimensional Geometry 

Probability Probability 

Subject experts at Extramarks create NCERT Solutions to assist students in understanding concepts more quickly and correctly. NCERT Solutions provide extensive, step-by-step explanations of textbook problems. All classes can benefit from such solutions –

  • NCERT Solutions class 1
  • NCERT Solutions class 2
  • NCERT Solutions class 3
  • NCERT Solutions class 4
  • NCERT Solutions class 5
  • NCERT Solutions class 6
  • NCERT Solutions class 7
  • NCERT Solutions class 8
  • NCERT Solutions class 9
  • NCERT Solutions class 10
  • NCERT Solutions class 11
  • NCERT Solutions class 12

NCERT CBSE Mathematics Exam Pattern

Duration of Marks 3 hours 15 minutes
Marks for Internal 20 marks
Marks for Theory 80 marks
Total Number of Questions 38 Questions
Very short answer question 20 Questions
Short answer questions 7 Questions
Long Answer Questions (4 marks each) 7 Questions
Long Answer Questions (6 marks each) 4 Questions

Key Features of NCERT Solutions for Class 12 Mathematics Chapter 9

Using the NCERT Solutions to learn the chapter, Differential Equations, students will be able to understand the following:

  • A Differential Equation’s definition, order and degree.
  • General and Special Solutions. 
  • The formation of a differential equation with a given general solution. 
  • Solutions of homogeneous differential equations of the first order and first degree.
  • Solutions of differential equations using the separation of variables approach.

NCERT Exemplar Class 12 CBSE Mathematics 

NCERT Exemplars contain solutions and problems that help students prepare for their final exams. These example questions are a little more complex, and they cover every concept in each chapter of the Class 12 Mathematics subject.

Students will fully understand all the concepts covered in each chapter by practising these NCERT Exemplars for Mathematics Class 12. Each question in these materials is connected to topics covered in the CBSE Class 12 syllabus (2022-2023). They provide some of the best solutions to challenges that students confront. To match the ideas taught in each class and provide the greatest practising materials or worksheets for students, all of these questions reflect the question pattern found in NCERT books.

Q.1 Determine order and degree (if defined) of differential equation

d4ydx4 +sin(y”’) = 0

Ans.

d4ydx4+siny”’=0y””+siny”’=0The heighest order derivative present in the differential equationis d4ydx4. Therefore its order is 4.The given equation is not a polynomial equation in yand degreeof such a differential equation can not be defined.

Q.2

Determine order and degree if defined of differentialequation: y’ + 5y=0

Ans.

y’ + 5y=0 The heighest order derivative present in the differential equation is y’. Therefore its order is 1. The given equation is a polynomial equation in y’ so the heighest power raised by y’ is one. Thus, degree of the differential eqution is 1.

Q.3

Determine order and degree if defined of differentialequation: ds dt 4 + 3s d 2 s dt 2 =0

Ans.

ds dt 4 + 3s d 2 s dt 2 =0 Theheighest oder derivative present in differential equation is d 2 s dt 2 . Therefore, its order is 2. Since, given differential equation is a polynomial in d 2 s dt 2 and ds dt . The power raised by d 2 s dt 2 is 1, so the degree of equation is 1.

Q.4

Determine order and degree if defined of differentialequation: d 2 y dx 2 2 +cos dy dx =0

Ans.

d 2 y dx 2 2 +cos dy dx =0 Theheighest oder derivative present in differential equation is d 2 y dx 2 . Therefore, its order is 2. Since, given differential equation is not a polynomial in d 2 y dx 2 and dy dx . So, its degree is not defined.

Q.5

Determine order and degree if defined of differentialequation: d 2 y dx 2 =cos3x + sin3x

Ans.

d 2 y dx 2 =cos3x + sin3x d 2 y dx 2 cos3x sin3x=0 Theheighest oder derivative present in differential equation is d 2 y dx 2 . Therefore, its order is 2. Since, given differential equation is a polynomial in d 2 y dx 2 . The power raised by d 2 y dx 2 is 1, so the degree of equation is 1.

Q.6

Determine order and degree if defined of differential equation: y”’ 2 + y” 3 + y’ 4 + y 5 =0

Ans.

y”’ 2 + y” 3 + y’ 4 + y 5 =0 The heighest order derivative in given differential equation is y”’. So, its order is 3. This differential equation is a polynomial in y”’, y”, y’ and y. The heighest power raised by y”’ is 2, therefore degree of differential equation is 2.

Q.7

Determine order and degree if defined of differential equation: y”’ + 2y”+y’=0

Ans.

y”’ + 2y”+y‘=0The heighest order derivative in given differential equation is y”’.So, its order is 3.This differential equation is a polynomial in y”’, yand y.The heighest power raised by y”’ is 1, therefore degree of differential equation is 1.

Q.8

Determine order and degree if defined of differential equation: y’+ y= e x

Ans.

y’+ y=e x Þy’+ y-e x =0 The heighest order derivative in given differential equation is y’. So, its order is 1. This differential equation is a polynomial in y’ and y. The heighest power raised by y’ is 1, therefore degree of differential equation is 1.

Q.9

Determine order and degree if defined of differential equation: y” + y’ 2 +2y=0

Ans.

y” + y’ 2 +2y=0 The heighest order derivative in given differential equation isy”. So, its order is 2. This differential equation is a polynomial in y”, y’ and y. The heighest power raised by y” is 1, therefore degree of differential equation is 1.

Q.10

Determine order and degree if defined of differential equation: y”+ 2y’+ siny=0

Ans.

y”+ 2y’+ siny=0 The heighest order derivative in given differential equation isy”. So, its order is 2. This differential equation is a polynomial in y” and y’. The heighest power raised by y” is 1, therefore degree of differential equation is 1.

Q.11

The degree of the differential equation ( d 2 y dx 2 ) 3 + ( dy dx ) 2 + sin( dy dx )+1=0is ( A ) 3 ( B) 2 ( C ) 1 ( D ) not defined MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGKbGaaeyzaiaabEga caqGYbGaaeyzaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDai aabIgacaqGLbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGa aeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaca qGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaaqa amaabmaabaWaaSaaaeaacaqGKbWaaWbaaSqabeaacaqGYaaaaOGaae yEaaqaaiaabsgacaqG4bWaaWbaaSqabeaacaqGYaaaaaaaaOGaayjk aiaawMcaamaaCaaaleqabaGaae4maaaakiaabUcadaqadaqaamaala aabaGaaeizaiaabMhaaeaacaqGKbGaaeiEaaaaaiaawIcacaGLPaaa daahaaWcbeqaaiaabkdaaaGccaqGRaGaaeiiaiaabohacaqGPbGaae OBamaabmaabaWaaSaaaeaacaqGKbGaaeyEaaqaaiaabsgacaqG4baa aaGaayjkaiaawMcaaiaabUcacaqGXaGaaGjbVlaab2dacaaMe8Uaae imaiaaykW7caaMc8UaaeyAaiaabohaaeaadaqadaqaaiaabgeaaiaa wIcacaGLPaaacaqGZaGaaCzcaiaaxMaadaqadaqaaiaabkeaaiaawI cacaGLPaaacaqGYaGaaGjbVlaaysW7caWLjaWaaeWaaeaacaqGdbaa caGLOaGaayzkaaGaaeymaiaaxMaacaWLjaWaaeWaaeaacaqGebaaca GLOaGaayzkaaGaaGjbVlaab6gacaqGVbGaaeiDaiaaygW7caqGGaGa aeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGLbGaaeizaaaaaa@9D6C@

Ans.

( d 2 y d x 2 ) 3 + ( dy dx ) 2 + sin( dy dx )+1=0 Since given equation is not a polynomial equation in y’. Therefore, its degree is not defined. Hence, the correct answer is D. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaamaabmaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa aOGaamyEaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabgUcaRmaabmaa baWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRGqabiaa=bcaciGG ZbGaaiyAaiaac6gadaqadaqaamaalaaabaGaamizaiaadMhaaeaaca WGKbGaamiEaaaaaiaawIcacaGLPaaacqGHRaWkcaaIXaGaeyypa0Ja aGimaaqaaiaadofacaWGPbGaamOBaiaadogacaWGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyD aiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqGZb Gaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiaiaabcha caqGVbGaaeiBaiaabMhacaqGUbGaae4Baiaab2gacaqGPbGaaeyyai aabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGa ae4Baiaab6gacaqGGaGaaeyAaiaab6gacaqGGaGaaeyEaiaabEcaca qGUaGaaeivaiaabIgacaqGLbGaaeOCaiaabwgacaqGMbGaae4Baiaa bkhacaqGLbGaaeilaaqaaiaabMgacaqG0bGaae4CaiaabccacaqGKb GaaeyzaiaabEgacaqGYbGaaeyzaiaabwgacaqGGaGaaeyAaiaaboha caqGGaGaaeOBaiaab+gacaqG0bGaaeiiaiaabsgacaqGLbGaaeOzai aabMgacaqGUbGaaeyzaiaabsgacaqGUaaabaGaaeisaiaabwgacaqG UbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabc cacaqGJbGaae4BaiaabkhacaqGYbGaaeyzaiaabogacaqG0bGaaeii aiaabggacaqGUbGaae4CaiaabEhacaqGLbGaaeOCaiaabccacaqGPb Gaae4CaiaabccacaqGebGaaeOlaaaaaa@C0CB@

Q.12

The order of the differential equation 2x 2 d 2 y dx 2 3 dy dx +y=0is ( A )3 ( B ) 2 ( C ) 0 ( D) not defined MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGVbGaaeOCaiaabsga caqGLbGaaeOCaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAai aabwgacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGa aeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgaca qGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbaabaGaaeOm aiaabIhadaahaaWcbeqaaiaabkdaaaGcdaWcaaqaaiaabsgadaahaa WcbeqaaiaabkdaaaGccaqG5baabaGaaeizaiaabIhadaahaaWcbeqa aiaabkdaaaaaaOGaaGjbVlaabobicaaMe8Uaae4mamaalaaabaGaae izaiaabMhaaeaacaqGKbGaaeiEaaaacaaMe8Uaae4kaiaaysW7caqG 5bGaaGjbVlaab2dacaaMe8UaaeimaiaaykW7caaMc8UaaeyAaiaabo haaeaadaqadaqaaiaabgeaaiaawIcacaGLPaaacaqGZaGaaCzcaiaa xMaadaqadaqaaiaabkeaaiaawIcacaGLPaaacaqGYaGaaCzcaiaaxM aadaqadaqaaiaaboeaaiaawIcacaGLPaaacaqGWaGaaCzcaiaaxMaa daqadaqaaiaabseaaiaawIcacaGLPaaacaqGUbGaae4Baiaabshaca aMb8UaaeiiaiaabsgacaqGLbGaaeOzaiaabMgacaqGUbGaaeyzaiaa bsgaaaaa@93FC@

Ans.

2 x 2 d 2 y d x 2 3 dy dx +y=0 The highest derivative of given differential equation is d 2 y d x 2 . Therefore, the order of given differential equation is 2. Thus, correct option is B. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaa caWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyEaaqaaiaadsgacaWG4b WaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaaiodadaWcaaqaaiaa dsgacaWG5baabaGaamizaiaadIhaaaGaey4kaSIaamyEaiabg2da9i aaicdacaaMc8oabaGaamivaiaadIgacaWGLbGaaeiiaiaabIgacaqG LbGaaeyAaiaabEgacaqGObGaaeyzaiaabohacaqG0bGaaeiiaiaabs gacaqGLbGaaeOCaiaabMgacaqG2bGaaeyyaiaabshacaqGPbGaaeOD aiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaae4zaiaabMgacaqG2b Gaaeyzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwga caqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiai aabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGa aeiiaiaabMgacaqGZbGaaeiiamaalaaabaGaamizamaaCaaaleqaba GaaGOmaaaakiaadMhaaeaacaWGKbGaamiEamaaCaaaleqabaGaaGOm aaaaaaGccaGGUaaabaGaamivaiaadIgacaWGLbGaamOCaiaadwgaca WGMbGaam4BaiaadkhacaWGLbGaaiilaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaae4BaiaabkhacaqGKbGaaeyzaiaabkhacaqGGaGaae 4BaiaabAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqG GaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6 gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyD aiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqGZb GaaeiiaiaabkdacaqGUaaabaGaaeivaiaabIgacaqG1bGaae4Caiaa bYcacaqGGaGaae4yaiaab+gacaqGYbGaaeOCaiaabwgacaqGJbGaae iDaiaabccacaqGVbGaaeiCaiaabshacaqGPbGaae4Baiaab6gacaqG GaGaaeyAaiaabohacaqGGaGaaeOqaiaab6caaaaa@CE32@

Q.13

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = e x + 1 : y” – y’ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabwga daahaaWcbeqaaiaabIhaaaGccaqGRaGaaeiiaiaabgdacaaMc8UaaG PaVlaaxMaacaWLjaGaaGPaVlaabQdacaqGGaGaaCzcaiaaxMaacaqG GaGaaeyEaiaabEcacaqGNaGaaeiiaiaabobicaqGGaGaaeyEaiaabE cacaqGGaGaaeypaiaabccacaqGWaaaaaa@B232@

Ans.

y = e x + 1 Differentiating w.r.t. x, we get y’ = e x ( i ) Differentiating equation ( i ) w.r.t. x, we get y” = e x Substituting values of y’ and y” in L.H.S. of given differential equation y” – y’ = 0, we get y” – y’ =e x – e x = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq Gabeqaaa5gbaGaaeyEaiaabccacaqG9aGaaeiiaiaabwgadaahaaWc beqaaiaabIhaaaGccaqGGaGaae4kaiaabccacaqGXaaabaGaaeirai aabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGa aeyAaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhaca qGUaGaaeOCaiaab6cacaqG0bGaaeOlaiaabccacaqG4bGaaeilaiaa bccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG5b Gaae4jaiaabccacaqG9aGaaeiiaiaabwgadaahaaWcbeqaaiaabIha aaGccaWLjaGaaeOlaiaab6cacaqGUaWaaeWaaeaacaqGPbaacaGLOa GaayzkaaaabaGaaeiraiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGa aeyzaiaab6gacaqG0bGaaeyAaiaabggacaqG0bGaaeyAaiaab6gaca qGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaa b+gacaqGUbGaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabc cacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiE aiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0b aabaGaaeyEaiaabEcacaqGNaGaaeiiaiaab2dacaqGGaGaaeyzamaa CaaaleqabaGaaeiEaaaaaOqaaiaabofacaqG1bGaaeOyaiaabohaca qG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgacaqGUbGaae4zaiaa bccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGaae 4BaiaabAgacaqGGaGaaeyEaiaabEcacaqGGaGaaeyyaiaab6gacaqG KbGaaeiiaiaabMhacaqGNaGaae4jaiaabccacaqGPbGaaeOBaiaabc cacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaab6cacaqGGaGaae4B aiaabAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGa GaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6ga caqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaabwgacaqGXbGaae yDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMhacaqG NaGaae4jaiaabccacaqGTaGaaeiiaiaabMhacaqGNaGaaeiiaiaab2 dacaqGGaGaaeimaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4z aiaabwgacaqG0baabaGaaeyEaiaabEcacaqGNaGaaeiiaiaab2caca qGGaGaaeyEaiaabEcacaqGGaGaaeypaiacycyGLbWaiGjGCaaaleqc ycyaiGjGcGaMagiEaaaakiaabccacaqGTaGaaeiiaiaabwgadaahaa WcbeqaaiaabIhaaaGccaqGGaGaaeypaiaabccacaqGWaGaaeiiaiaa b2dacaqGGaGaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaaaba GaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaaeiAaiaabwga caqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOzai aabwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa aeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqGPbGaaeOzai aabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGa aeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgaca qGVbGaaeOBaiaab6caaaaa@4B29@

Q.14

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = x 2 +2x + C : y’ –2x –2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabIha daahaaWcbeqaaiaabkdaaaGccaqGRaGaaeOmaiaabIhacaqGGaGaae 4kaiaabccacaqGdbGaaGPaVlaaykW7caaMc8UaaCzcaiaabQdacaqG GaGaaCzcaiaaxMaacaqGGaGaaeyEaiaabEcacaqGGaGaae4eGiaabk dacaqG4bGaaeiiaiaabobicaqGYaGaaeiiaiaab2dacaqGGaGaaeim aaaaaa@B53B@

Ans.

y = x 2 +2x + C Differentiating w.r.t. x, we get y’ = 2x + 2 Substituting values of y’ in L.H.S. of given differential equation y’ –2x –2 = 0, we get y’ – 2x –2 = 2x + 2 –2x –2 = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqG4bWaaWbaaSqabeaa caqGYaaaaOGaae4kaiaabkdacaqG4bGaaeiiaiaabUcacaqGGaGaae 4qaaqaaiaabseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwga caqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zai aabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGa aeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqGYaGaaeiE aiaabccacaqGRaGaaeiiaiaabkdaaeaacaqGtbGaaeyDaiaabkgaca qGZbGaaeiDaiaabMgacaqG0bGaaeyDaiaabshacaqGPbGaaeOBaiaa bEgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGZbGaae iiaiaab+gacaqGMbGaaeiiaiaabMhacaqGNaGaaeiiaiaabMgacaqG UbGaaeiiaiaabYeacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabc cacaqGVbGaaeOzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOB aiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaa bghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae yEaiaabEcacaqGGaGaae4eGiaabkdacaqG4bGaaeiiaiaabobicaqG YaGaaeiiaiaab2dacaqGGaGaaeimaiaabYcacaqGGaGaae4Daiaabw gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiiaiaabMhacaqGNaGa aeiiaiaab2cacaqGGaGaaeOmaiaabIhacaqGGaGaae4eGiaabkdaca qGGaGaaeypaiaabccacaqGYaGaaeiEaiaabccacaqGRaGaaeiiaiaa bkdacaqGGaGaae4eGiaabkdacaqG4bGaaeiiaiaabobicaqGYaaaba GaaCzcaiaaxMaacaqG9aGaaeiiaiaabcdacaqGGaGaaeypaiaabcca caqGsbGaaeOlaiaabIeacaqGUaGaae4uaiaab6caaeaacaqGubGaae iAaiaabwhacaqGZbGaaeilaiaabshacaqGObGaaeyzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGaaeyDaiaab6 gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaae4C aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqGSb GaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAga caqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogacaqGVbGaaeOCai aabkhacaqGLbGaae4CaiaabchacaqGVbGaaeOBaiaabsgacaqGPbGa aeOBaiaabEgacaqGGaaabaGaaeizaiaabMgacaqGMbGaaeOzaiaabw gacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeii aiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUb GaaeOlaaaaaa@1803@

Q.15

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = cos x + C : y’ + sinx = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaaboga caqGVbGaae4CaiaabccacaqG4bGaaeiiaiaabUcacaqGGaGaae4qai aaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaabQdacaqGGaGa aCzcaiaaxMaacaqGGaGaaeyEaiaabEcacaqGGaGaae4kaiaabccaca qGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGaaeimaaaa aa@B923@

Ans.

y = cos x + C Differentiating w.r.t. x, we get y’ = –sinx Substituting values of y’ in L.H.S. of given differential equation y’ + sinx = 0, we get y’ + sinx = –sinx + sinx = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqGJbGaae4Baiaaboha caqGGaGaaeiEaiaabccacaqGRaGaaeiiaiaaboeaaeaacaqGebGaae yAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqG PbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6 cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeii aiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaabMhaca qGNaGaaeiiaiaab2dacaqGGaGaae4eGiaabohacaqGPbGaaeOBaiaa bIhaaeaacaqGtbGaaeyDaiaabkgacaqGZbGaaeiDaiaabMgacaqG0b GaaeyDaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeODaiaabgga caqGSbGaaeyDaiaabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiai aabMhacaqGNaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGa aeisaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzaiaabccaca qGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaa bAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaae yyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyyaiaabsha caqGPbGaae4Baiaab6gacaqGGaGaaeyEaiaabEcacaqGGaGaae4kai aabccacaqGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGa aeimaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaeyEaiaabEcacaqGGaGaae4kaiaabccacaqGZbGaaeyA aiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGaae4eGiaabohacaqGPb GaaeOBaiaabIhacaqGGaGaae4kaiaabccacaqGZbGaaeyAaiaab6ga caqG4bGaaeiiaiaab2dacaqGGaGaaeimaiaabccacaqG9aGaaeiiai aabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqaaiaabsfacaqG ObGaaeyDaiaabohacaqGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabAgacaqG1bGaaeOB aiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqGZb GaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabYga caqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGYbGa aeOCaiaabwgacaqGZbGaaeiCaiaab+gacaqGUbGaaeizaiaabMgaca qGUbGaae4zaiaabccaaeaacaqGKbGaaeyAaiaabAgacaqGMbGaaeyz aiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGa GaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6ga caqGUaaaaaa@189F@

Q.16

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = 1 + x 2 : y’ = xy 1 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiamaakaaa baGaaeymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabk daaaaabeaakiaaykW7caaMc8UaaGPaVlaaxMaacaWLjaGaaGPaVlaa ykW7caqG6aGaaeiiaiaaxMaacaWLjaGaaeiiaiaabMhacaqGNaGaae iiaiaab2dacaqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdacaqG GaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaaaaaa@B755@

Ans.

y = 1 + x 2 Differentiating w.r.t. x, we get y’ = x 1 + x 2 Substituting values of y in R.H.S. of given differential equation y’ = xy 1 + x 2 , we get R.H.S. = xy 1 + x 2 = x( 1 + x 2 ) 1 + x 2 = x 1 + x 2 = y’ = L.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccadaGcaaqaaiaabgdacaqG GaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaqabaaake aacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOB aiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGa Gaae4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIha caqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabMhacaqGNaGaaeiiaiaab2dacaqGGaWaaSaaaeaacaqG4baa baWaaOaaaeaacaqGXaGaaeiiaiaabUcacaqGGaGaaeiEamaaCaaale qabaGaaeOmaaaaaeqaaaaaaOqaaiaabofacaqG1bGaaeOyaiaaboha caqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgacaqGUbGaae4zai aabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGa ae4BaiaabAgacaqGGaGaaeyEaiaabccacaqGPbGaaeOBaiaabccaca qGsbGaaeOlaiaabIeacaqGUaGaae4uaiaab6cacaqGGaGaae4Baiaa bAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaae izaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG 0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMhacaqGNaGa aeiiaiaab2dacaqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdaca qGGaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaakiaa bYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baaba GaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaGaaeiiaiaab2da caqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdacaqGGaGaae4kai aabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaaaOqaaiaaxMaacaaM c8UaaeypaiaabccadaWcaaqaaiaabIhadaqadaqaamaakaaabaGaae ymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaaa beaaaOGaayjkaiaawMcaaaqaaiaabgdacaqGGaGaae4kaiaabccaca qG4bWaaWbaaSqabeaacaqGYaaaaaaaaOqaaiaaxMaacaaMc8UaaGPa VlaaykW7caqG9aGaaeiiamaalaaabaGaaeiEaaqaamaakaaabaGaae ymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaaa beaaaaaakeaacaWLjaGaaGPaVlaaykW7caaMc8Uaaeypaiaabccaca qG5bGaae4jaiaabccacaqG9aGaaeiiaiaabYeacaqGUaGaaeisaiaa b6cacaqGtbGaaeOlaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSa GaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabAgacaqG1bGaaeOBaiaabogacaqG0bGaaeyAai aab+gacaqGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaabshacaqGObGa aeyzaiaabccacaqGZbGaae4BaiaabYgacaqG1bGaaeiDaiaabMgaca qGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaae4yaiaab+gacaqGYbGaaeOCaiaabwgacaqGZbGaae iCaiaab+gacaqGUbGaaeizaiaabMgacaqGUbGaae4zaiaabccaaeaa caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBai aabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGa aeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@315E@

Q.17

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabgea caqG4bGaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVl aaxMaacaaMc8UaaGPaVlaaykW7caqG6aGaaeiiaiaaxMaacaWLjaGa aeiiaiaabIhacaqG5bGaae4jaiaabccacaqG9aGaaeiiaiaabMhaca WLjaGaaCzcamaabmaabaGaaeiEaiaabccacqGHGjsUcaqGGaGaaeim aaGaayjkaiaawMcaaaaaaa@BCAB@

Ans.

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqGbbGaaeiEaaqaaiaa bseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae iDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG 3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabY cacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGa aeyEaiaabEcacaqGGaGaaeypaiaabccacaqGbbaabaGaae4uaiaabw hacaqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyA aiaab6gacaqGNbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLb Gaae4CaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaae4jaiaabcca caqGPbGaaeOBaiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uai aab6cacaqGGaGaae4BaiaabAgacaqGGaGaae4zaiaabMgacaqG2bGa aeyzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgaca qGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqa aiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUb GaaeiiaiaabIhacaqG5bGaae4jaiaabccacaqG9aGaaeiiaiaabMha caqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabYeacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG 9aGaaeiiaiaabIhacaqG5bGaae4jaiaabccaaeaacaWLjaGaaeypai aabccacaqG4bWaaeWaaeaacaqGbbaacaGLOaGaayzkaaaabaGaaCzc aiaab2dacaqGGaGaaeyqaiaabIhacaqGGaGaaeypaiaabccacaqG5b Gaaeiiaiaab2dacaqGGaGaaeOuaiaab6cacaqGibGaaeOlaiaabofa caqGUaaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaae iAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqG GaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6 gacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeii aiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUb Gaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabcca caqGJbGaae4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Bai aab6gacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqG PbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabM gacaqGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiD aiaabMgacaqGVbGaaeOBaiaab6caaaaa@0A6F@

Q.18

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabIha caqGGaGaae4CaiaabMgacaqGUbGaaeiEaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaeOoaiaabccacaqGGaGaaeiEaiaabMhacaqGNaGa aeiiaiaab2dacaqGGaGaaeyEaiaabccacaqGRaGaaeiiaiaabIhaca qGGaWaaOaaaeaacaqG4bWaaWbaaSqabeaacaqGYaaaaOGaaeiiaiaa bobicaqGGaGaaeyEamaaCaaaleqabaGaiGgGbkdaaaaabeaakiaayk W7caaMc8+aaeWaaeaacaqG4bGaeyiyIKRaaeimaiaaykW7caqGHbGa aeOBaiaabsgacaqGGaGaaeiEaiaabccacaqG+aGaaeiiaiaabMhaca qGGaGaae4BaiaabkhacaqGGaGaaeiEaiaabccacaqG8aGaaeiiaiaa bobicaqG5baacaGLOaGaayzkaaaaaaa@D43D@

Ans.

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqG4bGaae4CaiaabMga caqGUbGaaeiiaiaabIhaaeaacaqGebGaaeyAaiaabAgacaqGMbGaae yzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqG PbGaaeOBaiaabEgacaqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabs hacaqGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaabMhacaqGNaGaaeiiaiaab2daca qGGaGaaeiEaiaabogacaqGVbGaae4CaiaabccacaqG4bGaaeiiaiaa bUcacaqGGaGaae4CaiaabMgacaqGUbGaaeiEaaqaaiaabofacaqG1b GaaeOyaiaabohacaqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMga caqGUbGaae4zaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzai aabohacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabEcacaqGGaGa aeyAaiaab6gacaqGGaGaaeitaiaab6cacaqGibGaaeOlaiaabofaca qGUaGaaeiiaiaab+gacaqGMbGaaeiiaiaabEgacaqGPbGaaeODaiaa bwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaae OCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaaeaa caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBai aabccacaqG4bGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqG5bGa aeiiaiaabUcacaqGGaGaaeiEamaakaaabaGaaeiEamaaCaaaleqaba GaaeOmaaaakiaabccacaqGtaIaaeiiaiaabMhadaahaaWcbeqaaiaa bkdaaaaabeaakiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zai aabwgacaqG0baabaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqG UaGaaeiiaiaab2dacaqGGaGaaeiEaiaabMhacaqGNaGaaeiiaiaab2 dacaqGGaGaaeiEamaabmaabaGaaeiEaiaabogacaqGVbGaae4Caiaa bIhacaqGGaGaae4kaiaabccacaqGZbGaaeyAaiaab6gacaqG4baaca GLOaGaayzkaaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaab2dacaqGGaGaaeiEamaaCa aaleqabaGaaeOmaaaakiaabogacaqGVbGaae4CaiaabIhacaqGGaGa ae4kaiaabccacaqG4bGaae4CaiaabMgacaqGUbGaaeiEaaqaaiaabk facaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG9aGaaeii aiaabIhacaqGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaabUcacaqGGa GaaeiEamaakaaabaGaaeiEamaaCaaaleqabaGaaeOmaaaakiaabcca caqGtaIaaeiiamaabmaabaGaaeiEaiaabohacaqGPbGaaeOBaiaabI haaiaawIcacaGLPaaadaahaaWcbeqaaiaabkdaaaaabeaaaOqaaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqG9aGaaeiiaiaabIhacaqGZbGaaeyAaiaab6gacaqG 4bGaaeiiaiaabUcacaqGGaGaaeiEamaaCaaaleqabaGaaeOmaaaakm aakaaabaGaaeymaiaabccacaqGtaIaaeiiaiaabohacaqGPbGaaeOB amaaCaaaleqabaGaaeOmaaaakiaabIhaaSqabaaakeaacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeypaiaabccacaqG4bGaae4CaiaabMgacaqGUbGaaeiEaiaabc cacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGJbGa ae4BaiaabohacaqG4baabaGaae4uaiaab+gacaqGSaGaaeiiaiaabY eacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG9aGaaeii aiaabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqaaiaabsfaca qGObGaaeyDaiaabohacaqGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabAgacaqG1bGaae OBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqG ZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabY gacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOz aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGYb GaaeOCaiaabwgacaqGZbGaaeiCaiaab+gacaqGUbGaaeizaiaabMga caqGUbGaae4zaiaabccaaeaacaqGKbGaaeyAaiaabAgacaqGMbGaae yzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqG GaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6 gacaqGUaaaaaa@850D@

Q.19

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeiEaiaabMhacaqGGaGaaeypaiaabcca caqGSbGaae4BaiaabEgacaqG5bGaaeiiaiaabUcacaqGGaGaae4qai aabccacaqG6aGaaeiiaiaabMhacaqGNaGaaeiiaiaab2dacaqGGaWa aSaaaeaacaqG5bWaaWbaaSqabeaacaqGYaaaaaGcbaGaaeymaiaabc cacaqGtaIaaeiiaiaabIhacaqG5baaamaabmaabaGaaeiEaiaabMha cqGHGjsUcaqGWaaacaGLOaGaayzkaaaaaaa@B600@

Ans.

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabIhacaqG5bGaaeiiaiaab2dacaqGGaGaaeiBaiaab+ga caqGNbGaaeyEaiaabccacaqGRaGaaeiiaiaaboeaaeaacaqGebGaae yAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqG PbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6 cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeii aiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaabIhaca qG5bGaae4jaiaabccacaqGRaGaaeiiaiaabMhacaqGGaGaaeypamaa laaabaGaaeymaaqaaiaabMhaaaGaaeyEaiaabEcacaqGGaGaae4kai aabccacaqGWaaabaGaaeiEaiaabMhacaqG5bGaae4jaiaabccacaqG RaGaaeiiaiaabMhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaaeypai aabccacaqG5bGaae4jaaqaaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG5bWaaWbaaSqabe aacaqGYaaaaOGaaeiiaiaab2dacaqGGaGaaeyEaiaabEcacaqGGaGa ae4eGiaabccacaqG4bGaaeyEaiaabMhacaqGNaaabaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqG9aGaaeiiaiaabMhacaqGNa WaaeWaaeaacaqGXaGaaeiiaiaabobicaqGGaGaaeiEaiaabMhaaiaa wIcacaGLPaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeyEaiaabEcacaqGGaGaaeyp aiaabccadaWcaaqaaiaabMhadaahaaWcbeqaaiaabkdaaaaakeaada qadaqaaiaabgdacaqGGaGaae4eGiaabccacaqG4bGaaeyEaaGaayjk aiaawMcaaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabs hacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOB aiaabccacaqGMbGaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVb GaaeOBaiaabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwga caqGGaGaae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Bai aab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGa aeiiaiaabogacaqGVbGaaeOCaiaabkhacaqGLbGaae4Caiaabchaca qGVbGaaeOBaiaabsgacaqGPbGaaeOBaiaabEgacaqGGaaabaGaaeiz aiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0b GaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@F6E3@

Q.20

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqGtaIaaeiiaiaaboga caqGVbGaae4CaiaabMhacaqGGaGaaeypaiaabccacaqG4bGaaeiiai aabccacaqGGaGaaeiiaiaabQdacaqGGaGaaeiiaiaabccacaqGGaWa aeWaaeaacaqG5bGaae4CaiaabMgacaqGUbGaaeyEaiaabccacaqGRa GaaeiiaiaabogacaqGVbGaae4CaiaabMhacaqGGaGaae4kaiaabcca caqG4baacaGLOaGaayzkaaGaaeyEaiaabEcacaqGGaGaaeypaiaabc cacaqG5baaaaa@BC7B@

Ans.

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMha cqGHsislciGGJbGaai4BaiaacohacaWG5bGaeyypa0JaamiEaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaac6cacaGGUaGaaiOl amaabmaabaGaamyAaaGaayjkaiaawMcaaaqaaiaabseacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaaeOlaiaabk hacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4D aiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7ca qG5bGaae4jaiabgUcaRiGacohacaGGPbGaaiOBaiaadMhacaGGUaGa amyEaiaacEcacqGH9aqpcaaIXaaabaGaamyEaiaacEcadaqadaqaai aaigdacqGHRaWkciGGZbGaaiyAaiaac6gacaWG5baacaGLOaGaayzk aaGaeyypa0JaaGymaaqaaiaaxMaacaWLjaGaamyEaiaacEcacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGG UbGaamyEaaaaaeaacaqGtbGaaeyDaiaabkgacaqGZbGaaeiDaiaabM gacaqG0bGaaeyDaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeOD aiaabggacaqGSbGaaeyDaiaabwgacaqGZbGaaeiiaiaab+gacaqGMb GaaeiiaiaabMhacaqGNaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYea caqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGGaWaaeWaaeaacaqG5bGaae 4CaiaabMgacaqGUbGaaeyEaiaabccacaqGRaGaaeiiaiaabogacaqG VbGaae4CaiaabMhacaqGGaGaae4kaiaabccacaqG4baacaGLOaGaay zkaaGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqG5bGaaeilaiaa bccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaadaqada qaaiaadMhaciGGZbGaaiyAaiaac6gacaWG5bGaey4kaSIaci4yaiaa c+gacaGGZbGaamyEaiabgUcaRiaadIhaaiaawIcacaGLPaaacaWG5b Gaai4jaiabg2da9maabmaabaGaamyEaiGacohacaGGPbGaaiOBaiaa dMhacqGHRaWkciGGJbGaai4BaiaacohacaWG5bGaey4kaSIaamiEaa GaayjkaiaawMcaamaalaaabaGaaGymaaqaamaabmaabaGaaGymaiab gUcaRiGacohacaGGPbGaaiOBaiaadMhaaiaawIcacaGLPaaaaaaaba GaaCzcaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 cqGH9aqpdaqadaqaaiaadMhaciGGZbGaaiyAaiaac6gacaWG5bGaey 4kaSIaci4yaiaac+gacaGGZbGaamyEaiabgUcaRiaadMhacqGHsisl ciGGJbGaai4BaiaacohacaWG5baacaGLOaGaayzkaaWaaSaaaeaaca aIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGGUbGa amyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaCzcaiaaxMaacaWLja GaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaadaWadaqaaiaabAeacaqG YbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabs hacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaaiaawIcacaGLPaaa aiaawUfacaGLDbaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVl aaykW7caaMc8UaaGPaVlabg2da9maabmaabaGaamyEaiGacohacaGG PbGaaiOBaiaadMhacqGHRaWkcaWG5baacaGLOaGaayzkaaWaaSaaae aacaaIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGG UbGaamyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaCzcaiaaxMaaca WLjaGaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaadMhadaqadaqa aiGacohacaGGPbGaaiOBaiaadMhacqGHRaWkcaaIXaaacaGLOaGaay zkaaWaaSaaaeaacaaIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4C aiaacMgacaGGUbGaamyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaC zcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaa dMhacqGH9aqpcaWGsbGaaiOlaiaadIeacaGGUaGaam4uaiaac6caae aacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabshacaqGObGaaeyz aiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMb GaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Cai aab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa ae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogaca qGVbGaaeOCaiaabkhacaqGLbGaae4CaiaabchacaqGVbGaaeOBaiaa bsgacaqGPbGaaeOBaiaabEgacaqGGaaabaGaaeizaiaabMgacaqGMb GaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabgga caqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAai aab+gacaqGUbGaaeOlaaaaaa@D4B7@

Q.21

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: x +y=ta n 1 y : y 2 y+ y 2 +1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaaruGvLjhzH5wyaGqbb8aacaWF4bGaa8hiaiaa =TcacaWF5bGaeyypa0Jaa8hDaiaa=fgacaWFUbWaaWbaaSqabeaaca WFTaGaa8xmaaaakiaa=LhacaaMc8UaaGPaVlaaykW7caWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caWF6aGaa8hiaiaaxMaacaWH5b WaaWbaaSqabeaacaWFYaaaaOGaa8xEaiaa=DcacaWFRaGaa8xEamaa CaaaleqabaGaa8Nmaaaakiaa=TcacaWFXaGaeyypa0Jaa8hmaaaaaa@BCFE@

Ans.

x +y= tan 1 y Differentiating w.r.t. x, we get 1+y’=( 1 1+ y 2 )y ( 1+y’ )( 1+ y 2 )=y 1+ y 2 +y+y y 2 =y 1+ y 2 +y y 2 =0 Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWLjaGaaCzcaiaaykW7caWG4bacbeGaa8hiaiabgUcaRiaadMhacq GH9aqpciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiaac2cacaaIXaaa aOGaamyEaiaaykW7aeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGa aeOBaiaabEgacaqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabshaca qGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaa bEgacaqGLbGaaeiDaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7 caqGXaGaae4kaiaabMhacaqGNaGaeyypa0ZaaeWaaeaadaWcaaqaai aaigdaaeaacaaIXaGaey4kaSIaamyEamaaCaaaleqabaGaiGjGikda aaaaaaGccaGLOaGaayzkaaGaamyEaiaacEcaaeaacaaMc8UaaGPaVl aaykW7caaMc8+aaeWaaeaacaqGXaGaey4kaSIaaGPaVlaabMhacaqG NaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyEamaaCa aaleqabaGaiGjGikdaaaaakiaawIcacaGLPaaacqGH9aqpcaWG5bGa ai4jaaqaaiaaigdacqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyEaiaacEcacqGHRaWkcaWG5bGaai4jaiaadMhadaah aaWcbeqaaiaaikdaaaGccqGH9aqpcaWG5bGaai4jaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGymaiab gUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bGaai 4jaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIWaaabaGa aeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaaeiAaiaabwgaca qGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOzaiaa bwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae yAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG VbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+ gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae4B aiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqGKb GaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqGPbGaaeOzaiaa bAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaae iBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqG VbGaaeOBaiaab6caaaaa@0F43@

Q.22

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y= a 2 x 2 x( a,a ): x+y dy dx =0( y0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaaruGvLjhzH5wyaGqbb8aacaWF5bGaeyypa0Za aOaaaeaacaWHHbWaaWbaaSqabeaacaWHYaaaaOGaeyOeI0IaaCiEam aaCaaaleqabaGaaCOmaaaaaeqaaOGaaGPaVlaahIhacqGHiiIZdaqa daqaaiabgkHiTiaa=fgacaWFSaGaa8xyaaGaayjkaiaawMcaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaa8Noaiaa=bcacaWLjaGaa8hE aiaa=TcacaWF5bWaaSaaaeaacaWFKbGaa8xEaaqaaiaa=rgacaWF4b aaaiaa=1dacaWFWaGaaGPaVlaaykW7daqadaqaaiaahMhacqGHGjsU caWHWaaacaGLOaGaayzkaaaaaaa@C593@

Ans.

y= a 2 x 2 Differentiating w.r.t. x, we get dy dx = x a 2 x 2 = x y Substituting the value of dy dx in L.H.S. of given differential equation x+y dy dx =0, we get L.H.S.=x+y dy dx =x+y( x y ) =xx =0=R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamyEaiabg2da9maakaaabaGaamyyamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaa ykW7aeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEga caqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiai aabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGa aeiDaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7daWcaaqaaiaa dsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaaSaaaeaacqGHsi slcaWG4baabaWaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaOqaaiaaxM aacaWLjaGaaCzcaiabg2da9maalaaabaGaeyOeI0IaamiEaaqaaiaa dMhaaaaabaGaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGaae iDaiaabwhacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabc cacaqGVbGaaeOzaiaabccadaWcaaqaaiaadsgacaWG5baabaGaamiz aiaadIhaaaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaae isaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabA gacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyy aiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyyaiaabshaca qGPbGaae4Baiaab6gacaqGGaGaamiEaiabgUcaRiaadMhadaWcaaqa aiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0JaaGimaiaacY cacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGa aeitaiaab6cacaqGibGaaeOlaiaabofacaqGUaGaeyypa0JaamiEai abgUcaRiaadMhadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIha aaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWG4b Gaey4kaSIaamyEamaabmaabaWaaSaaaeaacqGHsislcaWG4baabaGa amyEaaaaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8 UaaGPaVlabg2da9iaadIhacqGHsislcaWG4baabaGaaCzcaiaaykW7 caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIWaGaeyypa0JaamOuaiaac6 cacaWGibGaaiOlaiaadofacaGGUaaabaGaaeivaiaabIgacaqG1bGa ae4CaiaabYcacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgaca qG2bGaaeyzaiaab6gacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae iDaiaabIgacaqGLbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG 0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabs hacaqGObGaaeyzaiaabccacaqGJbGaae4BaiaabkhacaqGYbGaaeyz aiaabohacaqGWbGaae4Baiaab6gacaqGKbGaaeyAaiaab6gacaqGNb GaaeiiaaqaaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaa bwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaae yCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaab6caaaaa @574C@

Q.23 The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0 (B) 2 (C) 3 (D) 4

Ans.

Since, number of constants in a differential equation of order n is equal to its order i.e., n.
Thus, number of arbitrary constants in a differential equation of fourth order are 4.
Thus, option D is correct.

Q.24 The number of arbitrary constants in the particular solution of a differential equation of third order are:

(A) 3 (B) 2 (C) 1 (D) 0

Ans.

In a particular solution, there are no arbitrary constants.

∴ Number of arbitrary constants = 0
Thus, option D is correct.

Q.25 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

x a + y b =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=HhaaeaacaWFHbaaaiaa=TcadaWcaaqaaiaa =LhaaeaacaWFIbaaaiaa=1dacaWFXaaaaa@3EBE@

Ans.

x a + y b =1 Differentiating both sides w.r.t. x, we get 1 a + 1 b dy dx =0 Againg,differentiating both sides w.r.t. x, we get 1 b d 2 y d x 2 =0 d 2 y d x 2 =0y=0 Hence, the required differential equation is y”=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWG 4baabaGaamyyaaaacqGHRaWkdaWcaaqaaiaadMhaaeaacaWGIbaaai abg2da9iaaigdaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaa bkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaae OBaiaabEgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqG ZbGaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabk hacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4D aiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaWaaSaaaeaacaaIXa aabaGaamyyaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGIbaaamaa laaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpcaaIWa aabaGaaeyqaiaabEgacaqGHbGaaeyAaiaab6gacaqGNbGaaeilaiaa ykW7caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaae OBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqG GaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabs gacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiD aiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGa Gaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8+aaSaaaeaacaaIXaaabaGaamOyaaaadaWcaaqaaiaads gadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaamizaiaadIhadaah aaWcbeqaaiacyciIYaaaaaaakiabg2da9iaaicdaaeaacqGHshI3ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadMhaaeaacaWGKbGaamiEamaaCaaaleqaba GaiGjGikdaaaaaaOGaeyypa0JaaGimaiabgkDiElaadMhacaGGNaGa ai4jaiabg2da9iaaicdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaae yzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqG LbGaaeyCaiaabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabs gacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiD aiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHb GaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaae4Caiaabcca caqG5bGaae4jaiaabEcacaqG9aGaaeimaiaab6caaaaa@FBFD@

Q.26 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y 2 =a( b 2 x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bWaaWbaaSqabeaacaWHYaaaaOGaa8xpaiaa=fgadaqa daqaaiaahkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWH4bWaaW baaSqabeaacaWHYaaaaaGccaGLOaGaayzkaaaaaa@429D@

Ans.

y2=a(b2x2)Differentiating both sides w.r.t. x, we get2ydydx=a(02x)2ydydx=2ax  ...(i)Againg,differentiating both sides w.r.t. x, we get2{(dydx)2+yd2ydx2}=2a    (dydx)2+yd2ydx2=a    ...(ii)Putting value ofa from equation(ii) to equation(i), we get        2ydydx=2{(dydx)2+yd2ydx2}x      ydydx=x(dydx)2+xyd2ydx2xyy+x(y)2yy=0Hence, the required differential equation is xyy”+x(y)2yy‘ = 0.

Q.27 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y=a e 3x +b e 2x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa8xpaiaa=fgacaWFLbWaaWbaaSqabeaacaWFZaGa a8hEaaaakiaa=TcacaWFIbGaa8xzamaaCaaaleqabaGaeyOeI0Iaa8 Nmaiaa=Hhaaaaaaa@4369@

Ans.

y=a e 3x +b e 2x ( i ) Differentiating both sides w.r.t. x, we get y=3a e 3x 2b e 2x ( ii ) Againg,differentiating both sides w.r.t. x, we get y=9a e 3x +4b e 2x ( iii ) Adding equation( ii ) and 2×equation( i ),we get y+2y=3a e 3x 2b e 2x +2( a e 3x +b e 2x ) y+2y=3a e 3x 2b e 2x +2a e 3x +2b e 2x y+2y=5a e 3x a e 3x = y+2y 5 Substracting equation( ii ) from 3×equation( i ),we get 3yy=3a e 3x +3b e 2x ( 3a e 3x 2b e 2x ) 3yy=3a e 3x +3b e 2x 3a e 3x +2b e 2x 3yy=5b e 2x b e 2x = 3yy 5 Putting the values of ae 3x and be -2x in equation( iii ), we get y=9( y+2y 5 )+4( 3yy 5 ) 5y=9y+18y+12y4y 5y=5y+30y yy6y=0 Hence, the required differential equation is y”–y’–6y = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da 9iaadggacaWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaakiabgUcaRi aadkgacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaamiEaaaakiaa xMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaiOlaiaac6cacaGGUaWaae WaaeaacaWGPbaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqGMbGa aeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggaca qG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqGVbGaaeiDaiaa bIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaae 4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqG SaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaai aaykW7caaMc8UaamyEaiaacEcacqGH9aqpcaaIZaGaamyyaiaadwga daahaaWcbeqaaiaaiodacaWG4baaaOGaeyOeI0IaaGOmaiaadkgaca WGLbWaaWbaaSqabeaacqGHsislcaaIYaGaamiEaaaakiaaykW7caWL jaGaaCzcaiaaxMaacaaMc8UaaiOlaiaac6cacaGGUaWaaeWaaeaaca WGPbGaamyAaaGaayjkaiaawMcaaaqaaiaabgeacaqGNbGaaeyyaiaa bMgacaqGUbGaae4zaiaabYcacaaMc8UaaeizaiaabMgacaqGMbGaae OzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqG 0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqGVbGaaeiDaiaabI gacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaae4D aiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSa GaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaa dMhacaGGNaGaai4jaiabg2da9iaaiMdacaWGHbGaamyzamaaCaaale qabaGaaG4maiaadIhaaaGccqGHRaWkcaaI0aGaamOyaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaWG4baaaOGaaCzcaiaaykW7caWLja GaaCzcaiaac6cacaGGUaGaaiOlamaabmaabaGaamyAaiaadMgacaWG PbaacaGLOaGaayzkaaaabaGaaeyqaiaabsgacaqGKbGaaeyAaiaab6 gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyA aiaab+gacaqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaai aabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOmaiaabEnacaqGLbGa aeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBamaabmaaba GaaeyAaaGaayjkaiaawMcaaiaabYcacaaMc8Uaae4DaiaabwgacaqG GaGaae4zaiaabwgacaqG0baabaGaamyEaiaacEcacqGHRaWkcaaIYa GaamyEaiabg2da9iaaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4m aiaadIhaaaGccqGHsislcaaIYaGaamOyaiaadwgadaahaaWcbeqaai abgkHiTiaaikdacaWG4baaaOGaey4kaSIaaGOmamaabmaabaGaamyy aiaadwgadaahaaWcbeqaaiaaiodacaWG4baaaOGaey4kaSIaamOyai aadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4baaaaGccaGLOaGa ayzkaaaabaGaamyEaiaacEcacqGHRaWkcaaIYaGaamyEaiabg2da9i aaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4maiaadIhaaaGccqGH sislcaaIYaGaamOyaiaadwgadaahaaWcbeqaaiabgkHiTiaaikdaca WG4baaaOGaey4kaSIaaGOmaiaadggacaWGLbWaaWbaaSqabeaacaaI ZaGaamiEaaaakiabgUcaRiaaikdacaWGIbGaamyzamaaCaaaleqaba GaeyOeI0IaaGOmaiaadIhaaaaakeaacaWG5bGaai4jaiabgUcaRiaa ikdacaWG5bGaeyypa0JaaGynaiaadggacaWGLbWaaWbaaSqabeaaca aIZaGaamiEaaaakiabgkDiElaadggacaWGLbWaaWbaaSqabeaacaaI ZaGaamiEaaaakiabg2da9maalaaabaGaamyEaiaacEcacqGHRaWkca aIYaGaamyEaaqaaiaaiwdaaaaabaGaae4uaiaabwhacaqGIbGaae4C aiaabshacaqGYbGaaeyyaiaabogacaqG0bGaaeyAaiaab6gacaqGNb GaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+ga caqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabccaca qGMbGaaeOCaiaab+gacaqGTbGaaeiiaiaabodacaqGxdGaaeyzaiaa bghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gadaqadaqaai aabMgaaiaawIcacaGLPaaacaqGSaGaaGPaVlaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaaiodacaWG5bGaeyOeI0IaamyEai aacEcacqGH9aqpcaaIZaGaamyyaiaadwgadaahaaWcbeqaaiaaioda caWG4baaaOGaey4kaSIaaG4maiaadkgacaWGLbWaaWbaaSqabeaacq GHsislcaaIYaGaamiEaaaakiabgkHiTmaabmaabaGaaG4maiaadgga caWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaakiabgkHiTiaaikdaca WGIbGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakiaa wIcacaGLPaaaaeaacaaMc8UaaG4maiaadMhacqGHsislcaWG5bGaai 4jaiabg2da9iaaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4maiaa dIhaaaGccqGHRaWkcaaIZaGaamOyaiaadwgadaahaaWcbeqaaiabgk HiTiaaikdacaWG4baaaOGaeyOeI0IaaG4maiaadggacaWGLbWaaWba aSqabeaacaaIZaGaamiEaaaakiabgUcaRiaaikdacaWGIbGaamyzam aaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakeaacaaMc8UaaG4m aiaadMhacqGHsislcaWG5bGaai4jaiabg2da9iaaiwdacaWGIbGaam yzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakeaacaaMc8Ua aGPaVlaaykW7caaMc8UaamOyaiaadwgadaahaaWcbeqaaiabgkHiTi aaikdacaWG4baaaOGaeyypa0ZaaSaaaeaacaaIZaGaamyEaiabgkHi TiaadMhacaGGNaaabaGaaGynaaaaaeaacaqGqbGaaeyDaiaabshaca qG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaa bccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGaae 4BaiaabAgacaqGGaGaaeyyaiaabwgadaahaaWcbeqaaiaabodacaqG 4baaaOGaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaeOyai aabwgadaahaaWcbeqaaiaab2cacaqGYaGaaeiEaaaakiaabccacaqG PbGaaeOBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBamaabmaabaGaaeyAaiaabMgacaqGPbaacaGLOaGa ayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzai aabshaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadMhacaGGNaGaai4jaiabg2da9iaaiMdadaqadaqaam aalaaabaGaamyEaiaacEcacqGHRaWkcaaIYaGaamyEaaqaaiaaiwda aaaacaGLOaGaayzkaaGaey4kaSIaaGinamaabmaabaWaaSaaaeaaca aIZaGaamyEaiabgkHiTiaadMhacaGGNaaabaGaaGynaaaaaiaawIca caGLPaaaaeaacqGHshI3caaI1aGaamyEaiaacEcacaGGNaGaeyypa0 JaaGyoaiaadMhacaGGNaGaey4kaSIaaGymaiaaiIdacaWG5bGaey4k aSIaaGymaiaaikdacaWG5bGaeyOeI0IaaGinaiaadMhacaGGNaaaba GaeyO0H4TaaGynaiaadMhacaGGNaGaai4jaiabg2da9iaaiwdacaWG 5bGaai4jaiabgUcaRiaaiodacaaIWaGaamyEaaqaaiabgkDiElaadM hacaGGNaGaai4jaiabgkHiTiaadMhacaGGNaGaeyOeI0IaaGOnaiaa dMhacqGH9aqpcaaIWaaabaGaaeisaiaabwgacaqGUbGaae4yaiaabw gacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyz aiaabghacaqG1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKb GaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabsha caqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyai aabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGa aeyEaiaabEcacaqGNaGaaeylaiaabMhacaqGNaGaaeylaiaabAdaca qG5bGaaeypaiaabcdacaqGUaaaaaa@8B44@

Q.28 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y=e 2x a+bx

Ans.

y= e 2x ( a+bx ) Differentiating both sides w.r.t. x, we get y= e 2x ( 0+b )+2 e 2x ( a+bx ) y=b e 2x +2y y2y=b e 2x ( i ) Againg,differentiating both sides w.r.t. x, we get y2y=2b e 2x ( ii ) Dividing equation( ii ) by equation( i ), we get y2y y2y = 2b e 2x b e 2x y2y y2y =2 y2y=2( y2y ) y2y2y+4y=0 y4y+4y=0 Hence, the required differential equation is y” –4y’ + 4y = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caWG5bGaeyypa0JaamyzamaaCaaaleqabaGaaGOmaiaadIhaaaGcda qadaqaaiaadggacqGHRaWkcaWGIbGaaGPaVlaadIhaaiaawIcacaGL PaaaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEga caqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAai aabsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGa aeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4Daiaabwgaca qGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaWLjaGaaGPa VlaaykW7caaMc8UaamyEaiaacEcacqGH9aqpcaWGLbWaaWbaaSqabe aacaaIYaGaamiEaaaakmaabmaabaGaaGimaiabgUcaRiaadkgaaiaa wIcacaGLPaaacqGHRaWkcaaIYaGaamyzamaaCaaaleqabaGaaGOmai aadIhaaaGcdaqadaqaaiaadggacqGHRaWkcaWGIbGaaGPaVlaadIha aiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVl aaykW7caWG5bGaai4jaiabg2da9iaadkgacaWGLbWaaWbaaSqabeaa caaIYaGaamiEaaaakiabgUcaRiaaikdacaWG5baabaGaeyO0H4TaaC zcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaamyEaiaacEcacqGH sislcaaIYaGaamyEaiabg2da9iaadkgacaWGLbWaaWbaaSqabeaaca aIYaGaamiEaaaakiaaxMaacaWLjaGaaGPaVlaaxMaacaaMc8UaaGPa VlaaykW7caGGUaGaaiOlaiaac6cadaqadaqaaiaadMgaaiaawIcaca GLPaaaaeaacaqGbbGaae4zaiaabggacaqGPbGaaeOBaiaabEgacaqG SaGaaGPaVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabw gacaqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4z aiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPb GaaeizaiaabwgacaqGZbGaaeiiaiaabEhacaqGUaGaaeOCaiaab6ca caqG0bGaaeOlaiaabccacaqG4bGaaeilaiaabccacaqG3bGaaeyzai aabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzcaiaaykW7caaM c8UaaGPaVlaadMhacaGGNaGaai4jaiabgkHiTiaaikdacaWG5bGaai 4jaiabg2da9iaaikdacaWGIbGaamyzamaaCaaaleqabaGaaGOmaiaa dIhaaaGccaaMc8UaaGPaVlaaxMaacaWLjaGaaCzcaiaaykW7caaMc8 UaaiOlaiaac6cacaGGUaWaaeWaaeaacaWGPbGaamyAaaGaayjkaiaa wMcaaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyAaiaab6 gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyA aiaab+gacaqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaai aabccacaqGIbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGa aeiDaiaabMgacaqGVbGaaeOBamaabmaabaGaaeyAaaGaayjkaiaawM caaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG 0baabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacaWG5bGaai4jaiaacEcacqGHsislcaaIYaGaamyEaiaacEcaaeaa caWG5bGaai4jaiabgkHiTiaaikdacaWG5baaaiabg2da9maalaaaba GaaGOmaiaadkgacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaOqa aiaadkgacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaaaakeaaca WLjaGaaCzcaiaaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadMha caGGNaGaai4jaiabgkHiTiaaikdacaWG5bGaai4jaaqaaiaadMhaca GGNaGaeyOeI0IaaGOmaiaadMhaaaGaeyypa0JaaGOmaaqaaiabgkDi ElaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG5b Gaai4jaiaacEcacqGHsislcaaIYaGaamyEaiaacEcacqGH9aqpcaaI YaWaaeWaaeaacaWG5bGaai4jaiabgkHiTiaaikdacaWG5baacaGLOa GaayzkaaaabaGaeyO0H4TaamyEaiaacEcacaGGNaGaeyOeI0IaaGOm aiaadMhacaGGNaGaeyOeI0IaaGOmaiaadMhacaGGNaGaey4kaSIaaG inaiaadMhacqGH9aqpcaaIWaaabaGaeyO0H4TaaCzcaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMhacaGGNaGaai4jaiabgk HiTiaaisdacaWG5bGaai4jaiabgUcaRiaaisdacaWG5bGaeyypa0Ja aGimaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabc cacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyD aiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaaeizaiaabMgacaqGMb GaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabgga caqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAai aab+gacaqGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaabMhacaqGNaGa ae4jaiaabccacaqGtaIaaeinaiaabMhacaqGNaGaaeiiaiaabUcaca qGGaGaaeinaiaabMhacaqGGaGaaeypaiaabccacaqGWaGaaeOlaaaa aa@CF90@

Q.29 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y= e x ( a cos x+b sinx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa8xpaiaa=vgadaahaaWcbeqaaiaa=HhaaaGcdaqa daqaaiaa=fgacaWFGaGaa83yaiaa=9gacaWFZbGaa8hiaiaa=Hhaca WFRaGaa8Nyaiaa=bcacaWHZbGaaCyAaiaah6gacaaMc8UaaCiEaaGa ayjkaiaawMcaaaaa@4BA7@

Ans.

y= e x ( a cos x+b sinx )( i ) Differentiating both sides w.r.t. x, we get y= e x ( a sin x+b cosx )+ e x ( a cos x+b sinx ) y= e x ( a sin x+b cosx )+y[ Fromequation( i ) ] yy= e x ( a sin x+b cosx ) ( ii ) Againg,differentiating both sides w.r.t. x, we get yy= e x ( a cos xb sinx )+ e x ( a sin x+b cosx ) yy=y+yy [ From equation( ii ) ] y2y+2y=0 Hence, the required differential equation is y2y+2y=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaadMhacqGH9aqpcaWGLbWaaWba aSqabeaacaWG4baaaOWaaeWaaeaacaWGHbacbeGaa8hiaiGacogaca GGVbGaai4Caiaa=bcacaWG4bGaey4kaSIaamOyaiaa=bcaciGGZbGa aiyAaiaac6gacaaMc8UaamiEaaGaayjkaiaawMcaaiaac6cacaGGUa GaaiOlamaabmaabaGaamyAaaGaayjkaiaawMcaaaqaaiaabseacaqG PbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabM gacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGIbGaae4B aiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZb GaaeiiaiaabEhacaqGUaGaaeOCaiaab6cacaqG0bGaaeOlaiaabcca caqG4bGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzai aabshaaeaacaWLjaGaaCzcaiaaxMaacaWG5bGaai4jaiabg2da9iaa dwgadaahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggaca WFGaGaci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGa a8hiaiGacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaa Gaey4kaSIaamyzamaaCaaaleqabaGaamiEaaaakmaabmaabaGaamyy aiaa=bcaciGGJbGaai4BaiaacohacaWFGaGaamiEaiabgUcaRiaadk gacaWFGaGaci4CaiaacMgacaGGUbGaaGPaVlaadIhaaiaawIcacaGL PaaaaeaacaWLjaGaaCzcaiaaxMaacaWG5bGaai4jaiabg2da9iaadw gadaahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggacaWF GaGaci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGaa8 hiaiGacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaaGa ey4kaSIaamyEaiaaykW7caaMc8UaaGPaVpaadmaabaGaaeOraiaabk hacaqGVbGaaeyBaiaaykW7caaMc8UaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaeaacqGHshI3caWLjaGaaCzcaiaaykW7 caaMc8UaaGPaVlaaykW7caWG5bGaai4jaiabgkHiTiaadMhacqGH9a qpcaWGLbWaaWbaaSqabeaacaWG4baaaOWaaeWaaeaacqGHsislcaWG HbGaa8hiaiGacohacaGGPbGaaiOBaiaa=bcacaWG4bGaey4kaSIaam Oyaiaa=bcaciGGJbGaai4BaiaacohacaaMc8UaamiEaaGaayjkaiaa wMcaaiaaxMaacaWLjaGaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7ca GGUaGaaiOlaiaac6cadaqadaqaaiaadMgacaWGPbaacaGLOaGaayzk aaaabaGaaeyqaiaabEgacaqGHbGaaeyAaiaab6gacaqGNbGaaeilai aaykW7caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGa aeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgaca qGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaa bsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaae iDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqG GaGaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiaacEcaca GGNaGaeyOeI0IaamyEaiaacEcacqGH9aqpcaWGLbWaaWbaaSqabeaa caWG4baaaOWaaeWaaeaacqGHsislcaWGHbGaa8hiaiGacogacaGGVb Gaai4Caiaa=bcacaWG4bGaeyOeI0IaamOyaiaa=bcaciGGZbGaaiyA aiaac6gacaaMc8UaamiEaaGaayjkaiaawMcaaiabgUcaRiaadwgada ahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggacaWFGaGa ci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGaa8hiai GacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaaaabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWG5bGaai4jaiaacEcacqGHsislcaWG5bGaai4jaiabg2da9i abgkHiTiaadMhacqGHRaWkcaWG5bGaai4jaiabgkHiTiaadMhacaWL jaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaxMaadaWadaqaaiaabAeaca qGYbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaa bshacaqGPbGaae4Baiaab6gadaqadaqaaiaadMgacaWGPbaacaGLOa GaayzkaaaacaGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaxMaacaaMc8UaaGPaVlaadMhacaGGNaGaai4jaiabgkHiTiaaik dacaWG5bGaai4jaiabgUcaRiaaikdacaWG5bGaeyypa0JaaGimaaqa aiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMga caqGYbGaaeyzaiaabsgacaqGGaGaaeizaiaabMgacaqGMbGaaeOzai aabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGa aeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gaca qGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaadMhacaGGNaGaai4jaiab gkHiTiaaikdacaWG5bGaai4jaiabgUcaRiaaikdacaWG5bGaeyypa0 JaaGimaiaac6caaaaa@F573@

Q.30 Form the differential equation of the family of circles touching the y-axis at origin.

Ans.

The centre of the circle touching y-axis at origin lies on x-axis. Let the centre of circle be (a, 0).
Radius of circle will be ‘a’ because circle touches y-axis at origin. So, the equation of circle with centre (a, 0) and radius ‘a’ is as follows
(x – a)2 + y2 = a2
x2 – 2ax + a2 + y2 = a2
x2 + y2 = 2ax … (i)

Differentiating equation (i), w.r.t. x, we get

2x + 2yy’ = 2a

x + yy’ = a

Putting value of a in equation (i), we get

x2 + y2 = 2(x + yy’)x
= 2x2 + 2xyy’

y2 = x2 + 2xyy’

Thus, the required differential equation is 2xyy’ + x2 = y2.

Q.31 Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

Ans.

The equation of parabolas having vertex at origin and axis along positive y-axis is as follows
x2 = 4ay …(i)
Differentiating w.r.t. x, we get
2x = 4ay’
or (2x/y’) = 4a
Putting value of 4a in equation (i), we get
x2 = (2x/y’)y

x2y’ = 2xy

or xy’ = 2y
or xy’ – 2y = 0

Thus, the required differential equation is
xy’ – 2y = 0.

Q.32 Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.

Ans.

Theequation of the family of ellipses having foci on y-axis and centre at origin is as follows x 2 b 2 + y 2 a 2 =1 ( i ) Differentiating w.r.t. x, we get 2x b 2 + 2yy’ a 2 =0 x b 2 + yy’ a 2 =0 ( ii ) Again,differentiating w.r.t. x, we get 1 b 2 + 1 a 2 ( yy”+y’y’ )=0 1 b 2 + 1 a 2 { yy”+ ( y’ ) 2 }=0 1 b 2 = 1 a 2 { yy”+ ( y’ ) 2 } Substituting the value of 1 b 2 in equation ( ii ), we get x[ 1 a 2 { yy”+ ( y’ ) 2 } ]+ yy’ a 2 =0 x{ yy”+ ( y’ ) 2 }+yy=0 xyyx ( y ) 2 +yy=0 xyy+x ( y ) 2 yy=0 Thus, the required differential equation is xyy” + x ( y’ ) 2 –yy’ = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaaykW7caaMc8Uaaeyzaiaabgha caqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4Bai aabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabAgacaqGHbGa aeyBaiaabMgacaqGSbGaaeyEaiaabccacaqGVbGaaeOzaiaabccaca qGLbGaaeiBaiaabYgacaqGPbGaaeiCaiaabohacaqGLbGaae4Caiaa bccacaqGObGaaeyyaiaabAhacaqGPbGaaeOBaiaabEgacaqGGaGaae Ozaiaab+gacaqGJbGaaeyAaiaabccacaqGVbGaaeOBaiaabckaaeaa caqG5bGaaeylaiaabggacaqG4bGaaeyAaiaabohacaqGGaGaaeyyai aab6gacaqGKbGaaeiiaiaabogacaqGLbGaaeOBaiaabshacaqGYbGa aeyzaiaabccacaqGHbGaaeiDaiaabccacaqGVbGaaeOCaiaabMgaca qGNbGaaeyAaiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaa bohacaqGGaGaaeOzaiaab+gacaqGSbGaaeiBaiaab+gacaqG3bGaae 4CaiaabckaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzcamaalaaa baGaaeiEamaaCaaaleqabaGaaeOmaaaaaOqaaiaabkgadaahaaWcbe qaaiaabkdaaaaaaOGaaeiiaiabgUcaRiaabccadaWcaaqaaiaabMha daahaaWcbeqaaiaabkdaaaaakeaacaqGHbWaaWbaaSqabeaacaqGYa aaaaaakiabg2da9iaabgdacaGGGcGaaCzcaiaaxMaacqGHMacVcaqG GaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaGaaiiOaaqaaiaabseaca qGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaa bMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaae OlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqG GaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0bGaaeiOaaqaai aaykW7caaMc8UaaGPaVlaacckacaWLjaGaaGPaVpaalaaabaGaaeOm aiaabIhaaeaacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakiabgUcaRm aalaaabaGaaeOmaiaabMhacaqG5bGaae4jaaqaaiaabggadaahaaWc beqaaiaabkdaaaaaaOGaeyypa0JaaeimaaqaaiaaykW7caaMc8UaaG PaVlaacckacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGa aeiEaaqaaiaabkgadaahaaWcbeqaaiaabkdaaaaaaOGaey4kaSYaaS aaaeaacaqG5bGaaeyEaiaabEcaaeaacaqGHbWaaWbaaSqabeaacaqG Yaaaaaaakiabg2da9iaabcdacaGGGcGaaCzcaiaaxMaacqGHMacVca qGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaaqaaiaabgea caqGNbGaaeyyaiaabMgacaqGUbGaaeilaiaaykW7caqGKbGaaeyAai aabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGa aeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6caca qGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaa bEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaiaabckaaeaacaaMc8 UaaGPaVlaaykW7caGGGcGaaCzcaiaaykW7daWcaaqaaiaabgdaaeaa caqGIbWaaWbaaSqabeaacaqGYaaaaaaakiabgUcaRmaalaaabaGaae ymaaqaaiaabggadaahaaWcbeqaaiaabkdaaaaaaOWaaeWaaeaacaqG 5bGaaeyEaiaabEcacaqGNaGaae4kaiaabMhacaqGNaGaaeyEaiaabE caaiaawIcacaGLPaaacqGH9aqpcaqGWaaabaGaaGPaVlaaykW7caaM c8UaaiiOaiaaxMaacaaMc8+aaSaaaeaacaqGXaaabaGaaeOyamaaCa aaleqabaGaaeOmaaaaaaGccqGHRaWkdaWcaaqaaiaabgdaaeaacaqG HbWaaWbaaSqabeaacaqGYaaaaaaakmaacmaabaGaaeyEaiaabMhaca qGNaGaae4jaiaabUcadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzk aaWaaWbaaSqabeaacaqGYaaaaaGccaGL7bGaayzFaaGaeyypa0Jaae imaaqaaiaaykW7caaMc8UaaGPaVlaacckacaWLjaGaaCzcaiaaxMaa caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacaqGXaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqp cqGHsisldaWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqabeaacaqGYa aaaaaakmaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabUcadaqa daqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYa aaaaGccaGL7bGaayzFaaaabaGaae4uaiaabwhacaqGIbGaae4Caiaa bshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyAaiaab6gacaqGNbGaae iiaiaabshacaqGObGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG 1bGaaeyzaiaabccacaqGVbGaaeOzaiaabccadaWcaaqaaiaabgdaae aacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakiaabccacaqGPbGaaeOB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabccadaqadaqaaiaabMgacaqGPbaacaGLOaGaayzkaaGa aeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaae aacaaMc8UaaeiEamaadmaabaGaeyOeI0YaaSaaaeaacaqGXaaabaGa aeyyamaaCaaaleqabaGaaeOmaaaaaaGcdaGadaqaaiaabMhacaqG5b Gaae4jaiaabEcacaqGRaWaaeWaaeaacaqG5bGaae4jaaGaayjkaiaa wMcaamaaCaaaleqabaGaaeOmaaaaaOGaay5Eaiaaw2haaaGaay5wai aaw2faaiabgUcaRmaalaaabaGaaeyEaiaabMhacaqGNaaabaGaaeyy amaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpcaqGWaaabaGaeyO0H4 TaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaamiE amaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabUcadaqadaqaai aabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYaaaaaGc caGL7bGaayzFaaGaey4kaSIaamyEaiaadMhacaGGNaGaeyypa0JaaG imaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHsislcaWG4bGaamyEaiaadMhacaGGNaGaai4jaiabgk HiTiaadIhadaqadaqaaiaadMhacaGGNaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaamyEaiaadMhacaGGNaGaeyypa0 JaaGimaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG4bGaamyEaiaadMhaca GGNaGaai4jaiabgUcaRiaadIhadaqadaqaaiaadMhacaGGNaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyEaiaadM hacaGGNaGaeyypa0JaaGimaaqaaiaabsfacaqGObGaaeyDaiaaboha caqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzai aabghacaqG1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae iEaiaabMhacaqG5bGaae4jaiaabEcacaqGGaGaae4kaiaabccacaqG 4bWaaeWaaeaacaqG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqaba GaaeOmaaaakiaabobicaqG5bGaaeyEaiaabEcacaqGGaGaaeypaiaa bccacaqGWaGaaeOlaaaaaa@4F96@

Q.33 Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.

Ans.

The differential equation of the family of hyperbolas having foci on x-axis and centre at origin is as follows x 2 a 2 y 2 b 2 =1 ( i ) Differentiating w.r.t. x, we get 2x a 2 2yy’ b 2 =0 x a 2 yy’ b 2 =0 ( ii ) Again,differentiating w.r.t. x, we get 1 a 2 1 b 2 ( yy”+y’y’ )=0 1 a 2 1 b 2 { yy”+ ( y’ ) 2 }=0 1 a 2 = 1 b 2 { yy”+ ( y’ ) 2 } Substituting the value of 1 a 2 in equation ( ii ), we get x[ 1 b 2 { yy”+ ( y’ ) 2 } ] yy’ b 2 =0 x{ yy”+ ( y’ ) 2 }yy=0 xyy+x ( y ) 2 yy=0 Thus, the required differential equation is xyy” + x ( y’ ) 2 –yy’=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGKbGaaeyAaiaabAga caqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyai aabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGa ae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgaca qGLbGaaeiiaiaabAgacaqGHbGaaeyBaiaabMgacaqGSbGaaeyEaiaa bccacaqGVbGaaeOzaiaabccacaqGObGaaeyEaiaabchacaqGLbGaae OCaiaabkgacaqGVbGaaeiBaiaabggacaqGZbGaaeiiaiaabIgacaqG HbGaaeODaiaabMgacaqGUbGaae4zaiaabccacaqGMbGaae4Baiaabo gacaqGPbaabaGaae4Baiaab6gacaqGGaGaaeiEaiaab2cacaqGHbGa aeiEaiaabMgacaqGZbGaaeiiaiaabggacaqGUbGaaeizaiaabccaca qGJbGaaeyzaiaab6gacaqG0bGaaeOCaiaabwgacaqGGaGaaeyyaiaa bshacaqGGcGaaGPaVlaab+gacaqGYbGaaeyAaiaabEgacaqGPbGaae OBaiaaygW7caqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabohacaqG GaGaaeOzaiaab+gacaqGSbGaaeiBaiaab+gacaqG3bGaae4Caaqaai aaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamiEamaaCaaaleqaba GaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaeyOe I0YaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyam aaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaGaaiiOaiaaxMaa caWLjaGaeyOjGWRaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaai aacckaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqG LbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabE gacaaMb8UaaeiiaiaabEhacaqGUaGaaeOCaiaab6cacaqG0bGaaeOl aiaabccacaqG4bGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNb GaaeyzaiaabshaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzcaiaa ykW7caWLjaGaaCzcaiaaykW7daWcaaqaaiaabkdacaqG4baabaGaae yyamaaCaaaleqabaGaaeOmaaaaaaGccqGHsisldaWcaaqaaiaabkda caqG5bGaaeyEaiaabEcaaeaacaqGIbWaaWbaaSqabeaacaqGYaaaaa aakiabg2da9iaabcdaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caWLjaGaaCzcaiaaykW7caaMc8 UaaGPaVlaaykW7daWcaaqaaiaabIhaaeaacaqGHbWaaWbaaSqabeaa caqGYaaaaaaakiabgkHiTmaalaaabaGaaeyEaiaabMhacaqGNaaaba GaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpcaqGWaGaaiiO aiaaxMaacaWLjaGaeyOjGWRaaeiiamaabmaabaGaaeyAaiaabMgaai aawIcacaGLPaaacaGGGcaabaGaaeyqaiaabEgacaqGHbGaaeyAaiaa b6gacaqGSaGaaGPaVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaae OCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqG UbGaae4zaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6 cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4z aiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaiiOaiaaxMaaca aMc8UaaGPaVlaaykW7daWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqa beaacaqGYaaaaaaakiabgkHiTmaalaaabaGaaeymaaqaaiaabkgada ahaaWcbeqaaiaabkdaaaaaaOWaaeWaaeaacaqG5bGaaeyEaiaabEca caqGNaGaae4kaiaabMhacaqGNaGaaeyEaiaabEcaaiaawIcacaGLPa aacqGH9aqpcaqGWaaabaGaaGPaVlaaykW7caaMc8UaaiiOaiaaxMaa caaMc8+aaSaaaeaacaqGXaaabaGaaeyyamaaCaaaleqabaGaaeOmaa aaaaGccqGHsisldaWcaaqaaiaabgdaaeaacaqGIbWaaWbaaSqabeaa caqGYaaaaaaakmaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabU cadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaa caqGYaaaaaGccaGL7bGaayzFaaGaeyypa0JaaeimaaqaaiaaykW7ca aMc8UaaGPaVlaacckacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaqGXaaabaGaae yyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpdaWcaaqaaiaabgda aeaacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakmaacmaabaGaaeyEai aabMhacaqGNaGaae4jaiaabUcadaqadaqaaiaabMhacaqGNaaacaGL OaGaayzkaaWaaWbaaSqabeaacaqGYaaaaaGccaGL7bGaayzFaaaaba Gaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwha caqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzai aabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGa aeOzaiaabccadaWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqabeaaca qGYaaaaaaakiaabccacaqGPbGaaeOBaiaabccacaqGLbGaaeyCaiaa bwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccadaqadaqaai aabMgacaqGPbaacaGLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyz aiaabccacaqGNbGaaeyzaiaabshaaeaacaaMc8UaaeiEamaadmaaba WaaSaaaeaacaqGXaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGc daGadaqaaiaabMhacaqG5bGaae4jaiaabEcacaqGRaWaaeWaaeaaca qG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaaaOGa ay5Eaiaaw2haaaGaay5waiaaw2faaiabgkHiTmaalaaabaGaaeyEai aabMhacaqGNaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH 9aqpcaqGWaaabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiEamaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaa bUcadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabe aacaqGYaaaaaGccaGL7bGaayzFaaGaeyOeI0IaamyEaiaadMhacaGG NaGaeyypa0JaaGimaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWG4bGaamyEaiaadMhacaGGNaGaai4j aiabgUcaRiaadIhadaqadaqaaiaadMhacaGGNaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyEaiaadMhacaGGNaGa eyypa0JaaGimaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaae iiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabghacaqG 1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKbGaaeyAaiaabA gacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyy aiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPb Gaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaaeiEaiaabMha caqG5bGaae4jaiaabEcacaqGGaGaae4kaiaabccacaqG4bWaaeWaae aacaqG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaa kiaabccacaqGtaIaaeyEaiaabMhacaqGNaGaaeypaiaabcdacaqGUa aaaaa@4C8B@

Q.34 Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

Ans.

The centre of the circle lies on y-axis. Let the centre of circle be (0, b).
So, the equation of circle with centre (0, b) and radius 3 is as follows
x2 + (y – b)2 = 32 … (i)

Differentiating equation ( i ), w.r.t. x, we get 2x+2( y b ) y=0 x+( y b ) y=0 ( yb )= x y

Putting value of a in equation ( i ), we get

x 2 + ( x y ) 2 =9 x 2 y 2 + x 2 =9y 2 ( y ) 2 ( x 2 9 )+ x 2 =0 This is the required differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aaceqaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaaykW7caqG4bWaaWbaaSqabeaacaqGYaaaaOGaey 4kaSYaaeWaaeaadaWcaaqaaiabgkHiTiaabIhaaeaacaaMc8UaaeyE aiaacMbicaGGGcaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaa aakiabg2da9iaaiMdacaGGGcaabaGaaCzcaiaaykW7caaMc8UaaGPa VlaaykW7caWG4bWaaWbaaSqabeaacGaMaIOmaaaakiaadMhacaGGNa WaaWbaaSqabeaacaaIYaaaaOGaaGPaVlabgUcaRiaadIhadaahaaWc beqaaiacyciIYaaaaOGaeyypa0JaaGyoaiaadMhacaGGNaWaaWbaaS qabeaacaaIYaaaaaGcbaWaaeWaaeaacaWG5bGaai4jaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamiEamaaCaaale qabaGaiGjGikdaaaGccqGHsislcaaI5aaacaGLOaGaayzkaaGaaGPa VlabgUcaRiaadIhadaahaaWcbeqaaiacyciIYaaaaOGaeyypa0JaaG imaaqaaiaadsfacaWGObGaamyAaiaadohacaqGGaGaaeyAaiaaboha caqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeyCai aabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabsgacaqGPbGa aeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgaca qGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaa bMgacaqGVbGaaeOBaiaab6caaaaa@A1C0@

Q.35

Which of the following differential equations has y = c1 ex + c2 ex as the general solution?(A)d2ydx2 + y = 0    (B)d2ydx2y = 0  (C)d2ydx2 + 1 = 0 (D)d2ydx21 = 0

Ans.

            y=c1ex+c2ex  ...(i)Differentiating w.r.t. x, we get      dydx=c1exc2exAgain, differentiating w.r.t. x, we get  d2ydx2=c1ex+c2ex          =yord2ydx2y=0Thus,‹‹ option B is correct.

Q.36

Which of the following differential equations has y = x as one of its particular solution? ( A ) d 2 y d x 2 x 2 dy dx +xy=x ( B ) d 2 y d x 2 x dy dx +xy=x ( C ) d 2 y d x 2 x 2 dy dx +xy=0 ( D ) d 2 y d x 2 +x dy dx +xy=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabEfacaqGObGaaeyAaiaabogacaqGObGaaeiiaiaab+ga caqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGMbGaae4Bai aabYgacaqGSbGaae4BaiaabEhacaqGPbGaaeOBaiaabEgacaqGGaGa aeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gaca qG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaa bggacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccacaqGObGaae yyaiaabohacaqGGaGaaeyEaiaabccacaqG9aGaaeiiaiaabIhacaqG GaGaaeyyaiaabohacaqGGaaabaGaae4Baiaab6gacaqGLbGaaeiiai aab+gacaqGMbGaaeiiaiaabMgacaqG0bGaae4CaiaabccacaqGWbGa aeyyaiaabkhacaqG0bGaaeyAaiaabogacaqG1bGaaeiBaiaabggaca qGYbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaa b+gacaqGUbGaae4paaqaamaabmaabaGaaeyqaaGaayjkaiaawMcaai aaykW7caaMc8+aaSaaaeaaieqacaWFKbWaaWbaaSqabeaacaWFYaaa aOGaa8xEaaqaaiaa=rgacaWF4bWaaWbaaSqabeaacaWFYaaaaaaaki abgkHiTiaa=HhadaahaaWcbeqaaiaa=jdaaaGcdaWcaaqaaiaahsga caWF5baabaGaaCizaiaahIhaaaGaa83kaiaa=HhacaWF5bGaa8xpai aa=HhacaaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaadaqadaqa aiaabkeaaiaawIcacaGLPaaacaaMc8UaaGPaVpaalaaabaGaa8hzam aaCaaaleqabaGaa8Nmaaaakiaa=LhaaeaacaWFKbGaa8hEamaaCaaa leqabaGaa8NmaaaaaaGccqGHsislcaWF4bWaaSaaaeaacaWHKbGaa8 xEaaqaaiaahsgacaWH4baaaiaa=TcacaWF4bGaa8xEaiaa=1dacaWF 4baabaWaaeWaaeaacaqGdbaacaGLOaGaayzkaaGaaGPaVlaaykW7da Wcaaqaaiaa=rgadaahaaWcbeqaaiaa=jdaaaGccaWF5baabaGaa8hz aiaa=HhadaahaaWcbeqaaiaa=jdaaaaaaOGaeyOeI0Iaa8hEamaaCa aaleqabaGaa8NmaaaakmaalaaabaGaaCizaiaa=LhaaeaacaWHKbGa aCiEaaaacaWFRaGaa8hEaiaa=LhacaWF9aGaa8hmaiaaxMaacaWLja GaaCzcamaabmaabaGaaeiraaGaayjkaiaawMcaaiaaykW7caaMc8+a aSaaaeaacaWFKbWaaWbaaSqabeaacaWFYaaaaOGaa8xEaaqaaiaa=r gacaWF4bWaaWbaaSqabeaacaWFYaaaaaaakiabgUcaRiaa=HhadaWc aaqaaiaahsgacaWF5baabaGaaCizaiaahIhaaaGaa83kaiaa=Hhaca WF5bGaa8xpaiaa=bdaaaaa@E777@

Ans.

We have y = x ( i ) Differentiating w.r.t. x, we get dy dx =1 ( ii ) Again, differentiating w.r.t. x, we get d 2 y d x 2 =0 ( iii ) Putting values of y, dy dx and d 2 y d x 2 in each given options, ( A )L.H.S.= d 2 y d x 2 x 2 dy dx +xy =0 x 2 ( 1 )+x( x ) =0R.H.S. Thus, it is not correct option. ( B )L.H.S.= d 2 y d x 2 x dy dx +xy =0x( x )+x( x ) =0R.H.S. Thus, it is not correct option. ( C )L.H.S.= d 2 y d x 2 x 2 dy dx +xy =0 x 2 ( 1 )+x( x ) =0=R.H.S. Thus, it is correct option. Hence, the correct solution is option C. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabEfacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwga caqGGaGaaeyEaiaabccacaqG9aGaaeiiaiaabIhacaGGGcGaaiiOai aacckacaqGMaIaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaaqa aiaabseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUb GaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabcca caqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEai aabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baa baGaaCzcaiaaxMaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadI haaaGaeyypa0JaaGymaiaaxMaacaWLjaGaaCzcaiaab6cacaqGUaGa aeOlamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaaaeaacaqGbb Gaae4zaiaabggacaqGPbGaaeOBaiaabYcacaaMb8Uaaeiiaiaabsga caqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDai aabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGa aeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcaca qGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzc aiaaxMaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5b aabaGaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja aGimaiaaxMaacaWLjaGaaCzcaiaab6cacaqGUaGaaeOlamaabmaaba GaaeyAaiaabMgacaqGPbaacaGLOaGaayzkaaaabaGaaeiuaiaabwha caqG0bGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG2bGaaeyyai aabYgacaqG1bGaaeyzaiaabohacaqGGaGaae4BaiaabAgacaqGGaGa aeyEaiaabYcacaqGGaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgaca WG4baaaiaabccacaWGHbGaamOBaiaadsgacaqGGaWaaSaaaeaacaWG KbWaaWbaaSqabeaacaaIYaaaaOGaamyEaaqaaiaadsgacaWG4bWaaW baaSqabeaacaaIYaaaaaaakiaabccacaqGPbGaaeOBaiaabccacaqG LbGaaeyyaiaabogacaqGObGaaeiiaiaabEgacaqGPbGaaeODaiaabw gacaqGUbGaaeiiaiaab+gacaqGWbGaaeiDaiaabMgacaqGVbGaaeOB aiaabohacaqGSaaabaWaaeWaaeaacaqGbbaacaGLOaGaayzkaaGaaG PaVlaaykW7caqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaac6cacqGH 9aqpdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baaba GaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOmaaaakmaalaaabaGaamizaiaadMhaaeaaca WGKbGaamiEaaaacqGHRaWkcaWG4bGaamyEaaqaaiaaxMaacaWLjaGa eyypa0JaaGimaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWG4bWaaeWaaeaa caWG4baacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacqGH9aqpcaaIWa GaeyiyIKRaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaaabaGa aeivaiaabIgacaqG1bGaae4CaiaabYcacaqGGaGaaeyAaiaabshaca qGGaGaaeyAaiaabohacaqGGaGaaeOBaiaab+gacaqG0bGaaeiiaiaa bogacaqGVbGaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaae 4BaiaabchacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaa baGaaeOqaaGaayjkaiaawMcaaiaaykW7caqGmbGaaeOlaiaabIeaca qGUaGaae4uaiaab6cacqGH9aqpcaaMc8UaaGPaVpaalaaabaGaamiz amaaCaaaleqabaGaaGOmaaaakiaadMhaaeaacaWGKbGaamiEamaaCa aaleqabaGaaGOmaaaaaaGccqGHsislcaWG4bWaaSaaaeaacaWGKbGa amyEaaqaaiaadsgacaWG4baaaiabgUcaRiaadIhacaWG5baabaGaaC zcaiaaxMaacqGH9aqpcaaIWaGaeyOeI0IaamiEamaabmaabaGaamiE aaGaayjkaiaawMcaaiabgUcaRiaadIhadaqadaqaaiaadIhaaiaawI cacaGLPaaaaeaacaWLjaGaaCzcaiabg2da9iaaicdacqGHGjsUcaqG sbGaaeOlaiaabIeacaqGUaGaae4uaiaab6caaeaacaqGubGaaeiAai aabwhacaqGZbGaaeilaiaabccacaqGPbGaaeiDaiaabccacaqGPbGa ae4CaiaabccacaqGUbGaae4BaiaabshacaqGGaGaae4yaiaab+gaca qGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGVbGaaeiCaiaa bshacaqGPbGaae4Baiaab6gacaqGUaaabaWaaeWaaeaacaqGdbaaca GLOaGaayzkaaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqGUaGa eyypa0ZaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyEaa qaaiaadsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadsgacaWG5baaba GaamizaiaadIhaaaGaey4kaSIaamiEaiaadMhaaeaacaWLjaGaaCzc aiabg2da9iaaicdacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaO WaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaey4kaSIaamiEamaabmaa baGaamiEaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaeyypa0JaaG imaiabg2da9iaabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqa aiaabsfacaqGObGaaeyDaiaabohacaqGSaGaaeiiaiaabMgacaqG0b GaaeiiaiaabMgacaqGZbGaaeiiaiaabogacaqGVbGaaeOCaiaabkha caqGLbGaae4yaiaabshacaqGGaGaae4BaiaabchacaqG0bGaaeyAai aab+gacaqGUbGaaeOlaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqG LbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+ gacaqGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGZbGaae4B aiaabYgacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPb Gaae4CaiaabccacaqGVbGaaeiCaiaabshacaqGPbGaae4Baiaab6ga caqGGaGaae4qaiaab6caaaaa@DA01@

Q.37 For the differential equations, find the general solution:

dy dx = 1cosx 1+cosx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaeyyp a0ZaaSaaaeaacaWFXaGaeyOeI0Iaa83yaiaa=9gacaWFZbGaa8hEaa qaaiaa=fdacaWFRaGaa83yaiaa=9gacaWFZbGaa8hEaaaaaaa@4881@

Ans.

The given differential equation is: dy dx = 1cosx 1+cosx = 2 sin 2 x 2 2 cos 2 x 2 [ Cos2x=12 sin 2 x=2 cos 2 x1 ] = tan 2 x 2 = sec 2 x 2 1 Separating the variables, we get dy=( sec 2 x 2 1 )dx Integrating both sides of the above equation, we get dy = ( sec 2 x 2 1 ) dx y=2tan x 2 x+C This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaaGPaVlaaykW7daWcaaqaaiaa dsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaaSaaaeaacaaIXa GaeyOeI0Iaci4yaiaac+gacaGGZbGaamiEaaqaaiaaigdacqGHRaWk ciGGJbGaai4BaiaacohacaWG4baaaaqaaiaaxMaacqGH9aqpdaWcaa qaaiaaikdaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGc daWcaaqaaiaadIhaaeaacaaIYaaaaaqaaiaaikdaciGGJbGaai4Bai aacohadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadIhaaeaacaaI YaaaaaaacaWLjaGaaCzcamaadmaabaGaeSynIeLaam4qaiaad+gaca WGZbGaaGOmaiaadIhacqGH9aqpcaaIXaGaeyOeI0IaaGOmaiGacoha caGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhacqGH9aqpca aIYaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaamiE aiabgkHiTiaaigdaaiaawUfacaGLDbaaaeaacaWLjaGaeyypa0Jaci iDaiaacggacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaacaWG 4baabaGaaGOmaaaaaeaacaWLjaGaeyypa0Jaci4CaiaacwgacaGGJb WaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaacaWG4baabaGaaGOmaaaa cqGHsislcaaIXaaabaGaae4uaiaabwgacaqGWbGaaeyyaiaabkhaca qGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaaeODaiaabggacaqGYbGaaeyAaiaabggacaqGIbGaae iBaiaabwgacaqGZbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqG NbGaaeyzaiaabshaaeaacaaMc8UaaGPaVlaabsgacaqG5bGaeyypa0 ZaaeWaaeaaciGGZbGaaiyzaiaacogadaahaaWcbeqaaiaaikdaaaGc daWcaaqaaiaadIhaaeaacaaIYaaaaiabgkHiTiaaigdaaiaawIcaca GLPaaacaWGKbGaamiEaaqaaiaabMeacaqGUbGaaeiDaiaabwgacaqG NbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabk gacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyz aiaabohacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLb GaaeiiaiaabggacaqGIbGaae4BaiaabAhacaqGLbGaaeiiaiaabwga caqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeilai aabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaadaWd baqaaiaadsgacaWG5baaleqabeqdcqGHRiI8aOGaaGPaVlabg2da9m aapeaabaWaaeWaaeaaciGGZbGaaiyzaiaacogadaahaaWcbeqaaiaa ikdaaaGcdaWcaaqaaiaadIhaaeaacaaIYaaaaiabgkHiTiaaigdaai aawIcacaGLPaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadIha aeaacaaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da9iaaikdaci GG0bGaaiyyaiaac6gadaWcaaqaaiaadIhaaeaacaaIYaaaaiabgkHi TiaadIhacqGHRaWkcaWGdbaabaGaaeivaiaabIgacaqGPbGaae4Cai aabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGa aeOCaiaabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgaca qGGaGaae4zaiaabwgacaqGUbGaaeyzaiaabkhacaqGHbGaaeiBaiaa bccacaqGZbGaae4BaiaabYgacaqG1bGaaeiDaiaabMgacaqGVbGaae OBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqG GaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeizaiaabM gacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyA aiaabggacaqGSbGaaeiiaaqaaiaabwgacaqGXbGaaeyDaiaabggaca qG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@63B0@

Q.38 For the differential equations, find the general solution:

dy dx = 4 y 2 ( 2<y<2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaeyyp a0ZaaOaaaeaacaWF0aGamGjGgkHiTiaa=LhadaahaaWcbeqaaiaa=j daaaaabeaakiaaxMaacaWLjaWaaeWaaeaacqGHsislcaWFYaGaa8hp aiaa=LhacaWF8aGaa8NmaaGaayjkaiaawMcaaaaa@4A3C@

Ans.

The given differential equation is: dy dx = 4 y 2 Separatingthe variables, we get dy 4 y 2 =dx Integrating both sides of above equation,we get dy 4 y 2 = dx sin 1 ( y 2 )=x+C y 2 =sin( x+C ) y=2sin( x+C ) This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaaCzcaiaaykW7caaMc8+aaSaa aeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaiabg2da9maakaaaba GaaGinaiadycOHsislcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaa keaacaqGtbGaaeyzaiaabchacaqGHbGaaeOCaiaabggacaqG0bGaae yAaiaab6gacaqGNbGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqG 2bGaaeyyaiaabkhacaqGPbGaaeyyaiaabkgacaqGSbGaaeyzaiaabo hacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiD aaqaaiaaykW7caaMc8+aaSaaaeaacaWGKbGaamyEaaqaamaakaaaba GaaGinaiabgkHiTiaadMhadaahaaWcbeqaaiaaikdaaaaabeaaaaGc cqGH9aqpcaWGKbGaamiEaaqaaiaabMeacaqGUbGaaeiDaiaabwgaca qGNbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaa bkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaae yzaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaaeyyaiaabkgacaqG VbGaaeODaiaabwgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabs hacaqGPbGaae4Baiaab6gacaqGSaGaae4DaiaabwgacaqGGaGaae4z aiaabwgacaqG0baabaWaa8qaaeaadaWcaaqaaiaadsgacaWG5baaba WaaOaaaeaacaaI0aGaeyOeI0IaamyEamaaCaaaleqabaGaaGOmaaaa aeqaaaaaaeqabeqdcqGHRiI8aOGaaGPaVlabg2da9maapeaabaGaam izaiaadIhaaSqabeqaniabgUIiYdaakeaaciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaam yEaaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyypa0JaamiEaiabgUca RiaadoeaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVpaalaaaba GaamyEaaqaaiaaikdaaaGaeyypa0Jaci4CaiaacMgacaGGUbWaaeWa aeaacaWG4bGaey4kaSIaam4qaaGaayjkaiaawMcaaaqaaiaaxMaaca aMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da9iaaikdaciGGZbGa aiyAaiaac6gadaqadaqaaiaadIhacqGHRaWkcaWGdbaacaGLOaGaay zkaaaabaGaaeivaiaabIgacaqGPbGaae4CaiaabccacaqGPbGaae4C aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXb GaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaae4zaiaabwga caqGUbGaaeyzaiaabkhacaqGHbGaaeiBaiaabccacaqGZbGaae4Bai aabYgacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGa aeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgaca qG2bGaaeyzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaa bwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbaaba GaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6ga caqGUaaaaaa@3310@

Q.39 For the differential equations, find the general solution:

dy dx +y=1 ( y1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaey4k aSIaaCyEaiabg2da9iaahgdacaWLjaGaaCzcamaabmaabaGaaCyEai abgcMi5kaahgdaaiaawIcacaGLPaaaaaa@46E0@

Ans.

The given differential equation is: dy dx +y=1 dy dx =1y Separating the variables, we get dy 1y =dx Integrating both sides of the given differential equation, we get dy 1y = dx log( 1y )=x+logC log( 1y )logC=x logC( 1y )=x C( 1y )= e x 1y= 1 C e x y=1 1 C e x =1A e x [ WhereA= 1 C ] This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaaCzcamaalaaabaGaamizaiaa dMhaaeaacaWGKbGaamiEaaaacqGHRaWkcaWG5bGaeyypa0JaaGymaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWL jaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0Ja aGymaiabgkHiTiaadMhaaeaacaWGtbGaamyzaiaadchacaWGHbGaam OCaiaadggacaWG0bGaamyAaiaad6gacaWGNbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqG2bGaaeyyaiaabkhacaqGPbGaaeyyaiaabk gacaqGSbGaaeyzaiaabohacaqGSaGaaeiiaiaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7ca aMc8+aaSaaaeaacaWGKbGaamyEaaqaaiaaigdacqGHsislcaWG5baa aiabg2da9iaadsgacaWG4baabaGaamysaiaad6gacaWG0bGaamyzai aadEgacaWGYbGaamyyaiaadshacaWGPbGaamOBaiaadEgacaqGGaGa aeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsgaca qGLbGaae4CaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaae izaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabg gacaqG0bGaaeyAaiaab+gacaqGUbGaaeilaiaabccacaqG3bGaaeyz aiaabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaGPaVlaaykW7da WdbaqaamaalaaabaGaamizaiaadMhaaeaacaaIXaGaeyOeI0IaamyE aaaaaSqabeqaniabgUIiYdGccaaMc8Uaeyypa0Zaa8qaaeaacaWGKb GaamiEaaWcbeqab0Gaey4kIipaaOqaaiaaxMaacaWLjaGaaGPaVlab gkHiTiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiabgkHiTiaadM haaiaawIcacaGLPaaacqGH9aqpcaWG4bGaey4kaSIaciiBaiaac+ga caGGNbGaam4qaaqaaiabgkDiElabgkHiTiGacYgacaGGVbGaai4zam aabmaabaGaaGymaiabgkHiTiaadMhaaiaawIcacaGLPaaacqGHsisl ciGGSbGaai4BaiaacEgacaWGdbGaeyypa0JaamiEaaqaaiabgkDiEl aaxMaacaWLjaGaciiBaiaac+gacaGGNbGaam4qamaabmaabaGaaGym aiabgkHiTiaadMhaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWG4b aabaGaeyO0H4TaaCzcaiaaykW7caaMc8UaaGPaVlaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4qamaabmaaba GaaGymaiabgkHiTiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWGLbWa aWbaaSqabeaacqGHsislcaWG4baaaaGcbaGaeyO0H4TaaCzcaiaayk W7caaMc8UaaGPaVlaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPa VlaaigdacqGHsislcaWG5bGaeyypa0ZaaSaaaeaacaaIXaaabaGaam 4qaaaacaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaaGcbaGaeyO0 H4TaaCzcaiaaykW7caaMc8UaaCzcaiaaxMaacaWLjaGaamyEaiabg2 da9iaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGdbaaaiaadwga daahaaWcbeqaaiabgkHiTiaadIhaaaaakeaacaWLjaGaaCzcaiaaxM aacaaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0JaaGymaiabgkHiTiaadgeacaWGLbWaaW baaSqabeaacqGHsislcaWG4baaaOGaaCzcaiaaxMaadaWadaqaaiaa dEfacaWGObGaamyzaiaadkhacaWGLbGaaGPaVlaadgeacqGH9aqpda WcaaqaaiaaigdaaeaacaWGdbaaaaGaay5waiaaw2faaaqaaiaadsfa caWGObGaamyAaiaadohacaqGGaGaaeyAaiaabohacaqGGaGaaeiDai aabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeyCaiaabwhacaqGPbGa aeOCaiaabwgacaqGKbGaaeiiaiaabEgacaqGLbGaaeOBaiaabwgaca qGYbGaaeyyaiaabYgacaqGGaGaae4Caiaab+gacaqGSbGaaeyDaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaae iDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqG UbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabw gacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaaeaacaqGLbGa aeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaab6caaa aa@CD14@

Q.40 For the differential equations, find the general solution:

se c 2 xtanydx+se c 2 ytanxdy=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWFZbGaa8xzaiaa=ngadaahaaWcbeqaaiaa=jdaaaGccaaM c8Uaa8hEaiaaykW7caWF0bGaa8xyaiaa=5gacaaMc8Uaa8xEaiaayk W7caWFKbGaa8hEaiaa=TcacaWFZbGaa8xzaiaa=ngadaahaaWcbeqa aiaa=jdaaaGccaWF5bGaaGPaVlaa=rhacaWFHbGaa8NBaiaa=Hhaca aMc8Uaa8hzaiaa=LhacaWF9aGaa8hmaaaa@58FB@

Ans.

The given differential equation is sec 2 xtany dx + sec 2 y tanxdy = 0 Dividing by tan x tan y, we get sec 2 xtanydx+ sec 2 ytanxdy tan x tan y =0 sec 2 x tanx dx+ sec 2 y tany dy=0 sec 2 x tanx dx= sec 2 y tany dy Integrating both sides of above equation, we get sec 2 x tanx dx= sec 2 y tany dy log tanx = -log tany + log C log tanx + log tany = log C log tanx tany = log C tanx tany = C This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohaaeaacaqGZbGaaeyzaiaabogadaahaaWcbeqa aiaabkdaaaGccaaMc8UaaeiEaiaaykW7caaMe8UaaeiDaiaabggaca qGUbGaaGPaVlaabMhacaaMc8UaaeizaiaabIhacaqGGaGaae4kaiaa bccacaqGZbGaaeyzaiaabogadaahaaWcbeqaaiaabkdaaaGccaqG5b GaaeiiaiaaykW7caqG0bGaaeyyaiaab6gacaqG4bGaaGPaVlaabsga caqG5bGaaeiiaiaab2dacaqGGaGaaeimaaqaaiaabseacaqGPbGaae ODaiaabMgacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqG 5bGaaeiiaiaabshacaqGHbGaaeOBaiaabccacaqG4bGaaeiiaiaabs hacaqGHbGaaeOBaiaabccacaqG5bGaaeilaiaabccacaqG3bGaaeyz aiaabccacaqGNbGaaeyzaiaabshaaeaadaWcaaqaaiGacohacaGGLb Gaai4yamaaCaaaleqabaGaaGOmaaaakiaaykW7caWG4bGaaGPaVlGa cshacaGGHbGaaiOBaiaaykW7caWG5bGaaGPaVlaadsgacaWG4bGaey 4kaSIaci4CaiaacwgacaGGJbWaaWbaaSqabeaacaaIYaaaaOGaamyE aiaaykW7ciGG0bGaaiyyaiaac6gacaWG4bGaaGPaVlaadsgacaWG5b aabaGaaeiDaiaabggacaqGUbGaaeiiaiaabIhacaqGGaGaaeiDaiaa bggacaqGUbGaaeiiaiaabMhaaaGaeyypa0JaaGimaaqaaiabgkDiEl aaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7daWcaaqaaiGacohacaGGLbGaai4yamaaCaaaleqaba GaaGOmaaaakiaaykW7caWG4baabaGaaGPaVlGacshacaGGHbGaaiOB aiaadIhaaaGaaGPaVlaaykW7caWGKbGaamiEaiabgUcaRmaalaaaba Gaci4CaiaacwgacaGGJbWaaWbaaSqabeaacaaIYaaaaOGaamyEaaqa aiGacshacaGGHbGaaiOBaiaaykW7caWG5baaaiaaykW7caWGKbGaam yEaiabg2da9iaaicdaaeaacqGHshI3caWLjaGaaCzcaiaaxMaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7daWcaaqaaiGacohacaGGLbGaai4yamaa CaaaleqabaGaaGOmaaaakiaaykW7caWG4baabaGaaGPaVlGacshaca GGHbGaaiOBaiaadIhaaaGaaGPaVlaaykW7caWGKbGaamiEaiabg2da 9iabgkHiTmaalaaabaGaci4CaiaacwgacaGGJbWaaWbaaSqabeaaca aIYaaaaOGaamyEaaqaaiGacshacaGGHbGaaiOBaiaaykW7caWG5baa aiaaykW7caWGKbGaamyEaaqaaiaabMeacaqGUbGaaeiDaiaabwgaca qGNbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaa bkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaae yzaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaaeyyaiaabkgacaqG VbGaaeODaiaabwgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabs hacaqGPbGaae4Baiaab6gacaqGSaGaaeiiaiaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaaykW7caaMc8UaaGPaVlaaxMaaca WLjaGaaCzcaiaaykW7daWdbaqaamaalaaabaGaci4CaiaacwgacaGG JbWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlaadIhaaeaacaaMc8Uaci iDaiaacggacaGGUbGaamiEaaaaaSqabeqaniabgUIiYdGccaaMc8Ua amizaiaadIhacqGH9aqpcqGHsisldaWdbaqaamaalaaabaGaci4Cai aacwgacaGGJbWaaWbaaSqabeaacaaIYaaaaOGaamyEaaqaaiGacsha caGGHbGaaiOBaiaaykW7caWG5baaaaWcbeqab0Gaey4kIipakiaayk W7caWGKbGaamyEaaqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabYgacaqGVbGaae4zai aabccacaqG0bGaaeyyaiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGa aeylaiaabYgacaqGVbGaae4zaiaabccacaqG0bGaaeyyaiaab6gaca qG5bGaaeiiaiaabUcacaqGGaGaaeiBaiaab+gacaqGNbGaaeiiaiaa boeaaeaacqGHshI3caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaabY gacaqGVbGaae4zaiaabccacaqG0bGaaeyyaiaab6gacaqG4bGaaeii aiaabUcacaqGGaGaaeiBaiaab+gacaqGNbGaaeiiaiaabshacaqGHb GaaeOBaiaabMhacaqGGaGaaeypaiaabccacaqGSbGaae4BaiaabEga caqGGaGaae4qaaqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caqGSbGaae4BaiaabEgacaqGGaGaaeiDaiaa bggacaqGUbGaaeiEaiaabccacaqG0bGaaeyyaiaab6gacaqG5bGaae iiaiaab2dacaqGGaGaaeiBaiaab+gacaqGNbGaaeiiaiaaboeaaeaa cqGHshI3caWLjaGaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8 UaaGPaVlaabshacaqGHbGaaeOBaiaabIhacaqGGaGaaeiDaiaabgga caqGUbGaaeyEaiaabccacaqG9aGaaeiiaiaaboeaaeaacaqGubGaae iAaiaabMgacaqGZbGaaeiiaiaabMgacaqGZbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqGYbGaaeyzaiaabghacaqG1bGaaeyAaiaabk hacaqGLbGaaeizaiaabccacaqGZbGaae4BaiaabYgacaqG1bGaaeiD aiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6ga caqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzai aab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGa aeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@3130@

Q.41 For the differential equations, find the general solution:

( e x + e x )dy( e x e x )dx=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadGaMagWaaeacycicbeGaiGjG=vgadGaMaYbaaSqajGjGbGaMakac yc4F4baaaOGaiGjG=TcacGaMa+xzamacycihaaWcbKaMagacycOaiG jG=1cacGaMa+hEaaaaaOGaiGjGwIcacGaMaAzkaaGaiGjGykW7cGaM a+hzaiacyc4F5bGaeyOeI0YaaeWaaeaacaWFLbWaaWbaaSqabeaaca WF4baaaOGaeyOeI0Iaa8xzamaaCaaaleqabaGaa8xlaiaa=Hhaaaaa kiaawIcacaGLPaaacaaMc8Uaa8hzaiaa=HhacaWF9aGaa8hmaaaa@660D@

Ans.

The given differential equation is: ( e x + e x )dy( e x e x )dx=0 ( e x e x )dx=( e x + e x )dy dy= ( e x e x ) ( e x + e x ) dx Integrating both sides of above equation, we get dy = ( e x e x ) ( e x + e x ) dx y=log( e x + e x )+C This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaadsfacaWGObGaamyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaWaiGjGbmaabGaMakacyc4GLbWa iGjGCaaaleqcycyaiGjGcGaMaoiEaaaakiadycOHRaWkcGaMaoyzam acycihaaWcbKaMagacycOaiGjGc2cacGaMaoiEaaaaaOGaiGjGwIca cGaMaAzkaaGaiGjGykW7cGaMaoizaiacyc4G5bGaeyOeI0YaaeWaae aacaWGLbWaaWbaaSqabeaacaWG4baaaOGaeyOeI0IaamyzamaaCaaa leqabaGaaiylaiaadIhaaaaakiaawIcacaGLPaaacaaMc8Uaamizai aadIhacqGH9aqpcaaIWaaabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqadaqaai aadwgadaahaaWcbeqaaiaadIhaaaGccqGHsislcaWGLbWaaWbaaSqa beaacaGGTaGaamiEaaaaaOGaayjkaiaawMcaaiaaykW7caWGKbGaam iEaiabg2da9macycyadaqaiGjGcGaMaoyzamacycihaaWcbKaMagac ycOaiGjGdIhaaaGccWaMaA4kaSIaiGjGdwgadGaMaYbaaSqajGjGbG aMakacycOGTaGaiGjGdIhaaaaakiacycOLOaGaiGjGwMcaaiacyciM c8UaiGjGdsgacGaMaoyEaaqaaiaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaa xMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlacyc4GKbGaiGjGdMhacqGH9aqpcGaMaIPaVpaalaaabaWaaeWa aeaacaWGLbWaaWbaaSqabeaacaWG4baaaOGaeyOeI0IaamyzamaaCa aaleqabaGaaiylaiaadIhaaaaakiaawIcacaGLPaaaaeaadGaMagWa aeacycOaiGjGdwgadGaMaYbaaSqajGjGbGaMakacyc4G4baaaOGamG jGgUcaRiacyc4GLbWaiGjGCaaaleqcycyaiGjGcGaMakylaiacyc4G 4baaaaGccGaMaAjkaiacycOLPaaaaaGaaGPaVlaadsgacaWG4baaba Gaamysaiaad6gacaWG0bGaamyzaiaadEgacaWGYbGaamyyaiaadsha caWGPbGaamOBaiaadEgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAai aabccacaqGZbGaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqGVbGa aeOzaiaabccacaqGHbGaaeOyaiaab+gacaqG2bGaaeyzaiaabccaca qGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaa bYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baaba GaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cGaMaIPaVlaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWdbaqaaiaadsgacaWG5baaleqabeqdcqGHRiI8aOGaeyypa0Ja aGPaVpaapeaabaWaaSaaaeaadaqadaqaaiaadwgadaahaaWcbeqaai aadIhaaaGccqGHsislcaWGLbWaaWbaaSqabeaacaGGTaGaamiEaaaa aOGaayjkaiaawMcaaaqaamacycyadaqaiGjGcGaMaoyzamacycihaa WcbKaMagacycOaiGjGdIhaaaGccWaMaA4kaSIaiGjGdwgadGaMaYba aSqajGjGbGaMakacycOGTaGaiGjGdIhaaaaakiacycOLOaGaiGjGwM caaaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadIhacaaMc8oa baGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWLjaGaaCzcaiaaxMaacaWG5bGaeyyp a0JaciiBaiaac+gacaGGNbWaaeWaaeaacGaMaoyzamacycihaaWcbK aMagacycOaiGjGdIhaaaGccWaMaA4kaSIaiGjGdwgadGaMaYbaaSqa jGjGbGaMakacycOGTaGaiGjGdIhaaaaakiaawIcacaGLPaaacaaMc8 Uaey4kaSIaam4qaaqaaiaadsfacaWGObGaamyAaiaadohacaqGGaGa aeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhaca qGLbGaaeyCaiaabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaa bEgacaqGLbGaaeOBaiaabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae 4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqG GaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOz aiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHb GaaeiBaiaabccaaeaacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaa bMgacaqGVbGaaeOBaiaab6caaaaa@E760@

Q.42 For the differential equations, find the general solution:

dy dx =( 1+ x 2 )( 1+ y 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaeyyp a0ZaaeWaaeaacaWFXaGaa83kaiaa=HhadaahaaWcbeqaaiaa=jdaaa aakiaawIcacaGLPaaadaqadaqaaiaa=fdacaWFRaGaa8xEamaaCaaa leqabaGaa8NmaaaaaOGaayjkaiaawMcaaaaa@4787@

Ans.

The given differential equation is: dy dx =( 1+ x 2 )( 1+ y 2 ) dy ( 1+ y 2 ) =( 1+ x 2 )dx Integrating both sides, we get dy ( 1+ y 2 ) = ( 1+ x 2 ) dx tan 1 y=x+ x 3 3 +C This is the general solution of given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaaCzcaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4b aaaiabg2da9maabmaabaGaaGymaiabgUcaRiaadIhadaahaaWcbeqa aiaaikdaaaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkca WG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaeyO0 H49aaSaaaeaacaWGKbGaamyEaaqaamaabmaabaGaaGymaiabgUcaRi aadMhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaGaeyyp a0ZaaeWaaeaacaaIXaGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaa aaaOGaayjkaiaawMcaaiaadsgacaWG4baabaGaaeysaiaab6gacaqG 0bGaaeyzaiaabEgacaqGYbGaaeyyaiaabshacaqGPbGaaeOBaiaabE gacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyA aiaabsgacaqGLbGaae4CaiaabYcacaqGGaGaae4DaiaabwgacaqGGa Gaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8+aa8qaaeaa daWcaaqaaiaadsgacaWG5baabaWaaeWaaeaacaaIXaGaey4kaSIaam yEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaSqabeqa niabgUIiYdGccaaMc8Uaeyypa0Zaa8qaaeaadaqadaqaaiaaigdacq GHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaa leqabeqdcqGHRiI8aOGaaGPaVlaadsgacaWG4baabaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabshacaqGHbGaaeOB amaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadMhacqGH9aqpcaWG4b Gaey4kaSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGa aG4maaaacqGHRaWkcaWGdbaabaGaaeivaiaabIgacaqGPbGaae4Cai aabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGa ae4zaiaabwgacaqGUbGaaeyzaiaabkhacaqGHbGaaeiBaiaabccaca qGZbGaae4BaiaabYgacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaa bccacaqGVbGaaeOzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaae OBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqG LbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabg hacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@032D@

Q.43 For the differential equations, find the general solution:

y logydxxdy=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aacaaMc8ocbeGaa8xEaiaa=bcacaWFSbGaa83Baiaa=DgacaWF5bGa aGPaVlaa=rgacaWF4bGaeyOeI0Iaa8hEaiaaykW7caWFKbGaa8xEai aa=1dacaWFWaaaaa@4A2C@

Ans.

The given differential equation is: y logydxxdy=0 y logydx=xdy dy y logy = dx x Integrating both sides, we get dy y logy = dx x loglogy=logx+logC loglogy=logCx logy=Cx y= e Cx This is the general solution of given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaadsfacaWGObGaamyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaadMhaieqacaWFGaGaciiBaiaac+gacaGGNbGaamyEaiaaykW7ca WGKbGaamiEaiabgkHiTiaadIhacaaMc8UaamizaiaadMhacqGH9aqp caaIWaaabaGaeyO0H4TaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWG5bGaa8hiaiGacYgacaGGVbGaai4zaiaa dMhacaaMc8UaamizaiaadIhacqGH9aqpcaWG4bGaaGPaVlaadsgaca WG5baabaGaeyO0H4TaaCzcaiaaxMaacaaMc8UaaGPaVpaalaaabaGa amizaiaadMhaaeaacaWG5bGaa8hiaiGacYgacaGGVbGaai4zaiaadM haaaGaeyypa0ZaaSaaaeaacaWGKbGaamiEaaqaaiaadIhaaaaabaGa aeysaiaab6gacaqG0bGaaeyzaiaabEgacaqGYbGaaeyyaiaabshaca qGPbGaaeOBaiaabEgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaa bccacaqGZbGaaeyAaiaabsgacaqGLbGaae4CaiaabYcacaqGGaGaae 4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaa daWdbaqaamaalaaabaGaamizaiaadMhaaeaacaWG5bGaa8hiaiGacY gacaGGVbGaai4zaiaadMhaaaaaleqabeqdcqGHRiI8aOGaaGPaVlab g2da9maapeaabaWaaSaaaeaacaWGKbGaamiEaaqaaiaadIhaaaaale qabeqdcqGHRiI8aOGaaGPaVdqaaiabgkDiElaaxMaacaWLjaGaciiB aiaac+gacaGGNbGaciiBaiaac+gacaGGNbGaamyEaiabg2da9iGacY gacaGGVbGaai4zaiaadIhacqGHRaWkciGGSbGaai4BaiaacEgacaWG dbaabaGaeyO0H4TaaCzcaiaaxMaaciGGSbGaai4BaiaacEgaciGGSb Gaai4BaiaacEgacaWG5bGaeyypa0JaciiBaiaac+gacaGGNbGaam4q aiaadIhaaeaacqGHshI3caWLjaGaaCzcaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlGacYgacaGGVbGaai4zaiaadMhacqGH9aqp caWGdbGaamiEaaqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMhacqGH9aqpcaWGLbWaaWbaaSqabeaaca WHdbGaaCiEaaaaaOqaaiaabsfacaqGObGaaeyAaiaabohacaqGGaGa aeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgaca qGLbGaaeOBaiaabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae4Caiaa b+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae 4BaiaabAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqG GaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6 gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyD aiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@5375@

Q.44 For the differential equations, find the general solution:

x 5 dy dx = y 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aacaWH4bWaaWbaaSqabeaacaWH1aaaaOWaaSaaaeaaieqacaWFKbGa a8xEaaqaaiaa=rgacaWF4baaaiabg2da9iabgkHiTiaahMhadaahaa Wcbeqaaiaaiwdaaaaaaa@42C3@

Ans.

The given differential equation is:x5dydx=y5      dyy5=dxx5Integrating both sides, we get    dyy5=dxx5    y5dy=x5dx  y44+C=x44    x4+y4=4C=CThis is the general solution of given differential equation.

Q.45 For the differential equation given below, find the general solution:

dy dx =si n 1 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaeyyp a0Jaa83Caiaa=LgacaWFUbWaaWbaaSqabeaacaWFTaGaa8xmaaaaki aa=Hhaaaa@434F@

Ans.

The given differential equation is:      dydx=sin1x      dy=sin1xdxIntegrating both sides, we get    dy=sin1xdx    y=sin1x.1dx    y=sin1x1dx(ddxsin1x1dx)dx    y=(sin1x).x(11x2x)dx+C    y=xsin1xxt×dt2x+C[Let 1x2=t2x=dtdx]    y=xsin1x+12t12dt+C    y=xsin1x+12t12(12)+C    y=xsin1x+1x2+CThis is the general solution of given differential equation.

Q.46 For the differential equation given below, find the general solution:

e x tan ydx+( 1 e x )se c 2 y dy=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aacaaMc8UaaCyzamaaCaaaleqabaacbeGaa8hEaaaakiaa=bcacaWF 0bGaa8xyaiaa=5gacaWFGaGaa8xEaiaaykW7caWFKbGaa8hEaiaa=T cadaqadaqaaiaahgdacqGHsislcaWFLbWaaWbaaSqabeaacaWF4baa aaGccaGLOaGaayzkaaGaaGPaVlaa=nhacaWFLbGaa83yamaaCaaale qabaGaa8Nmaaaakiaa=LhacaWFGaGaa8hzaiaa=LhacaWF9aGaa8hm aaaa@5541@

Ans.

The given differential equation is:ex tan ydx+(1ex)sec2ydy=0ex(1ex)dx+sec2ytanydy=0[Dividing both sides by(1ex)tany]Integrating both sides of above equation, we getex(1ex)dx+sec2ytanydy=Cext×dtex+sec2yz×dzsec2y=logC[Let t=1exandz=tanydtdx=exanddzdy=sec2y]logt+logz=logClog(zt)=logCtany1ex=Ctany=C(1ex)This is the required general solution of the given differential equation.

Q.47 For the differential equation given below, find a particular solution satisfying the given condition:

(x3+x2+x+1)dydx=2x2+x;y=1 when x=0

Ans.

The given differential equation is(x3+x2+x+1)dydx=2x2+xdydx=2x2+x(x3+x2+x+1)      =2x2+x{x2(x+1)+1(x+1)}dy=2x2+x(x2+1)(x+1)dx...(i)Let2x2+x(x2+1)(x+1)=Ax+B(x2+1)+C(x+1)2x2+x=(Ax+B)(x+1)+C(x2+1)2x2+x=x2(A+C)+x(A+B)+(B+C)    A+C=2,  A+B=1 and B+C=0A=32,B=12andC=12    2x2+x(x2+1)(x+1)=3x12(x2+1)+12(x+1)Fromequation(i),wehavedy=3x12(x2+1)dx+12(x+1)dxIntegrating both sides, we get      dy=3x12(x2+1)dx+12(x+1)dxy=32xx2+1dx121x2+1dx+121x+1dx+Cy=32×12log(x2+1)12tan1x+12log(x+1)+Cy=14{3log(x2+1)+2log(x+1)}12tan1x+Cy=14{log(x2+1)3(x+1)2}12tan1x+C  ...(ii)Since,y=1 when x=01=14{log(0+1)3(0+1)2}12tan10+C1=CSubstituting C=1 in equation (iii), we gety=14{log(x2+1)3(x+1)2}12tan1x+1

Q.48 For the differential equation given below, find a particular solution satisfying the given condition:

x(x21)dydx=1; y=0 when x=2

Ans.

The given differential equation is x( x 2 1 ) dy dx =1 dy dx = 1 x( x 2 1 ) dy dx = 1 x( x1 )( x+1 ) dy= 1 x( x1 )( x+1 ) dx( i ) Let 1 x( x1 )( x+1 ) = A x + B x1 + C x+1 1=A( x 2 1 )+Bx( x+1 )+Cx( x1 ) Substituting x=0,1and1, we get A=1,  B=12  and  C=12    1x(x1)(x+1)=1x+12(x1)+12(x+1)From equation (i),wehavedy=1xdx+12(x1)dx+12(x+1)dxIntegrating both sides, we get      dy=1xdx+121x1dx+121x+1dx  y=logx+12log(x1)+12log(x+1)+logk  y=12log{k2(x1)(x+1)x2}  ...(ii)Now,  y=0  whenx=2  0=12log{k2(21)(2+1)22}  0=log{k2(1)(3)4}      log1=log{3k24}  1=3k24k2=43Substituting k2=43 in equation (ii), we get   y=12log{43(x1)(x+1)x2}y=12log{4(x21)3x2}=12log(x21x2)12log(34)

Q.49 For the differential equation given below, find a particular solution satisfying the given condition:

cos(dydx)=a(aR); y=1when x=0

Ans.

The given differential equation is: cos( dy dx )=a dy dx = cos 1 a dy= cos 1 adx Integrating both sides, we get dy = cos 1 a dx y=( cos 1 a )x+C( i ) Now,y=1 when x=0 1=( cos 1 a )0+C 1=C Substituting C = 1 in equation ( i ),we get y=( cos 1 a )x+1 y1 x = cos 1 acos( y1 x )=a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAha caqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGa aeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaaeyAaiaabohacaqG6aaabaGaci4yaiaac+gacaGGZbWaaeWa aeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaacaGLOa GaayzkaaGaeyypa0JaamyyaaqaaiaaxMaacaaMc8+aaSaaaeaacaWG KbGaamyEaaqaaiaadsgacaWG4baaaiabg2da9iGacogacaGGVbGaai 4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadggaaeaacaWLjaGa aGPaVlaadsgacaWG5bGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaS qabeaacqGHsislcaaIXaaaaOGaamyyaiaaykW7caWGKbGaamiEaaqa aiaabMeacaqGUbGaaeiDaiaabwgacaqGNbGaaeOCaiaabggacaqG0b GaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIga caqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGSaGaaeiiai aabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aa8qaaeaaca WGKbGaamyEaaWcbeqab0Gaey4kIipakiaaykW7cqGH9aqpciGGJbGa ai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGHbWaa8 qaaeaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiaaykW7aeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWG5bGaeyypa0ZaaeWaaeaaciGGJbGa ai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGHbaaca GLOaGaayzkaaGaaGPaVlaadIhacqGHRaWkcaWGdbGaaGPaVlaaykW7 caGGUaGaaiOlaiaac6cadaqadaqaaiaadMgaaiaawIcacaGLPaaaae aacaqGobGaae4BaiaabEhacaqGSaGaaGPaVlaaysW7caqG5bGaaGjb Vlaab2dacaaMe8UaaeymaiaabccacaqG3bGaaeiAaiaabwgacaqGUb GaaeiiaiaabIhacaaMe8UaaeypaiaaysW7caqGWaaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGymaiabg2da9maabmaabaGaci4yaiaac+ga caGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyyaaGaayjkai aawMcaaiaaykW7caaIWaGaey4kaSIaam4qaaqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaigdacqGH9aqpcaWGdbaabaGaae4uaiaabwhacaqG IbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyAaiaab6 gacaqGNbGaaeiiaiaaboeacaqGGaGaaeypaiaabccacaqGXaGaaeii aiaabMgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0b GaaeyAaiaab+gacaqGUbGaaeiiamaabmaabaGaaeyAaaGaayjkaiaa wMcaaiaabYcacaaMc8Uaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da9maabm aabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaamyyaaGaayjkaiaawMcaaiaaykW7caWG4bGaey4kaSIaaGymaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWG5bGa eyOeI0IaaGymaaqaaiaadIhaaaGaeyypa0Jaci4yaiaac+gacaGGZb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyyaiabgkDiElGacoga caGGVbGaai4CamaabmaabaWaaSaaaeaacaWG5bGaeyOeI0IaaGymaa qaaiaadIhaaaaacaGLOaGaayzkaaGaeyypa0Jaamyyaaaaaa@8AAE@

Q.50 For the differential equation given below, find a particular solution satisfying the given condition:

dydx=ytanx; y=1whenx=0

Ans.

The given differential equation is:    dydx=ytanx  dyy=tanxdxIntegrating both sides, we get        dyy=tanxdx      logy=logsecx+logC    y=secx.C  ...(i)Now,  y=1 when x=0            1=C.sec0            1=CSubstituting C = 1 in equation (i), we get          y=secx.1      y=secx

Q.51 Find the equation of a curve passing through the point (0, 0) and whose differential equation is y’ = ex sin x.

Ans.

The given differential equation is :      y= exsin x    dydx= exsin x Integrating both sides, we get    dy=exsin xdx+C        y=exsin xdx+C  ...(i)Let  I=exsin xdx  =sinxexdx(ddxsinxexdx)dx  =sinxex(cosxex)dx  =sinxex{cosxexdx(ddxcosxexdx)dx}  =sinxex{cosxex(sinx)exdx}  =sinxexexcosxexsin xdxI=sinxexexcosxI      2I=ex(sinxcosx)I=ex(sinxcosx)2From equation(i), we get        y=ex(sinxcosx)2+C...(i)Since, curve passes through the point (0,0).      0=e0(sin0cos0)2+C        0=1(01)2+CC=12 Putting value of C in equation (ii), weget          y=ex(sinxcosx)2+12      2y=ex(sinxcosx)+12y1=ex(sinxcosx)Hence, it is the required equation of the curve.

Q.52

For the differential equation xydydx=x+2y+2, find the solution curve passing through the point 1, -1.

Ans.

The given differential equation is :          xydydx=(x+2)(y+2)      ydy(y+2)= (x+2)xdx    (y+22)dy(y+2)= (x+2)xdx    1dy2(y+2)dy=(1+2x)dxIntegrating both sides, we get1dy2(y+2)dy=1dx+21xdx      y2log(y+2)=x+2logx+C        yxC=logx2+log(y+2)2        yxC=logx2(y+2)2  ...(ii)Since, the curve passes through (1,1).              11C=log(1)2(1+2)2                    2C=log(1)2    C=2Putting the value of C in equation(ii), we get        yx+2=logx2(y+2)2This is the required solution of the curve.

Q.53 Find the equation of the curve passing through the point (0, –2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

Ans.

According to given condition,ydydx=x      y.dy=x.dxIntegrating both sides w.r.t. x, we get      ydy=xdx            y22=x22+C    y2=x2+2C    y2x2=2C...(i)The curve passes through the point (02).(2)202=2C      4=2CC=2Putting C = 2 in equation(i), we get    y2x2=4This is the required equation of the curve.

Q.54 At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, –3). Find the equation of the curve given that it passes through (–2, 1).

Ans.

Slope(m1) of curve at point (x,y)=dydxslope(m2) of line segment joining (x,y)and (4,3)=y+3x+4According to given condition:m1=2m2dydx=2(y+3x+4)dyy+3=2(dxx+4)Integrating both sides, we get      dyy+3=21x+4dxlog(y+3)=2log(x+4)+logClog(y+3)=log(x+4)2Cy+3=C(x+4)2...(i)This is the general equation of the curve.The curve passes through the point(2,1).1+3=C(2+4)2      C=44=1Substituting C = 1 in equation(i), we gety+3=1(x+4)2y+3=(x+4)2This is the required equation of the curve.

Q.55 The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Ans.

Let radius of spherical balloon be r units.Volume of balloon(V)=43πr3According to condition:dVdt=k      ddt(43πr3)=k    43π×3r2drdt=k  4πr2drdt=k  4πr2dr=kdtIntegrating both sides, we get4πr2dr=kdt4πr33=kt+C...(i)Now, r = 3 at t = 04π333=k(0)+C    36π=CAgain,r = 6 when t = 3 from equation(i), we get4π633=k(3)+36π        288π36π=3k        k=252π3  =84πHence, from equation (i), we have43πr3=84πt+36π      r3=63t+27      r=(63t+27)13Thus, the radius of balloon after t seconds is(63t+27)13.

Q.56 In a bank, principal increases continuously at the rate of r% per year. Find the value of r if ` 100 double itself in 10 years (loge2= 0.6931).

Ans.

Let Principal be P, time be t years and rate of interest be r% p.a.Since, principal increases continuously at the rate of r% p.a.dPdt=r% ofP        =(r100)PdPP=(r100)dtIntegrating both sides, we get        dPP=r100dt      logeP=r100t+C  ...(i)Substituting P = 100 and t = 0 in equation(i), we get      loge100=r100×0+C    loge100=0+C        C=loge100 Again,putting P = 200 and t = 10 in equation(i), weget          loge200=r100×10+loge100loge200loge100=r10loge200100=r10      loge2=r10  0.6931=r10r=6.931Thus, the rate of interest is 6.93% p.a.

Q.57 In a bank, principal increases continuously at the rate of 5% per year. An amount of ₹ 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).

Ans.

Let principal be P, t be time and r be the rate of interest.Then,rate of principal increasing per year is:dPdt=(5100)P      =120PdPP=120dtIntergrating both sides, we get         dPP=120dt      logeP=120t+C    P=e(120t+C)        =eCe120t    P=Ke120t          ...(i)[Where, K=eC]Now,  t = 0 when P = 1000      1000=Ke120(0)      1000=KPutting the value of K in equation(i), we get    P=1000e120t  ...(ii)Now amount after 10 years,     P=1000e120(10)        =1000e0.5        =1000×1.648        =1648Hence,after 10 years the amount will be ₹ 1648.

Q.58 In a culture, the bacteria count is 1,00,000.
The number is increased by 10% in 2 hours.
In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Ans.

Let present number of bacteria be N at any instant t.Since, the rate of growth of the bacteria is proportional to N. dNdtαNdNdt=kNdNN=kdtIntegrating both sides, we get      dNN=kdt      logN=kt+C...(i)Let number of bacteria at t = 0 be N0,then    logN0=k(0)+C  C=logN0From equation(i), we have          logN=kt+logN0logNlogN0=kt    logNN0=kt...(ii)Since, bacteria increases 10% in 2 hours, so    N=(1+10100)N0  NN0=1110 Substituting t = 2 and NN0=1110 in equation(ii), we get    log1110=k(2)    k=12log(1110)From equation (ii), we have    logNN0=12log(1110)t    t=logNN012log(1110)=2logNN0log(1110)So, the time taken to increase the bacteria from 100000 to 200000=2log200000100000log(1110)     t=2log2log(1110)Hence,bacteria increases from 100000 to 200000 in 2log2log(1110)hrs.

Q.59

The general solution of the differential equation dydx = ex + y  is(A) ex + ey = C (B) ex + ey = C(C) ex + ey = C (D) ex + ey = C

Ans.

The differential equation isdydx=ex+y      =exeydyey=exdx    eydy=exdxIntegrating both sides, we geteydy=exdx    ey=ex+C1        ex+ey=C1        ex+ey=C[Where, C=C1]Thus, option A is correct.

Q.60 Show that the given differential equation is homogeneous and solve it.

(x2 + xy) dy = (x2 + y2) dx

Ans.

The given differential equation is:    (x2+xy)dy=(x2+y2)dx  dydx=(x2+y2)(x2+xy)    ...(i)Let         F(x,y)=(x2+y2)(x2+xy)Now,  f(λx,λy)=(λ2x2+λ2y2)(λ2x2+λ2xy)=λ2(x2+y2)λ2(x2+xy)=λ0F(x,y)Therefore, F(x,y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.Substituting y=vx then dydx=v+xdvdx in equation(i), we get    v+xdvdx=(x2+v2x2)(x2+xvx)=x2(1+v2)x2(1+v)xdvdx=(1+v2)(1+v)v=1+v2vv2(1+v)   xdvdx=1v1+v    1+v1vdv=dxx2(1v)1vdv=dxx    (21v1)dv=dxxIntegrating both sides, we get  (21v1)dv=dxx2log(1v)v=logx+logk                              v=2log(1v)logxlogk                              v=log{(1v)2xk}yx=log{(1yx)2xk}[Put v=yx]  (1yx)2xk=eyx  (xyx)2xk=eyx  (xy)2kx=eyx      (xy)2=xkeyx      (xy)2=Cxeyx[Let C=1k]This is the required solution of the given differential equation.

Q.61 Show that the given differential equation is homogeneous and solve each of them.

y= x+y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa83jaiaa=1dadaWcaaqaaiaa=HhacaWFRaGaa8xE aaqaaiaa=Hhaaaaaaa@3F27@

Ans.

The given differential equation is:        y=x+yx      dydx=x+yx  ...(i)Let  F(x, y)=x+yxNow,F(λx, λy)=λx+λyλx=λ(x+y)λx=x+yx=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx, we get  v+xdvdx=x+vxx=x(1+v)x  v+xdvdx=(1+v)          xdvdx=(1+v)v           xdvdx=1    dv=dxxIntegrating both sides, we get      v=logx+C      yx=logx+C      y=xlogx+CxThis is the required solution of the given differential equation.

Q.62 Show that the given differential equation is homogeneous and solve it.

(x – y)dy – (x + y) dx = 0

Ans.

The given differential equation is:(xy)dy(x+y)dx=0        dydx=x+yxy...(i)Let F(x,y)=x+yxyNow,    F(λx,λy)=λx+λyλxλy    =λ(x+y)λ(xy)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx, we get    v+xdvdx=x+vxxvx    =x(1+v)x(1v)            xdvdx=1+vv+v21v    =1+v21v    1v1+v2dv=dxx    (11+v2v1+v2)dv=dxxIntegrating both sides, we get11+v2dvv1+v2dv=1xdx  tan1v12log(1+v2)=logx+C                          tan1(yx)=12log(1+yx22)+12.2logx+C                          tan1(yx)=12log(x2+y2x2.x2)+C                          tan1(yx)=12log(x2+y2)+CThis is the required solution of the given differential equation.

Q.63 Show that the given differential equation is homogeneous and solve it.

(x2 – y2)dx + 2xy dy = 0

Ans.

The given differential equation is:  (x2y2)dx+2xy dy=0        dydx=x2y22xy...(i)Let F(x,y)=x2y22xyNow,    F(λx,λy)=λ2x2λ2y22λ2xy    =λ2(x2y2)λ2(2xy)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero.So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get    v+xdvdx=x2v2x22x(vx)  =(1v2)x22x2v  =(1v2)2v            xdvdx=(v21)2vv   =(v21)2v22v            xdvdx=(1+v2)2v2v(1+v2)dv=dxxIntegrating both sides, we get      2v(1+v2)dv=1xdx        log(1+v2)=logx+logC        log(1+v2)=log(Cx)    (1+y2x2)=Cx  (x2+y2)=CxThis is the required solution of the given differential equation.

Q.64 Show that the given differential equation is homogeneous and solve it.

x2dydx=x22y2+xy

Ans.

The given differential equation is:  x2dydx=x22y2+xy        dydx=x22y2+xyx2...(i) Let F(x,y)=x22y2+xyx2Now,F(λx,λy)=λ2x22λ2y2+λ2xyλ2x2=λ2(x22y2+xy)λ2(x2)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,we getv+xdvdx=x22v2x2+xvxx2=(12v2+v)x2x2=12v2+vxdvdx=12v2+vvxdvdx=12v2dv12v2=dxxIntegrating both sides, we get 1 2 1 ( 1 2 ) 2 -v 2 dv= dx x 1 2 × 1 1 2 log( 1 2 +v 1 2 -v )=logx+C 1 2 2 log( 1 2 + y x 1 2 y x )=logx+C 1 2 2 log( x+ 2 y x- 2 y )=logx+C This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaabg daaeaacaqGYaaaamaapeaabaWaaSaaaeaacaqGXaaabaWaaeWaaeaa daWcaaqaaiaabgdaaeaadaGcaaqaaiaabkdaaSqabaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaqGYaaaaOGaaeylaiaabAhadaahaaWc beqaaiaabkdaaaaaaaqabeqaniabgUIiYdGccaaMc8UaaeizaiaabA hacaqG9aWaa8qaaeaadaWcaaqaaiaabsgacaqG4baabaGaaeiEaaaa aSqabeqaniabgUIiYdGccaaMc8oabaWaaSaaaeaacaqGXaaabaGaae OmaaaacaqGxdWaaSaaaeaacaqGXaaabaGaaeOmaiaabEnadaWcaaqa aiaabgdaaeaadaGcaaqaaiaabkdaaSqabaaaaaaakiaabYgacaqGVb Gaae4zamaabmaabaWaaSaaaeaadGaAaUaaaeacObOaiGgGbgdaaeac Ob4aiGgGkaaabGaAakacObyGYaaaleqcObiaaaGccGaAag4kaiacOb yG2baabaWaiGgGlaaabGaAakacObyGXaaabGaAaoacObOcaaqaiGgG cGaAagOmaaWcbKaAacaaaOGaaeylaiacObyG2baaaaGaayjkaiaawM caaiaab2dacaqGSbGaae4BaiaabEgacaqG4bGaae4kaiaaboeaaeaa caWLjaWaaSaaaeaacaqGXaaabaGaaeOmamaakaaabaGaaeOmaaWcbe aaaaGccaqGSbGaae4BaiaabEgadaqadaqaamaalaaabaWaiGgGlaaa bGaAakacObyGXaaabGaAaoacObOcaaqaiGgGcGaAagOmaaWcbKaAac aaaOGaiGgGbUcadaWcaaqaaiaabMhaaeaacaqG4baaaaqaamacOb4c aaqaiGgGcGaAagymaaqaiGgGdGaAaQaaaeacObOaiGgGbkdaaSqajG gGaaaakiaab2cadaWcaaqaaiaabMhaaeaacaqG4baaaaaaaiaawIca caGLPaaacaqG9aGaaeiBaiaab+gacaqGNbGaaeiEaiaabUcacaqGdb aabaGaaCzcamaalaaabaGaaeymaaqaaiaabkdadaGcaaqaaiaabkda aSqabaaaaOGaaeiBaiaab+gacaqGNbWaaeWaaeaadaWcaaqaaiaabI hacGaAag4kamacObOcaaqaiGgGcGaAagOmaaWcbKaAacGccaqG5baa baGaaeiEaiaab2cadGaAaQaaaeacObOaiGgGbkdaaSqajGgGaOGaae yEaaaaaiaawIcacaGLPaaacaqG9aGaaeiBaiaab+gacaqGNbGaaeiE aiaabUcacaqGdbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabccaca qGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaa bwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaae 4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqG GaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOz aiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHb GaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMga caqGVbGaaeOBaiaab6caaaaa@08FD@

Q.65 Show that the given differential equation is homogeneous and solve it.

x dy y dx= x 2 + y 2 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF4bGaa8hiaiaa=rgacaWF5bGaeyOeI0Iaa8hiaiaa=Lha caWFGaGaa8hzaiaa=HhacaWF9aWaaOaaaeaacaWF4bWaaWbaaSqabe aacaWFYaaaaOGaey4kaSIaaCyEamaaCaaaleqabaGaaCOmaaaaaeqa aOGaaGPaVlaahsgacaWH4baaaa@4A9F@

Ans.

The given differential equation is:    xdyydx=x2+y2dx        xdy=x2+y2dx+ydx        dydx=x2+y2+yx...(i)Let F(x,y)=x2+y2+yxNow,    F(λx,λy)=λ2x2+λ2y2+λyλx     =λ(x2+y2+y)λx=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,we get    v+xdvdx=x2+v2x2+vxx  =(1+v2+v)xx    v+xdvdx=1+v2+v            xdvdx=1+v2      dv1+v2=dxxIntegrating both sides, we get          log|v+1+v2|=log|x|+logC          log|yx+1+y2x2|=logC|x|                |yx+1+y2x2|=C|x|                 |yx+1+y2x2|=C|x|                  y+x2+y2=Cx2This is the required solution of given differential equation.

Q.66 Show that the given differential equation is homogeneous and solve each of them.

xcosyx+ysinyxydx=ysinyxxcosyxxdy

Ans.

The given differential equation is:{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdy      dydx={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x...(i)Let F(x,y)={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}xNow,        F(λx,λy)={λxcos(λyλx)+λysin(λyλx)}λy{λysin(λyλx)λxcos(λyλx)}λx = λ 2 y{ x cos( y x )+y sin( y x ) } λ 2 x{ y sin( y x )x cos( y x ) } = λ 0 F( x,y ) Therefore, F( x,y ) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. For solving equation ( i ), substitute y=vx and dy dx =v+x dv dx , we get v+x dv dx = vx{ x cos( vx x )+vx sin( vx x ) } x{ vx sin( vx x )x cos( vx x ) } = v{ cos( v )+v sin( v ) } { v sin( v ) cos( v ) } x dv dx = vcosv+ v 2 sinv v sinv cosv v x dv dx = vcosv+ v 2 sinv v 2 sinv+v cosv v sinv cosv x dv dx = 2vcosv v sinv cosv ( v sinv cosv ) dv vcosv = 2dx x Integrating both sides, we get v sinv vcosv dv cosv vcosv dv=2 1 x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7 caaMc8Uaeyypa0ZaaSaaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaa GccaWG5bWaaiWaaeaacaWG4bacbeGaa8hiaiGacogacaGGVbGaai4C amaabmaabaWaaSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPa aacqGHRaWkcaWG5bGaa8hiaiGacohacaGGPbGaaiOBamaabmaabaWa aSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPaaaaiaawUhaca GL9baaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG4bWaaiWa aeaacaWG5bGaa8hiaiGacohacaGGPbGaaiOBamaabmaabaWaaSaaae aacaWG5baabaGaamiEaaaaaiaawIcacaGLPaaacqGHsislcaWG4bGa a8hiaiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacaWG5baaba GaamiEaaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGaeyypa0Ja eq4UdW2aaWbaaSqabeaacaaIWaaaaOGaaGPaVlaabAeadaqadaqaai aadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaqaaiaabsfacaqGObGa aeyzaiaabkhacaqGLbGaaeOzaiaab+gacaqGYbGaaeyzaiaabYcaca qGGaGaaeOramaabmaabaGaamiEaiaabYcacaaMe8UaamyEaaGaayjk aiaawMcaaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabI gacaqGVbGaaeyBaiaab+gacaqGNbGaaeyzaiaab6gacaqGVbGaaeyD aiaabohacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPb Gaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeizaiaabwga caqGNbGaaeOCaiaabwgacaqGLbGaaeiiaiaabQhacaqGLbGaaeOCai aab+gacaqGUaGaaeiiaiaabofacaqGVbGaaeilaiaabccaaeaacaqG 0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6 gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyz aiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXb GaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMga caqGZbGaaeiiaiaabggacaqGGaGaaeiAaiaab+gacaqGTbGaae4Bai aabEgacaqGLbGaaeOBaiaab+gacaqG1bGaae4CaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGUaaabaGaaeOraiaab+gaca qGYbGaaeiiaiaabohacaqGVbGaaeiBaiaabAhacaqGPbGaaeOBaiaa bEgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae 4Baiaab6gacaqGGaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaGaaeil aiaabccacaqGZbGaaeyDaiaabkgacaqGZbGaaeiDaiaabMgacaqG0b GaaeyDaiaabshacaqGLbGaaeiiaiaadMhacqGH9aqpcaqG2bGaaeiE aiaabccacaqGHbGaaeOBaiaabsgacaqGGaWaaSaaaeaacaWGKbGaam yEaaqaaiaadsgacaWG4baaaiabg2da9iaabAhacqGHRaWkcaqG4bWa aSaaaeaacaWGKbGaamODaaqaaiaadsgacaWG4baaaiaabYcaaeaaca qG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaabAhacqGHRaWkcaqG4bWaaSaaaeaacaWGKbGaamODaaqa aiaadsgacaWG4baaaiabg2da9maalaaabaGaaeODaiaabIhadaGada qaaiaadIhacaWFGaGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqa aiaabAhacaqG4baabaGaamiEaaaaaiaawIcacaGLPaaacqGHRaWkca qG2bGaaeiEaiaa=bcaciGGZbGaaiyAaiaac6gadaqadaqaamaalaaa baGaaeODaiaabIhaaeaacaWG4baaaaGaayjkaiaawMcaaaGaay5Eai aaw2haaaqaaiaadIhadaGadaqaaiaabAhacaqG4bGaa8hiaiGacoha caGGPbGaaiOBamaabmaabaWaaSaaaeaacaqG2bGaaeiEaaqaaiaadI haaaaacaGLOaGaayzkaaGaeyOeI0IaamiEaiaa=bcaciGGJbGaai4B aiaacohadaqadaqaamaalaaabaGaaeODaiaabIhaaeaacaWG4baaaa GaayjkaiaawMcaaaGaay5Eaiaaw2haaaaaaeaacaWLjaGaaCzcaiaa xMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabg2da9maalaaabaGaaeODamaacmaabaGaa8hiaiGacogacaGG VbGaai4CamaabmaabaGaamODaaGaayjkaiaawMcaaiabgUcaRiaabA hacaWFGaGaci4CaiaacMgacaGGUbWaaeWaaeaacaWG2baacaGLOaGa ayzkaaaacaGL7bGaayzFaaaabaWaaiWaaeaacaqG2bGaa8hiaiGaco hacaGGPbGaaiOBamaabmaabaGaamODaaGaayjkaiaawMcaaiabgkHi Tiaa=bcaciGGJbGaai4BaiaacohadaqadaqaaiaadAhaaiaawIcaca GLPaaaaiaawUhacaGL9baaaaaabaGaaCzcaiaaxMaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabIha daWcaaqaaiaadsgacaWG2baabaGaamizaiaadIhaaaGaeyypa0ZaaS aaaeaacaWG2bGaci4yaiaac+gacaGGZbGaamODaiabgUcaRiaabAha daahaaWcbeqaaiaabkdaaaGccaWFGaGaci4CaiaacMgacaGGUbGaam ODaaqaaiaabAhacaWFGaGaci4CaiaacMgacaGGUbGaamODaiabgkHi Tiaa=bcaciGGJbGaai4BaiaacohacaWG2baaaiabgkHiTiaadAhaae aacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaeiEamaalaaabaGaamizaiaadAhaaeaa caWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaadAhaciGGJbGaai4Bai aacohacaWG2bGaey4kaSIaaeODamaaCaaaleqabaGaaeOmaaaakiaa =bcaciGGZbGaaiyAaiaac6gacaWG2bGaeyOeI0IaaeODamaaCaaale qabaGaaeOmaaaakiGacohacaGGPbGaaiOBaiaadAhacqGHRaWkcaWG 2bGaa8hiaiGacogacaGGVbGaai4CaiaadAhaaeaacaqG2bGaa8hiai GacohacaGGPbGaaiOBaiaadAhacqGHsislcaWFGaGaci4yaiaac+ga caGGZbGaamODaaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeiEamaalaaaba GaamizaiaadAhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaa ikdacaWG2bGaci4yaiaac+gacaGGZbGaamODaaqaaiaabAhacaWFGa Gaci4CaiaacMgacaGGUbGaamODaiabgkHiTiaa=bcaciGGJbGaai4B aiaacohacaWG2baaaaqaamaabmaabaGaaeODaiaa=bcaciGGZbGaai yAaiaac6gacaWG2bGaeyOeI0Iaa8hiaiGacogacaGGVbGaai4Caiaa dAhaaiaawIcacaGLPaaadaWcaaqaaiaadsgacaWG2baabaGaamODai GacogacaGGVbGaai4CaiaadAhaaaGaeyypa0ZaaSaaaeaacaaIYaGa amizaiaadIhaaeaacaWG4baaaaqaaiaabMeacaqGUbGaaeiDaiaabw gacaqGNbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeii aiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKb GaaeyzaiaabohacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEga caqGLbGaaeiDaaqaamaapeaabaWaaSaaaeaacaqG2bGaa8hiaiGaco hacaGGPbGaaiOBaiaadAhaaeaacaWG2bGaci4yaiaac+gacaGGZbGa amODaaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadAhacqGHsi sldaWdbaqaamaalaaabaGaci4yaiaac+gacaGGZbGaamODaaqaaiaa dAhaciGGJbGaai4BaiaacohacaWG2baaaaWcbeqab0Gaey4kIipaki aaykW7caWGKbGaamODaiabg2da9iaaikdadaWdbaqaamaalaaabaGa aGymaaqaaiaadIhaaaaaleqabeqdcqGHRiI8aOGaaGPaVlaadsgaca WG4baaaaa@AB7A@ logsecvlog| v |=2log| x |+logC log( secv v )=logC x 2 sec y x y x =C x 2 xsec y x =C x 2 y xycos( y x )= 1 C =k [ Letk= 1 C ] xycos( y x )=k This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7ciGGSbGaai4BaiaacEgaciGGZbGaaiyzaiaacogacaWG2bGa eyOeI0IaciiBaiaac+gacaGGNbWaaqWaaeaacaWG2baacaGLhWUaay jcSdGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zamaaemaabaGaamiE aaGaay5bSlaawIa7aiabgUcaRiGacYgacaGGVbGaai4zaiaadoeaae aacqGHshI3caWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaciiBaiaac+gacaGGNbWaaeWaaeaada WcaaqaaiGacohacaGGLbGaai4yaiaadAhaaeaacaWG2baaaaGaayjk aiaawMcaaiabg2da9iGacYgacaGGVbGaai4zaiaadoeacaWG4bWaaW baaSqabeaacaaIYaaaaaGcbaGaeyO0H4TaaCzcaiaaxMaacaWLjaGa aCzcamaalaaabaGaci4CaiaacwgacaGGJbWaaSaaaeaacaWG5baaba GaamiEaaaaaeaadaWcaaqaaiaadMhaaeaacaWG4baaaaaacqGH9aqp caWGdbGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkDiElaaxM aacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamiEaiGacohacaGGLbGaai4yamaalaaabaGaam yEaaqaaiaadIhaaaGaeyypa0Jaam4qaiaadIhadaahaaWcbeqaaiaa ikdaaaGccaWG5baabaGaeyO0H4TaaCzcaiaaxMaacaWLjaGaamiEai aadMhaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGaamyEaaqa aiaadIhaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaaba Gaam4qaaaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaykW7 caaMc8UaaGPaVlabg2da9iaadUgacaWLjaGaaCzcaiaaxMaadaWada qaaiaabYeacaqGLbGaaeiDaiaaykW7caaMc8Uaam4Aaiabg2da9maa laaabaGaeyymaedabaGaam4qaaaaaiaawUfacaGLDbaaaeaacqGHsh I3caWLjaGaaCzcaiaaxMaacaWG4bGaamyEaiGacogacaGGVbGaai4C amaabmaabaWaaSaaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPa aacqGH9aqpcaWGRbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCai aabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGa ae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBaiaab6caaaaa@266C@

Q.67 Show that the given differential equation is homogeneous and solve each of them.

xdydxy+xsin(yx)=0

Ans.

The given differential equation is:                xdydxy+xsin(yx)=0      dydx=yxsin(yx)x...(i) Let F( x,y )= yxsin( y x ) x Now, F( λx,λy )= λyλxsin( λy λx ) λx = λ{ y-xsin( y x ) } λx 0 F( x,y ) Therefore, F( x,y ) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. For solving equation ( i ), substitute y = vx and dy dx =v+x dv dx , we get v+x dv dx = vxxsin( vx x ) x = { vsinv }x x x dv dx =vsinvv dv sinv = dx x cosecvdv= dx x Integrating both sides, we get cosecv dv= 1 x dx log| cosecvcotv |=log| x |+logC log| cosecvcotv |=log C | x | cosec y x cot y x = C x 1 sin y x cos y x sin y x = C x x{ 1cos( y x ) }=Csin( y x ) This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aapeaabaGaci4yaiaac+gacaGGZbGaaiyzaiaacogacaWG2baaleqa beqdcqGHRiI8aOGaaGPaVlaadsgacaWG2bGaeyypa0JaeyOeI0Yaa8 qaaeaadaWcaaqaaiaaigdaaeaacaWG4baaaaWcbeqab0Gaey4kIipa kiaaykW7caWGKbGaamiEaaqaaiabgkDiElaaykW7ciGGSbGaai4Bai aacEgadaabdaqaaiGacogacaGGVbGaai4CaiaacwgacaGGJbGaamOD aiabgkHiTiGacogacaGGVbGaaiiDaiaadAhaaiaawEa7caGLiWoacq GH9aqpcqGHsislciGGSbGaai4BaiaacEgadaabdaqaaiaadIhaaiaa wEa7caGLiWoacqGHRaWkciGGSbGaai4BaiaacEgacaWGdbaabaGaey O0H4TaaGPaVlGacYgacaGGVbGaai4zamaaemaabaGaci4yaiaac+ga caGGZbGaaiyzaiaacogacaWG2bGaeyOeI0Iaci4yaiaac+gacaGG0b GaamODaaGaay5bSlaawIa7aiabg2da9iGacYgacaGGVbGaai4zamaa laaabaGaam4qaaqaamaaemaabaGaamiEaaGaay5bSlaawIa7aaaaae aacqGHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlGacogacaGGVbGaai4CaiaacwgacaGGJbWaaSaaaeaaca WG5baabaGaamiEaaaacqGHsislciGGJbGaai4BaiaacshadaWcaaqa aiaadMhaaeaacaWG4baaaiabg2da9maalaaabaGaam4qaaqaaiaadI haaaaabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaaca aIXaaabaGaci4CaiaacMgacaGGUbWaaSaaaeaacaWG5baabaGaamiE aaaaaaGaeyOeI0YaaSaaaeaaciGGJbGaai4BaiaacohadaWcaaqaai aadMhaaeaacaWG4baaaaqaaiGacohacaGGPbGaaiOBamaalaaabaGa amyEaaqaaiaadIhaaaaaaiabg2da9maalaaabaGaam4qaaqaaiaadI haaaaabaGaeyO0H4TaaCzcaiaaykW7caaMc8UaaGPaVlaadIhadaGa daqaaiaaigdacqGHsislciGGJbGaai4Baiaacohadaqadaqaamaala aabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaacaGL7bGaayzF aaGaeyypa0Jaam4qaiaaykW7caWGZbGaamyAaiaad6gadaqadaqaam aalaaabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaabaGaaeiv aiaabIgacaqGPbGaae4CaiaabccacaqGPbGaae4CaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMga caqGYbGaaeyzaiaabsgacaqGGaGaae4Caiaab+gacaqGSbGaaeyDai aabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGa aeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgaca qGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaa bwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaae yCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaab6caaaaa @3F95@

Q.68 Show that the given differential equation is homogeneous and solve it.

ydx+xlog(yx)dy2xdy=0

Ans.

The given differential equation is: y d x + x l o g ( y x ) d y 2 x d y = 0 y d x + { x l o g ( y x ) 2 x } d y = 0 d y d x = y { 2 x x l o g ( y x ) } . . . ( i ) L e t F ( x , y ) = y { 2 x x l o g ( y x ) } N o w , F ( λ x , λ y ) = λ y { 2 λ x λ x l o g ( λ y λ x ) } = λ y λ { 2 x x l o g ( y x ) } = λ 0 F ( x , y ) Therefore, F ( x , y ) is a homogenous function of degree zero . S o , the given differential equation is a homogenous differential e q u a t i o n . For solving equation ( i ) , s u b s t i t u t e y = v x a n d d y d x = v + x d v d x , w e g e t v + x d v d x = v x { 2 x x l o g ( v x x ) } x d v d x = v 2 l o g v v x d v d x = v 2 v + v l o g v 2 l o g v x d v d x = v l o g v v 2 l o g v { 2 l o g v v ( l o g v 1 ) } d v = d x x { 1 + ( 1 l o g v ) v ( l o g v 1 ) } d v = d x x { 1 v ( l o g v 1 ) 1 v } d v = d x x I n t e g r a t i n g b o t h s i d e s , w e g e t 1 v ( l o g v 1 ) d v 1 v d v = 1 x d x l o g | l o g v 1 | l o g | v | = l o g | x | + l o g C l o g ( l o g v 1 ) v = l o g C x ( l o g v 1 ) v = C x x y ( l o g y x 1 ) = C x l o g ( y x ) 1 = C y T h i s i s t h e r e q u i r e d s o l u t i o n o f t h e g i v e n d i f f e r e n t i a l e q u a t i o n .

Q.69 Show that the given differential equation is homogeneous and solve each of them.

(1+exy)dx+exy(1xy)dy=0

Ans.

The given differential equation is:(1+exy)dx+exy(1xy)dy=0               dydx=(1+exy)exy(1xy)              dxdy=exy(1xy)(1+exy)...(i)Let F(x,y)=exy(1xy)(1+exy)Now,        F(λx,λy)=eλxλy(1λxλy)(1+eλxλy)          =exy(1xy)(1+exy)=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential equation is a homogenous differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadMhaaeaacaWGKbGa amiEaaaacqGH9aqpcqGHsisldaWcaaqaamaabmaabaGaaGymaiabgU caRiaadwgadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMhaaaaa aaGccaGLOaGaayzkaaacbeGaa8hiaaqaaiaa=bcacaWGLbWaaWbaaS qabeaadaWcaaqaaiaadIhaaeaacaWG5baaaaaakmaabmaabaGaaGym aiabgkHiTmaalaaabaGaamiEaaqaaiaadMhaaaaacaGLOaGaayzkaa aaaaqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadIhaaeaacaWGKbGa amyEaaaacqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaam aalaaabaGaamiEaaqaaiaadMhaaaaaaOWaaeWaaeaacaaIXaGaeyOe I0YaaSaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaacaWFGa aabaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaWaaSaa aeaacaWG4baabaGaamyEaaaaaaaakiaawIcacaGLPaaaaaGaaGPaVl aaxMaacaqGUaGaaeOlaiaab6cadaqadaqaaiaabMgaaiaawIcacaGL PaaaaeaacaqGmbGaaeyzaiaabshacaqGGaGaaCzcaiaaxMaacaWLja GaaCzcaiaaykW7caqGgbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaa wIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbe qaamaalaaabaGaamiEaaqaaiaadMhaaaaaaOWaaeWaaeaacaaIXaGa eyOeI0YaaSaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaaca WFGaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaWa aSaaaeaacaWG4baabaGaamyEaaaaaaaakiaawIcacaGLPaaaaaaaba GaaeOtaiaab+gacaqG3bGaaeilaiaaykW7caWLjaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caqGgbWaaeWaae aacqaH7oaBcaWG4bGaaiilaiabeU7aSjaadMhaaiaawIcacaGLPaaa cqGH9aqpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaamaalaaaba Gaeq4UdWMaamiEaaqaaiabeU7aSjaadMhaaaaaaOWaaeWaaeaacaaI XaGaeyOeI0YaaSaaaeaacqaH7oaBcaWG4baabaGaeq4UdWMaamyEaa aaaiaawIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGaey4kaSIa amyzamaaCaaaleqabaWaaSaaaeaacqaH7oaBcaWG4baabaGaeq4UdW MaamyEaaaaaaaakiaawIcacaGLPaaaaaaabaGaaCzcaiaaxMaacaWL jaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaeyOeI0YaaSaaaeaa caWGLbWaaWbaaSqabeaadaWcaaqaaiaadIhaaeaacaWG5baaaaaakm aabmaabaGaaGymaiabgkHiTmaalaaabaGaamiEaaqaaiaadMhaaaaa caGLOaGaayzkaaGaa8hiaaqaamaabmaabaGaaGymaiabgUcaRiaadw gadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMhaaaaaaaGccaGL OaGaayzkaaaaaiabg2da9iabeU7aSnaaCaaaleqabaGaaGimaaaaki aaykW7caqGgbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGL PaaaaeaacaqGubGaaeiAaiaabwgacaqGYbGaaeyzaiaabAgacaqGVb GaaeOCaiaabwgacaqGSaGaaeiiaiaabAeadaqadaqaaiaadIhacaqG SaGaaGjbVlaadMhaaiaawIcacaGLPaaacaqGGaGaaeyAaiaabohaca qGGaGaaeyyaiaabccacaqGObGaae4Baiaab2gacaqGVbGaae4zaiaa bwgacaqGUbGaae4BaiaabwhacaqGZbGaaeiiaiaabAgacaqG1bGaae OBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqG MbGaaeiiaiaabsgacaqGLbGaae4zaiaabkhacaqGLbGaaeyzaiaabc cacaqG6bGaaeyzaiaabkhacaqGVbGaaeOlaiaabccacaqGtbGaae4B aiaabYcacaqGGaaabaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgaca qGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaa bAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaae iBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqG VbGaaeOBaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabI gacaqGVbGaaeyBaiaab+gacaqGNbGaaeyzaiaab6gacaqGVbGaaeyD aiaabohacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYb Gaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaa bwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae Olaaaaaa@9359@ For solving equation ( i ), substitute x = vy and dx dy =v+y dv dy , we get v+y dv dy = e vy y ( 1 vy y ) ( 1+ e vy y ) = e v ( 1v ) ( 1+ e v ) y dv dy = e v ( 1v ) ( 1+ e v ) v = v e v e v vv e v ( 1+ e v ) = ( e v +v ) ( 1+ e v ) ( 1+ e v ) ( e v +v ) dv= dy y Integrating both sides, we get ( 1+ e v ) ( e v +v ) dv= 1 y dy log| v+ e v |=logy+logC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabAeacaqGVbGaaeOCaiaabccacaqGZbGaae4BaiaabYga caqG2bGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabmaabaGaaeyA aaGaayjkaiaawMcaaiaabYcacaqGGaGaae4CaiaabwhacaqGIbGaae 4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyzaiaabccacaWG 4bGaaeiiaiaab2dacaqGGaGaamODaiaadMhacaqGGaGaaeyyaiaab6 gacaqGKbGaaeiiamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamyE aaaacqGH9aqpcaqG2bGaey4kaSIaaeyEamaalaaabaGaamizaiaadA haaeaacaWGKbGaamyEaaaacaqGSaaabaGaae4DaiaabwgacaqGGaGa ae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaWLjaGaaeODaiabgU caRiaabMhadaWcaaqaaiaadsgacaWG2baabaGaamizaiaadMhaaaGa eyypa0JaeyOeI0YaaSaaaeaacaWGLbWaaWbaaSqabeaadaWcaaqaai aabAhacaqG5baabaGaaeyEaaaaaaGcdaqadaqaaiaaigdacqGHsisl daWcaaqaaiaabAhacaqG5baabaGaaeyEaaaaaiaawIcacaGLPaaaae aaieqacaWFGaWaaeWaaeaacaaIXaGaey4kaSIaamyzamaaCaaaleqa baWaaSaaaeaacaqG2bGaaeyEaaqaaiaabMhaaaaaaaGccaGLOaGaay zkaaGaa8hiaaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9a qpcqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaaiaadAhaaaGcdaqa daqaaiaaigdacqGHsislcaWG2baacaGLOaGaayzkaaGaa8hiaaqaam aabmaabaGaaGymaiabgUcaRiaadwgadaahaaWcbeqaaiaadAhaaaaa kiaawIcacaGLPaaaaaaabaGaaCzcaiaaxMaacaWLjaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caqG5bWaaSaaaeaacaWGKbGaamODaaqa aiaadsgacaWG5baaaiabg2da9iabgkHiTmaalaaabaGaamyzamaaCa aaleqabaGaamODaaaakmaabmaabaGaaGymaiabgkHiTiaadAhaaiaa wIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyzam aaCaaaleqabaGaamODaaaaaOGaayjkaiaawMcaaaaacqGHsislcaWG 2baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaa caWG2bGaamyzamaaCaaaleqabaGaamODaaaakiabgkHiTiaadwgada ahaaWcbeqaaiaadAhaaaGccqGHsislcaWG2bGaeyOeI0IaamODaiaa dwgadaahaaWcbeqaaiaadAhaaaGccaWFGaaabaWaaeWaaeaacaaIXa Gaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaayjkaiaawMca aaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqGHsisl daWcaaqaamaabmaabaGaamyzamaaCaaaleqabaGaamODaaaakiabgU caRiaadAhaaiaawIcacaGLPaaacaWFGaaabaWaaeWaaeaacaaIXaGa ey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaayjkaiaawMcaaa aaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVpaalaaabaWaaeWa aeaacaaIXaGaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaay jkaiaawMcaaaqaamaabmaabaGaamyzamaaCaaaleqabaGaamODaaaa kiabgUcaRiaadAhaaiaawIcacaGLPaaaaaGaamizaiaadAhacqGH9a qpcqGHsisldaWcaaqaaiaadsgacaWG5baabaGaamyEaaaaaeaacaqG jbGaaeOBaiaabshacaqGLbGaae4zaiaabkhacaqGHbGaaeiDaiaabM gacaqGUbGaae4zaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeii aiaabohacaqGPbGaaeizaiaabwgacaqGZbGaaeilaiaabccacaqG3b GaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzcamaa peaabaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcaWGLbWaaWbaaS qabeaacaWG2baaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWGLbWa aWbaaSqabeaacaWG2baaaOGaey4kaSIaamODaaGaayjkaiaawMcaaa aaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadAhacqGH9aqpcqGH sisldaWdbaqaamaalaaabaGaaGymaaqaaiaadMhaaaaaleqabeqdcq GHRiI8aOGaaGPaVlaadsgacaWG5baabaGaeyO0H4TaaCzcaiaaxMaa caaMc8UaaGPaVlaaykW7caaMc8UaciiBaiaac+gacaGGNbWaaqWaae aacaWG2bGaey4kaSIaamyzamaaCaaaleqabaGaamODaaaaaOGaay5b SlaawIa7aiabg2da9iabgkHiTiGacYgacaGGVbGaai4zaiaadMhacq GHRaWkciGGSbGaai4BaiaacEgacaWGdbaaaaa@19D6@ log| x y + e x y |=log C y x y + e x y = C y x+y e x y =C This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPa VlGacYgacaGGVbGaai4zamaaemaabaWaaSaaaeaacaWG4baabaGaam yEaaaacqGHRaWkcaWGLbWaaWbaaSqabeaadaWcaaqaaiaadIhaaeaa caWG5baaaaaaaOGaay5bSlaawIa7aiabg2da9iGacYgacaGGVbGaai 4zamaalaaabaGaam4qaaqaaiaadMhaaaaabaGaeyO0H4TaaCzcaiaa xMaacaWLjaGaaGPaVlaaykW7daWcaaqaaiaadIhaaeaacaWG5baaai abgUcaRiaadwgadaahaaWcbeqaamaalaaabaGaamiEaaqaaiaadMha aaaaaOGaeyypa0ZaaSaaaeaacaWGdbaabaGaamyEaaaaaeaacqGHsh I3caWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlaadIhacqGHRaWkcaWG 5bGaamyzamaaCaaaleqabaWaaSaaaeaacaWG4baabaGaamyEaaaaaa GccqGH9aqpcaWGdbaabaGaaeivaiaabIgacaqGPbGaae4Caiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCai aabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGa ae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gaca qGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBaiaab6caaaaa@ADC6@

Q.70 For the differential equation, find the particular situation satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1

Ans.

The given differential equation is:(x+y)dy+(xy)dx=0    (x+y)dy=(xy)dx      dydx=(yx)x+y  ...(i)Let F(x,y)=(yx)x+yNow,        F(λx, λy)=(λyλx)λx+λy        =λ(yx)λ(x+y)=λ0F(x, y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differential equation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get                        v+xdvdx=vxxx+vx                      =(v1)x(1+v)x                                xdvdx=(v1)(1+v)v                      =v1vv2(1+v)                                xdvdx=(1+v2)(1+v)                    (1+v)(1+v2)dv=dxxIntegrating both sides, we get              11+v2dv+v1+v2dv=1xdx                tan1v+12log(1+v2)=logx+k                2tan1v+log(1+v2)=2logx+2k2tan1v+log(1+v2)+2logx=2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+ga caqGUbGaaeOlaaqaaiaabAeacaqGVbGaaeOCaiaabccacaqGZbGaae 4BaiaabYgacaqG2bGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqG XbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabm aabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4Caiaabwha caqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyzai aabccacaWG5bGaaGjbVlaab2dacaaMe8UaamODaiaadIhacaqGGaGa aeyyaiaab6gacaqGKbGaaeiiamaalaaabaGaamizaiaadMhaaeaaca WGKbGaamiEaaaacqGH9aqpcaqG2bGaey4kaSIaaeiEamaalaaabaGa amizaiaadAhaaeaacaWGKbGaamiEaaaacaqGSaaabaGaae4Daiaabw gacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqG2bGaey 4kaSIaaeiEamaalaaabaGaamizaiaadAhaaeaacaWGKbGaamiEaaaa cqGH9aqpdaWcaaqaaiaadAhacaWG4bGaeyOeI0IaamiEaaqaaiaadI hacqGHRaWkcaWG2bGaamiEaaaaaeaacaWLjaGaaCzcaiaaxMaacaWL jaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maala aabaWaaeWaaeaacaWG2bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaa dIhaaeaadaqadaqaaiaaigdacqGHRaWkcaWG2baacaGLOaGaayzkaa GaamiEaaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaeiEamaalaaabaGaamizaiaadAha aeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaamaabmaabaGaamODai abgkHiTiaaigdaaiaawIcacaGLPaaaaeaadaqadaqaaiaaigdacqGH RaWkcaWG2baacaGLOaGaayzkaaaaaiabgkHiTiaadAhaaeaacaWLja GaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGH9aqpdaWcaaqaaiaadAhacqGHsislcaaIXaGaey OeI0IaamODaiabgkHiTiaadAhadaahaaWcbeqaaiaaikdaaaaakeaa daqadaqaaiaaigdacqGHRaWkcaWG2baacaGLOaGaayzkaaaaaaqaai aaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqG4bWaaSaaaeaacaWGKbGaamODaaqaaiaadsgacaWG 4baaaiabg2da9maalaaabaGaeyOeI0YaaeWaaeaacaaIXaGaey4kaS IaamODamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaamaa bmaabaGaaGymaiabgUcaRiaadAhaaiaawIcacaGLPaaaaaaabaGaaC zcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaamaa bmaabaGaaGymaiabgUcaRiaadAhaaiaawIcacaGLPaaaaeaadaqada qaaiaaigdacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaaiaadsgacaWG2bGaeyypa0JaeyOeI0YaaSaaaeaaca WGKbGaamiEaaqaaiaadIhaaaaabaGaaeysaiaab6gacaqG0bGaaeyz aiaabEgacaqGYbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGa GaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsga caqGLbGaae4CaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zai aabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWdbaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWG2bWa aWbaaSqabeaacaaIYaaaaaaaaeqabeqdcqGHRiI8aOGaaGPaVlaads gacaWG2bGaey4kaSYaa8qaaeaadaWcaaqaaiaadAhaaeaacaaIXaGa ey4kaSIaamODamaaCaaaleqabaGaaGOmaaaaaaaabeqab0Gaey4kIi pakiaaykW7caWGKbGaamODaiabg2da9iabgkHiTmaapeaabaWaaSaa aeaacaaIXaaabaGaamiEaaaaaSqabeqaniabgUIiYdGccaaMc8Uaam izaiaadIhaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaamODaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa GaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaGaey4kaSIaamODamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTi GacYgacaGGVbGaai4zaiaadIhacqGHRaWkcaWGRbaabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI YaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaamODaiabgUcaRiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiab gUcaRiaadAhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacq GH9aqpcqGHsislcaaIYaGaciiBaiaac+gacaGGNbGaamiEaiabgUca RiaaikdacaWGRbaabaGaaGOmaiGacshacaGGHbGaaiOBamaaCaaale qabaGaeyOeI0IaaGymaaaakiaadAhacqGHRaWkciGGSbGaai4Baiaa cEgadaqadaqaaiaaigdacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaiGacYgacaGGVbGaai4z aiaadIhacqGH9aqpcaaIYaGaam4Aaaaaaa@956E@ 2 tan 1 y x +log( 1+ y x 2 2 ) x 2 =2k 2 tan 1 y x +log( x 2 + y 2 )=2k( ii ) Now, putting y=1atx=1. 2 tan 1 1 1 +log( 1 2 + 1 2 )=2k 2 tan 1 1+log( 2 )=2k 2( π 4 )+log2=2k ( π 2 )+log2=2k Substituting the value of 2k in equation( ii ), we get 2 tan 1 y x +log( x 2 + y 2 )=( π 2 )+log2 This is the required solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIYaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaSaaaeaacaWG5baabaGaamiEaaaacqGHRaWkciGGSbGaai4B aiaacEgadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadMhaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaaaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH9a qpcaaIYaGaam4AaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaikdaci GG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWc aaqaaiaadMhaaeaacaWG4baaaiabgUcaRiGacYgacaGGVbGaai4zam aabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMha daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpcaaIYa Gaam4AaiaaykW7caaMc8UaaiOlaiaac6cacaGGUaWaaeWaaeaacaWG PbGaamyAaaGaayjkaiaawMcaaaqaaiaab6eacaqGVbGaae4DaiaabY cacaqGGaGaaeiCaiaabwhacaqG0bGaaeiDaiaabMgacaqGUbGaae4z aiaabccacaqG5bGaeyypa0JaaGymaiaaykW7caaMc8Uaamyyaiaads hacaaMc8UaamiEaiabg2da9iaaigdacaGGUaaabaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGOmaiGacshacaGGHbGaaiOBamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaalaaabaGaaGymaaqaaiaaigdaaaGaey4kaS IaciiBaiaac+gacaGGNbWaaeWaaeaacaaIXaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGymamaaCaaaleqabaGaaGOmaaaaaOGaayjkai aawMcaaiabg2da9iaaikdacaWGRbaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaIYaGaciiDaiaacggacaGGUbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaaGymaiabgUcaRiGacYgacaGG VbGaai4zamaabmaabaGaaGOmaaGaayjkaiaawMcaaiabg2da9iaaik dacaWGRbaabaGaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8Ua aGOmamaabmaabaWaaSaaaeaaiiaacqWFapaCaeaacaaI0aaaaaGaay jkaiaawMcaaiabgUcaRiGacYgacaGGVbGaai4zaiaaikdacqGH9aqp caaIYaGaam4AaaqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaWaaSaaaeaacqWF apaCaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiGacYgacaGGVb Gaai4zaiaaikdacqGH9aqpcaaIYaGaam4AaaqaaiaabofacaqG1bGa aeOyaiaabohacaqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgaca qGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeODaiaa bggacaqGSbGaaeyDaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaae OmaiaabUgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyzaiaabghacaqG 1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaca qGPbaacaGLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabcca caqGNbGaaeyzaiaabshaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI YaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaO WaaSaaaeaacaWG5baabaGaamiEaaaacqGHRaWkciGGSbGaai4Baiaa cEgadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca WG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0Za aeWaaeaadaWcaaqaaiab=b8aWbqaaiaaikdaaaaacaGLOaGaayzkaa Gaey4kaSIaciiBaiaac+gacaGGNbGaaGOmaaqaaiaabsfacaqGObGa aeyAaiaabohacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgaca qGLbGaaeiiaiaabkhacaqGLbGaaeyCaiaabwhacaqGPbGaaeOCaiaa bwgacaqGKbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaae yAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabc cacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOB aiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1b GaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@B9A5@

Q.71 For the differential equation, find the particular situation satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

Ans.

The given differential equation is:    x2dy+(xy+y2)dx=0      x2dy=(xy+y2)dx              dydx=(xy+y2)x2  ...(i)Let         F(x, y)=(xy+y2)x2 Now,    F(λx,λy)=(λ2xy+λ2y2)λ2x2            =λ2(xy+y2)λ2x2=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=(xvx+v2x2)x2            =(v+v2)x2x2            xdvdx=vv2v            =v22v      dvv(v+2)=dxx12{(v+2)v}dvv(v+2)=dxx  12(1v1v+2)dv=dxxIntegrating both sides, we get121vdv121v+2dv=1xdx 12log|v|12log|v+2|=log|x|+logC        log(vv+2)=2log(Cx)          log(yxyx+2)=log(Cx)2        log(yy+2x)=log(Cx)2        yy+2x=(Cx)2        x2yy+2x=C2...(ii)Now,  y=1 when x=1        12(1)1+2(1)=C2            13=C2Substituting value of C2 in equation (ii), we get          x2yy+2x=13      3x2y=y+2x  y+2x=3x2yThis is the required solution of the given differential equation.

Q.72 For the differential equations, find the particular situation satisfying the given condition:

[xsin2(yx)y] dx+xdy=0; y=π when x=1

Ans.

The given differential equation is:    [xsin2(yx)y]dx+xdy=0      xdy=[xsin2(yx)y]dx              dydx=[xsin2(yx)y]x  ...(i)Let         F(x,y)=[xsin2(yx)y]xNow,    F(λx,λy)=[λxsin2(λyλx)λy]λx            =λ[xsin2(yx)y]λx=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation. For solving equation (i), substitute y=vx and dydx=v+xdvdx,we get      v+xdvdx=[xsin2(vxx)vx]x            xdvdx=sin2v+vv        cosec2vdv=dxxIntegrating both sides, we get      cosec2vdv=1xdx      cotv=log|x|+logC          cotyx=log|Cx|...(ii)Now, y=π4 at x=1      cot(π4)1=log|C.1|      1=log|C|C=eSubstituting value of C in equation (ii), we get          cotyx=log|ex|This is the required solution of the given differential equation.

Q.73 For the differential equations, find the particular situation satisfying the given condition:

dydxyx+cosec(yx)=0; y=0 when x=1

Ans.

The given differential equation is:dydxyx+cosec(yx)=0              dydx=yxcosec(yx)  ...(i)Let         F(x,y)=yxcosec(yx)Now,    F(λx,λy)=λyλxcosec(λyλx)            =yxcosec(yx)=λ0F(x,y)Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=vxxcosec(vxx)            xdvdx=vcosecvv    dvcosecv=dxxIntegrating both sides, we get  sinvdv=1xdx              cosv=log|x|+logC                  cos(yx)=log|Cx|...(ii) Now, y=0 at x=1          cos(01)=log|C.1|                  cos0=logC                          1=logC                              C=ePutting C = e in equation (ii), we get                  cos(yx)=log|ex|This is the required solution of the given differential equation.

Q.74 For the differential equation given below, find a particular situation satisfying the given condition:

2xy+y22x2dydx=0;y=2whenx=1

Ans.

The given differential equation is:    2xy+y22x2dydx=0  2x2dydx=(2xy+y2)              dydx=(2xy+y2)2x2  ...(i)Let         F(x,y)=(2xy+y2)2x2Now,    F(λx,λy)=(λ22xy+λ2y2)2λ2x2            =λ2(2xy+y2)2λ2x2=λ0F(x,y) Therefore, F(x, y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y =vx and dydx=v+xdvdx,we get      v+xdvdx=(2xvx+v2x2)2x2            =(2v+v2)x22x2            xdvdx=2v+v22v            =v22          dvv2=dx2xIntegrating both sides, we get            2v2dv=1xdx      2v11=log|x|+C        2v=log|x|+C        2(yx)=log|x|+C         2xy=log|x|+C...(ii)Now,y=2 at x=1.        2(1)2=log|1|+CC=1Substituting C = –1 in equation(ii), we get        2xy=log|x|1    y=2x1log|x|(x0,xe)This is the required solution of the given differential equation.

Q.75

A homogeneous differential equation of the form dydx=h(xy)can be solved by making the substitution.(A)y=vx (B)v=yx (C)x=vy (D)x=v

Ans.

A homogeneous differential equation of the form dydx=h(xy)can be solved by making the substitutionas x=vy.Hence, the correct option is C.

Q.76 Which of the following is a homogeneous differential equation?
(A) (4x + 6y + 5)dy – (3y + 2x + 4) dx = 0

(B) (xy) dx – (x3 + y3) dy = 0

(C) (x3 + 2y2) dx + 2xy dy = 0

(D) y2 dx + (x2– xy – y2) dy = 0

Ans.

A function F(x, y) is said to be homogeneous function of degree n if F(λx, λy)= λn F(x, y) for any nonzero constant λ.

Let us check option D, y2dx+(x2xyy2)dy=0    (x2xyy2)dy=y2dxdydx=y2(x2xyy2)Let    F(x,y)=y2(x2xyy2)then        F(λx,λy)=λ2y2(λ2x2λ2xyλ2y2)    =λ2λ2y2(x2xyy2)=λ0F(x,y)Thus, the given differential equation in option D ishomogenous equation.

Q.77 Find the general solution of the differential equation given below.

dydx+2y=sinx

Ans.

The given differential equation is dydx+2y=sinxComparing it withdydx+Py=Q,we getP=2andQ=sinxSo,I.F.=ePdx    =e2dx    =e2xThe solution of given differential equation is given by the relation,y(I.F.)=(Q×I.F.)dx+C  ye2x=(sinx×e2x)dx+C  ...(i)Let  I=sinxe2xdx  =sinxe2xdx(ddxsinxe2xdx)dx  =sinx[e2x2]cosx.e2x2dx  =12sinxe2x12cosx.e2xdx  =12sinxe2x12{cosxe2xdx(ddxcosxe2xdx)dx}  =12sinxe2x12{cosx[e2x2](sinxe2x2)dx} I= 1 2 sinx e 2x 1 4 ( cosx e 2x +I ) I= 1 2 sinx e 2x 1 4 cosx e 2x 1 4 I 5 4 I= 1 4 e 2x ( 2sinxcosx ) I= 1 5 e 2x ( 2sinxcosx ) So, from equation( i ), we have y e 2x = 1 5 e 2x ( 2sinxcosx )+C y= 1 5 ( 2sinxcosx )+C e 2x This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVJqaaiaa=LeacaaMc8Uaa8xpamaalaaabaGaa8xmaa qaaiaa=jdaaaGaa83Caiaa=LgacaWFUbGaa8hEaiaaykW7caWFLbWa aWbaaSqabeaacaWFYaGaa8hEaaaakiabgkHiTmaalaaabaGaa8xmaa qaaiaa=rdaaaWaaeWaaeaacaWFJbGaa83Baiaa=nhacaWF4bGaaGPa Vlaa=vgadaahaaWcbeqaaiaa=jdacaWF4baaaOGaa83kaiaa=Leaai aawIcacaGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWFjbGaaGPaVlaa=1dadaWcaaqaai aa=fdaaeaacaWFYaaaaiaa=nhacaWFPbGaa8NBaiaa=HhacaaMc8Ua a8xzamaaCaaaleqabaGaa8Nmaiaa=HhaaaGccqGHsisldaWcaaqaai aa=fdaaeaacaWF0aaaaiaa=ngacaWFVbGaa83Caiaa=HhacaaMc8Ua a8xzamaaCaaaleqabaGaa8Nmaiaa=HhaaaGccqGHsisldaWcaaqaai aa=fdaaeaacaWF0aaaaiaa=LeaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVpaalaaabaGaa8xnaaqaaiaa=rdaaaGaa8xsaiaaykW7ca WF9aWaaSaaaeaacaWFXaaabaGaa8hnaaaacaWFLbWaaWbaaSqabeaa caWFYaGaa8hEaaaakmaabmaabaGaa8Nmaiaa=nhacaWFPbGaa8NBai aa=HhacqGHsislcaWFJbGaa83Baiaa=nhacaWF4bGaaGPaVdGaayjk aiaawMcaaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaa=LeacaaMc8Uaa8xpamaalaaabaGaa8xm aaqaaiaa=vdaaaGaa8xzamaaCaaaleqabaGaa8Nmaiaa=HhaaaGcda qadaqaaiaa=jdacaWFZbGaa8xAaiaa=5gacaWF4bGaeyOeI0Iaa83y aiaa=9gacaWFZbGaa8hEaiaaykW7aiaawIcacaGLPaaaaeaacaqGtb Gaae4BaiaabYcacaqGGaGaaeOzaiaabkhacaqGVbGaaeyBaiaabcca caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBam aabmaabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4Daiaa bwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaaykW7caaMc8 UaaGPaVlaa=LhacaWFLbWaaWbaaSqabeaacaWFYaGaa8hEaaaakiaa =1dadaWcaaqaaiaa=fdaaeaacaWF1aaaaiaa=vgadaahaaWcbeqaai aa=jdacaWF4baaaOWaaeWaaeaacaWFYaGaa83Caiaa=LgacaWFUbGa a8hEaiabgkHiTiaa=ngacaWFVbGaa83Caiaa=HhacaaMc8oacaGLOa GaayzkaaGaa83kaiaa=neaaeaacqGHshI3caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaa=LhacaWF9aWaaSaaaeaacaWFXaaabaGaa8xnaa aadaqadaqaaiaa=jdacaWFZbGaa8xAaiaa=5gacaWF4bGaeyOeI0Ia a83yaiaa=9gacaWFZbGaa8hEaiaaykW7aiaawIcacaGLPaaacaWFRa Gaa83qaiaa=vgadaahaaWcbeqaaiaa=1cacaWFYaGaa8hEaaaaaOqa aiaabsfacaqGObGaaeyAaiaabohacaqGGaGaaeyAaiaabohacaqGGa GaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeyCaiaabwha caqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabEgacaqGLbGaaeOBai aabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae4Caiaab+gacaqGSbGa aeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgaca qGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaa bwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaae OCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaaeaa caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBai aab6caaaaa@5AAE@

Q.78 Find the general solution of the differential equation given below.

dydx+3y=e2x

Ans.

The given differential equation is dydx+3y=e2xComparing it with dydx+Py =Q, we getP=3 and Q=e2xSo,I.F.=ePdx    =e3dx    =e3x The solution of given differential equation is given by the relation, y( I.F. )= ( Q×I.F. ) dx+C y e 3x = ( e 2x × e 3x ) dx+C = e x dx+C y e 3x = e x +C y= e 2x +C e 3x This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabYga caqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae 4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeiBaiaabg gacaqG0bGaaeyAaiaab+gacaqGUbGaaeilaaqaaiaabMhadaqadaqa aiaadMeacaGGUaGaamOraiaac6caaiaawIcacaGLPaaacqGH9aqpda WdbaqaamaabmaabaGaamyuaiabgEna0kaadMeacaGGUaGaamOraiaa c6caaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGccaaMc8Uaamizai aadIhacqGHRaWkcaWGdbaabaGaaGPaVlaaykW7caaMc8UaamyEaiaa dwgadaahaaWcbeqaaiaaiodacaWG4baaaOGaeyypa0Zaa8qaaeaada qadaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4baaaOGa ey41aqRaamyzamaaCaaaleqabaGaaG4maiaadIhaaaaakiaawIcaca GLPaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadIhacqGHRaWk caWGdbGaaGPaVdqaaiaaxMaacaaMc8UaaGPaVlaaykW7cqGH9aqpda WdbaqaaiaadwgadaahaaWcbeqaaiaadIhaaaaabeqab0Gaey4kIipa kiaaykW7caWGKbGaamiEaiabgUcaRiaadoeaaeaacaaMc8UaaGPaVl aaykW7caWG5bGaamyzamaaCaaaleqabaGaaG4maiaadIhaaaGccqGH 9aqpcaWGLbWaaWbaaSqabeaacaWG4baaaOGaey4kaSIaam4qaaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amyEaiabg2da9iaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4b aaaOGaey4kaSIaam4qaiaadwgadaahaaWcbeqaaiabgkHiTiaaioda caWG4baaaaGcbaGaaeivaiaabIgacaqGPbGaae4CaiaabccacaqGPb Gaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwga caqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaae4zai aabwgacaqGUbGaaeyzaiaabkhacaqGHbGaaeiBaiaabccacaqGZbGa ae4BaiaabYgacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccaca qGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaa bMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaae OzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqG SbGaaeiiaaqaaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAai aab+gacaqGUbGaaeOlaaaaaa@1CBE@

Q.79 Find the general solution of the differential equation given below.

dy dx + y x = x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=rgacaWF5baabaGaa8hzaiaa=HhaaaGaa83k amaalaaabaGaa8xEaaqaaiaa=HhaaaGaa8xpaiaa=HhadaahaaWcbe qaaiaa=jdaaaaaaa@4232@

Ans.

The given differential equation is dydx+yx=x2Comparing it with dydx+Py=Q, we getP=1x and Q=x2So,I.F.=ePdx    =e1xdx    =elogx    =xThe solution of given differential equation is given by the relation,y(I.F.)=(Q×I.F.)dx+C  yx=(x2×x)dx+C = x 3 dx+C xy= x 4 4 +C This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacqGH9aqpdaWdbaqaaiaadIhadaahaaWcbeqaaiaa iodaaaaabeqab0Gaey4kIipakiaaykW7caWGKbGaamiEaiabgUcaRi aadoeaaeaacaaMc8UaaGPaVlaaykW7caWG4bGaamyEaiabg2da9maa laaabaGaamiEamaaCaaaleqabaGaaGinaaaaaOqaaiaaisdaaaGaey 4kaSIaam4qaaqaaiaabsfacaqGObGaaeyAaiaabohacaqGGaGaaeyA aiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLb GaaeyCaiaabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabEga caqGLbGaaeOBaiaabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae4Cai aab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa ae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgaca qGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaa bAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaae iBaiaabccaaeaacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMga caqGVbGaaeOBaiaab6caaaaa@908A@

Q.80 Find the general solution of the differential equation given below.

dydx+(secx)y = tanx(0x<π2)

Ans.

The given differential equation is dydx+(secx)y=tanx(0x<π2)Comparing it with dydx+Py=Q, we getP=secx and Q=tanxSo,I.F.=ePdx    =esecxdx    =elog(secx+tanx)    =secx+tanxThe solution of given differential equation is given by the relation,  y(I.F.)=(Q×I.F.)dx+C  y(secx+tanx)=(secx+tanx)tanxdx+C  y(secx+tanx)=secxtanxdx+tan2xdx+C    =secx+(sec2x1)dx+C    =secx+tanxx+CThis is the required general solution of the given differential equation.

Q.81 Find the general solution of the differential equation given below.

cos2xdydx+y=tanx(0x<π2)

Ans.

The given differential equation is cos2xdydx+y=tanx(0x<π2)dydx+(sec2x)y=sec2xtanxComparing it with dydx+Py=Q, we getP=sec2x and Q=sec2xtanxSo,I.F.=ePdx    =esec2xdx    =etanxThe solution of given differential equation is given by the relation,  y(I.F.)=(Q×I.F.)dx+C  yetanx=(sec2x  tanx)etanxdx+C  yetanx=tetsec2x  dtsec2x+C[Lett=tanxdtdx=sec2x]  yetanx=tetdt+C    =tetdt(ddttetdt)dt+C     =tet1.etdt+C    =tetet+C    =et(t1)+Cyetanx =etanx(tanx1)+C           y = (tanx1)+Cetanx This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyAaiaabohacaqGGaGaaeyAaiaaboha caqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeyCai aabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabEgacaqGLbGa aeOBaiaabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae4Caiaab+gaca qGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4Baiaa bAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaae ODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqG LbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabc caaeaacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGa aeOBaiaab6caaaaa@79D8@

Q.82 Find the general solution of the differential equation given below.

xdydx+2y=x2logx

Ans.

The given differential equation is xdydx+2y=x2logxdydx+2yx=xlogxComparing it with dydx+Py=Q, we getP=2x and Q=xlogxSo,  I.F.=ePdx    =e2xdx    =e2logx    =elogx2    =x2 The solution of given differential equation is given by the relation,  y(I.F.)=(Q×I.F.)dx+C          yx2=xlogx.x2dx+C          yx2=x3logxdx+C     =logxx3dx(ddxlogxx3dx)dx+C    =logx.[x44](1x[x44])dx+C    =logx.[x44]14x3dx+C    =logx.[x44]14[x44]+C          yx2=x416(4logx1)+C            y=x216(4logx1)+Cx2This is the required general solution of the given differential equation.

Q.83 Find the general solution of the differential equation given below.

xlogxdydx + y=xlogx

Ans.

The given differential equation is xlogx dydx+y=2xlogx dydx+yxlogx=2x2Comparing it with dydx+Py=Q, we getP=1xlogx and Q=2x2So,I.F.=ePdx    =e1xlogxdx    =elog(logx)    =logxThe solution of given differential equation is given by therelation,y(I.F.)=(Q×I.F.)dx+Cylogx=(2x2×logx)dx+Cylogx=logx2x2dx(ddxlogx2x2dx)dx+Cylogx=2{logx(1x)1x×1xdx}+Cylogx=2{1xlogx+x2dx}+Cylogx=2(1xlogx+x11)+C ylogx=2xlogx2x+Cylogx=2x(logx+1)+CThis is the required general solution of the given differential equation.

Q.84 Find the general solution of the differential equation given below.

(1+x2)dy+2xydx=cotx dx (x0)

Ans.

The given differential equation is       (1+x2)dy+2xydx=cotxdx  (x0)      dydx+2x(1+x2)y=cotx(1+x2)Comparing it with dydx+Py=Q, we getP=2x(1+x2) and Q=cotx(1+x2)So,I.F.=ePdx    =e2x(1+x2)dx    =elog(1+x2)    =(1+x2)The solution of given differential equation is given by the

relation,

y( I.F. )= ( Q×I.F. ) dx+C y( 1+ x 2 )= { cot x ( 1+ x 2 ) ×( 1+ x 2 ) } dx+C y( 1+ x 2 )= cot x dx+C y( 1+ x 2 )=log| sinx |+C y= ( 1+ x 2 ) 1 log| sinx |+C ( 1+ x 2 ) 1 This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhadaqadaqaaiaadMeacaGGUaGaamOraiaac6caaiaa wIcacaGLPaaacqGH9aqpdaWdbaqaamaabmaabaGaamyuaiabgEna0k aadMeacaGGUaGaamOraiaac6caaiaawIcacaGLPaaaaSqabeqaniab gUIiYdGccaaMc8UaamizaiaadIhacqGHRaWkcaWGdbaabaGaamyEam aabmaabaGaaGymaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaa kiaawIcacaGLPaaacqGH9aqpdaWdbaqaamaacmaabaWaaSaaaeaaci GGJbGaai4BaiaacshaieqacaWFGaGaamiEaaqaamaabmaabaGaaGym aiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aaaaGaey41aq7aaeWaaeaacaaIXaGaey4kaSIaamiEamaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaWcbeqab0 Gaey4kIipakiaaykW7caWGKbGaamiEaiabgUcaRiaadoeaaeaacaWG 5bWaaeWaaeaacaaIXaGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaa aaaOGaayjkaiaawMcaaiabg2da9maapeaabaGaci4yaiaac+gacaGG 0bGaa8hiaiaadIhaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadI hacqGHRaWkcaWGdbaabaGaamyEamaabmaabaGaaGymaiabgUcaRiaa dIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpci GGSbGaai4BaiaacEgadaabdaqaaiGacohacaGGPbGaaiOBaiaadIha aiaawEa7caGLiWoacqGHRaWkcaWGdbaabaGaaCzcaiaaykW7caaMc8 UaaGPaVlaaykW7caWG5bGaeyypa0ZaaeWaaeaacaaIXaGaey4kaSIa amiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaale qabaGaeyOeI0IaaGymaaaakiGacYgacaGGVbGaai4zamaaemaabaGa ci4CaiaacMgacaGGUbGaamiEaaGaay5bSlaawIa7aiabgUcaRiaado eadaqadaqaaiaaigdacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcba GaaeivaiaabIgacaqGPbGaae4CaiaabccacaqGPbGaae4Caiaabcca caqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDai aabMgacaqGYbGaaeyzaiaabsgacaqGGaGaae4zaiaabwgacaqGUbGa aeyzaiaabkhacaqGHbGaaeiBaiaabccacaqGZbGaae4BaiaabYgaca qG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaa bccacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaae yzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqG YbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaai aabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGa aeOlaaaaaa@F796@

Q.85 Find the general solution of the differential equation given below.

xdydx+yx+xy cotx=0

Ans.

The given differential equation is xdydx+yx+xycotx=0      dydx+(1+xcotx)xy=1Comparing it with dydx+Py=Q, we getP=(1+xcotx)x and Q=1So,I.F.=ePdx    =e(1+xcotx)xdx     =e(1x+cotx)dx    =elog|x|+log|sinx|    =elog|xsinx|    =xsinxThe solution of given differential equation is given by therelation,      y(I.F.)=(Q×I.F.)dx+Cy(xsinx)={1×(xsinx)}dx+Cy(xsinx)=xsinxdx+Cy(xsinx)=xsinxdx(ddxxsinxdx)dx+Cy(xsinx)=xcosx(cosx)dx+Cy(xsinx)=xcosx+sinx+C          y=1xcotx+CxcosecxThis is the required general solution of the given differential equation.

Q.86 Find the general solution of the differential equation given below.

(x+y)dydx=1

Ans.

The given differential equation is (x+y)dydx=1dydx=1(x+y) dxdy=(x+y)  dxdyx=yComparing it with dxdy+Px=Q, we getP=1 and Q=ySo,I.F.=ePdy    =e1dy  =eyThe solution of given differential equation is given by therelation,x(I.F.)=(Q×I.F.)dy+C  xey={y×ey}dy+C  xey=yeydy+Cxey=yeydy(ddyyeydy)dy+C=yey+(1.ey)dy+C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaxMaacaWLjaGaaCzcamaalaaabaGaamizaiaa dIhaaeaacaWGKbGaamyEaaaacqGH9aqpdaqadaqaaiaadIhacqGHRa WkcaWG5baacaGLOaGaayzkaaaabaGaeyO0H4TaaCzcaiaaxMaacaaM c8UaaGPaVpaalaaabaGaamizaiaadIhaaeaacaWGKbGaamyEaaaacq GHsislcaWG4bGaeyypa0JaamyEaaqaaiaaboeacaqGVbGaaeyBaiaa bchacaqGHbGaaeOCaiaabMgacaqGUbGaae4zaiaabccacaqGPbGaae iDaiaabccacaqG3bGaaeyAaiaabshacaqGObGaaeiiamaalaaabaGa amizaiaadIhaaeaacaWGKbGaamyEaaaacqGHRaWkcaWGqbGaamiEai abg2da9iaadgfacaGGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEga caqGLbGaaeiDaaqaaiaadcfacqGH9aqpcqGHsislcaaIXaGaaeiiai aadggacaWGUbGaamizaiaabccacaWGrbGaeyypa0JaamyEaaqaaiaa bofacaqGVbGaaeilaiaaykW7caWGjbGaaiOlaiaadAeacaGGUaGaey ypa0JaiGjGdwgadGaMaYbaaSqajGjGbGaMaoacyc4dbaqaiGjGcGaM aoiuaiacyc4GKbGaiGjGdMhaaWqajGjGbKaMa6GamGjGgUIiYdaaaa GcbaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWGLbWa aWbaaSqabeaadaWdbaqaaiabgkHiTiaaigdacaWGKbGaamyEaaadbe qab4Gaey4kIipaaaGccaaMc8UaaGPaVlaaykW7cqGH9aqpcaWGLbWa aWbaaSqabeaacqGHsislcaWG5baaaaGcbaGaaeivaiaabIgacaqGLb GaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+ga caqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabEgacaqGPbGaaeODai aabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGa aeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaca qGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaa bccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaae OBaiaabccacaqGIbGaaeyEaiaabccacaqG0bGaaeiAaiaabwgaaeaa caqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBai aabYcaaeaacaqG4bWaaeWaaeaacaWGjbGaaiOlaiaadAeacaGGUaaa caGLOaGaayzkaaGaeyypa0Zaa8qaaeaadaqadaqaaiaadgfacqGHxd aTcaWGjbGaaiOlaiaadAeacaGGUaaacaGLOaGaayzkaaaaleqabeqd cqGHRiI8aOGaaGPaVlaadsgacaWG5bGaey4kaSIaam4qaaqaaiaayk W7caaMc8UaaGPaVlaadIhacaWGLbWaaWbaaSqabeaacqGHsislcaWG 5baaaOGaeyypa0Zaa8qaaeaadaGadaqaaiaadMhacqGHxdaTcaWGLb WaaWbaaSqabeaacqGHsislcaWG5baaaaGccaGL7bGaayzFaaaaleqa beqdcqGHRiI8aOGaaGPaVlaadsgacaWG5bGaey4kaSIaam4qaaqaai aaykW7caaMc8UaamiEaiaadwgadaahaaWcbeqaaiabgkHiTiaadMha aaGccqGH9aqpdaWdbaqaaiaadMhacaWGLbWaaWbaaSqabeaacqGHsi slcaWG5baaaaqabeqaniabgUIiYdGccaaMc8UaamizaiaadMhacqGH RaWkcaWGdbaabaGaamiEaiaadwgadaahaaWcbeqaaiabgkHiTiaadM haaaGccqGH9aqpcaWG5bWaa8qaaeaacaWGLbWaaWbaaSqabeaacqGH sislcaWG5baaaaqabeqaniabgUIiYdGccaaMc8UaamizaiaadMhacq GHsisldaWdbaqaamaabmaabaWaaSaaaeaacaWGKbaabaGaamizaiaa dMhaaaGaamyEamaapeaabaGaamyzamaaCaaaleqabaGaeyOeI0Iaam yEaaaaaeqabeqdcqGHRiI8aOGaaGPaVlaadsgacaWG5baacaGLOaGa ayzkaaaaleqabeqdcqGHRiI8aOGaaGPaVlaadsgacaWG5bGaey4kaS Iaam4qaaqaaiaaxMaacqGH9aqpcqGHsislcaWG5bGaamyzamaaCaaa leqabaGaeyOeI0IaamyEaaaakiabgUcaRmaapeaabaWaaeWaaeaaca aIXaGaaiOlaiaadwgadaahaaWcbeqaaiabgkHiTiaadMhaaaaakiaa wIcacaGLPaaaaSqabeqaniabgUIiYdGccaaMc8UaamizaiaadMhacq GHRaWkcaWGdbaaaaa@67EB@     =yeyey+Cx=y1+Cey(Dividing both sides by ey)x+y+1=CeyThis is the required general solution of the given differential equation.

Q.87 Find the general solution of the differential equation given below.

ydx+(x−y2)dy=0

Ans.

The given differential equation is ydx+(xy2)dy=0dydx=y(xy2)dxdy=(xy2)ydxdy=(xyy)  dxdy+xy=yComparing it with dxdy+Px=Q, we getP=1y and Q=ySo,I.F.=ePdy    =e1ydy      =elogy=yThe solution of given differential equation is given by therelation,x(I.F.)=(Q×I.F.)dy+C      xy={y×y}dy+C      xy=y2dy+C xy= y 3 3 +C x= y 2 3 + C y This is the required general solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWG4bGaamyEaiabg2da9maalaaabaGaamyEamaaCaaaleqabaGaaG 4maaaaaOqaaiaaiodaaaGaey4kaSIaam4qaaqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacq GH9aqpdaWcaaqaaiaadMhadaahaaWcbeqaaiaaikdaaaaakeaacaaI ZaaaaiabgUcaRmaalaaabaGaam4qaaqaaiaadMhaaaaabaGaaeivai aabIgacaqGPbGaae4CaiaabccacaqGPbGaae4CaiaabccacaqG0bGa aeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMgaca qGYbGaaeyzaiaabsgacaqGGaGaae4zaiaabwgacaqGUbGaaeyzaiaa bkhacaqGHbGaaeiBaiaabccacaqGZbGaae4BaiaabYgacaqG1bGaae iDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG 0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6 gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyz aiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaabwgaca qGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaa aa@A16D@

Q.88 Find the general solution of the differential equation given below.

(x+3y2)dydx=y(y>0)

Ans.

The given differential equation is (x+3y2)dydx=y(y>0)dydx=y(x+3y2)dxdy=(x+3y2)ydxdy=(xy+3y)  dxdyxy=3yComparing it with dxdy+Px =Q, we getP=1y and Q=3ySo,I.F.=ePdy     =e1ydy      =elogy    =1yThe solution of given differential equation is given by therelation,x(I.F.)=(Q×I.F.)dy+C    x1y={3y×1y}dy+C    x1y=3dy+C=3y+C      x=3y2+CyThis is the required general solution of the given differential equation.

Q.89 For the differential equations, find a particular solution satisfying the given condition:

dydx+2ytanx=sinx; y=0whenx=π

Ans.

The given differential equation is dydx+2ytanx=sinx;y=0when x=π3Comparing it with dydx+Py=Q, we get P=2tanx and Q=sinxSo,I.F.=ePdx    =e2tanxdx    =e2logsecx    =elogsec2x    =sec2xThe solution of given differential equation is given by the relation,  y(I.F.)=(Q×I.F.)dx+Cysec2x=(sinx×sec2x)dx+Cysec2x=tanx.secxdx+C      =secx+C  y=cosx+Ccos2x      ...(i)This is the general equation of given differential equation.Now,  y=0  whenx=π3,so  0=cosπ3+Ccos2π3  0=12+C14C=2Putting value of C in equation (i), we get  y=cosx2cos2xThis is the particular solution of given differential equation.

Q.90 For the differential equation given below, find a particular solution satisfying the given condition:

(1+x2)dydx+2xy=11+x2; y=0 when x =1

Ans.

The given differential equation is (1+x2)dydx+2xy=11+x2;y=0 whenx=1dydx+2x(1+x2)y=1(1+x2)2Comparing it with dxdy+Px=Q, we getP=2x(1+x2) and Q=1(1+x2)2So,I.F.=ePdy    =e2x(1+x2)dy    =elog(1+x2)    =(1+x2)The solution of given differential equation is given by therelation,      y(I.F.)=(Q×I.F.)dx+Cy(1+x2)={1(1+x2)2×(1+x2)}dx+C=1(1+x2)dx+C y(1+x2)=tan1x+C  ...(i)Now,  y=0  at x=10(1+12)=tan11+C    0=π4+CC=π4From equation(i),  we have y(1+x2)=tan1xπ4This is the particular solution of given differential equation.

Q.91 For the differential equation given below, find a particular solution satisfying the given condition:

dydx3ycotx=sin2x; y=2whenx=π

Ans.

The given differential equation is dydx3ycotx=sin2x;y=2whenx=π2Comparing it with dxdy+Px=Q, we getP=3cotx and Q=sin2xSo,I.F.=ePdx    =e3cotxdx    =e3logsinx    =1sin3x=cosec3x The solution of given differential equation is given by therelation,      y(I.F.)=(Q×I.F.)dx+Cycosec3x={sin2x×cosec3x}dx+C=2cosxsin2xdx+C=2cotx.cosecxdx+Cycosec3x=2cosecx+C        y=2sin2x+Csin3x  ...(i)Now,y=2  at x=π2        2=2sin2π2+Csin3π2        2=2+CC=4From equation(i),  we have        y=2sin2x+4sin3xThis is the required particular solution of the given differential equation.

Q.92 Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

Ans.

Let slope of a curve f(x,y) at point (x,y) be dydx.According to question,       dydx=x+ydydxy=xComparing it with dxdy+Px=Q, we getP=1 and Q=xSo,I.F.=ePdx    =e1dx    =exThe solution of given differential equation is given by therelation,      y(I.F.)=(Q×I.F.)dx+C        yex=(x×ex)dx+C        yex=xexdx(ddxxexdx)dx+C        yex=x(ex)1.(ex)dx+C        yex=xex+exdx+C        yex=xexex+C          y=x1+Cex   x+y+1=Cex...(i)Since, the curve passes through the origin, then  0+0+1=Ce0C=1From equation (i), we get  x+y+1=exThus, the required equation passing through origin isx+y+1=ex.

Q.93 Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Ans.

Let slope of a curve f(x,y) at point (x,y) be dydx.According to question,      dydx+5=x+ydydxy=x5Comparing it with dxdy+Px=Q, we getP=1 and Q=x5So,I.F.=ePdx     =e1dx    =exThe solution of given differential equation is given by therelation,      y(I.F.)=(Q×I.F.)dx+C        yex=(x5)×exdx+C        yex=(x5)exdx+C        yex={(x5)exdx(ddx(x5)exdx)dx}+C        yex={(x5)ex+exdx}+C        yex=(x5)exex+C        yex=(4x)ex+C      y=(4x)+Cex  ...(i)The curve passes through (0,2), then      2=(40)+Ce0      2=4+CC=2Putting value of C in equation(i), we get      y=(4x)2exThus, this is the required  equation of the curve.

Q.94

The integrating factor of the differential equationxdydxy=2x2  is (A)ex (B)ey (C)1x(D)x

Ans.

The given differential equation is xdydxy=2x2dydxyx=2xComparing it with dydx+Py=Q, we getP=1x and Q=2xSo,I.F.=ePdx    =e1xdx=elogx    =1xThus, the correct option is C.

Q.95

The Integrating Factor of the differential equation(1y2)dxdy+yx=ay(1<y<1)is(A)1y21(B)1y21(C)11y2(D)11y2

Ans.

The given differential equation is (1y2)dxdy+yx=ay(1<y<1)dxdy+y(1y2)x=ay(1y2)Comparing it with dxdy+Px=Q, we getP=y(1y2) and Q=ay(1y2)So,    I.F.=ePdy      =ey(1y2)dy      =e12log(1y2)      =elog(1y2)12      =(1y2)12      =11y2Thus, the correct option is D.

Q.96 For the differential equations given below, indicate its order and degree (if defined).

(i) d2ydx2+5x(dydx)26y=logx (ii) (dydx)34(dydx)2+7y= sinx(iii) d4ydx4sin(d3ydx3)=0

Ans.

(i) The given differential equation is:    d2ydx2+5x(dydx)26y=logxd2ydx2+5x(dydx)26ylogx=0The highest order derivative present in the given differentialequation is d2ydx2. So, its order is 2 and highest power raised by d2ydx2 is one. Hence its degree is one.(ii) The given differential equation is:    (dydx)34(dydx)2+7y=sinx(dydx)34(dydx)2+7ysinx=0The highest order derivative present in the given differentialequation is dydx. So, its order is 1 and highest power raised by dydx is three. Hence its degree is 3. (iii) The given differential equation is:    d4ydx4sin(d3ydx3)=0The highest order derivative present in the given differentialequation is d4ydx4. So, its order is 4. Since the given differential equation is not a polynomial equation.Hence, its degree is not defined.

Q.97 For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

(i)y=aex+bex+x2    :xd2ydx2+2dydxxy+x22=0(ii) y=ex(acosx+bsinx)  :d2ydx22dydx+2y=0(iii) y=xsin3x  :d2ydx2+9y6cos3x=0(iv) x2=2y2logy:(x2+y2)dydxxy=0

Ans.

(i) The given equation is:y=aex+bex+x2(i)Differentiating w.r.t. x, we getdydx=aexbex+2x

Again, differentiating w.r.t. x, we get

d 2 y d x 2 =a e x +b e x +2 Substituting the value of d 2 y d x 2 and dy dx in given differential equation, we get: L.H.S.=x d 2 y d x 2 +2 dy dx xy+ x 2 2 =x( a e x +b e x +2 )+2( a e x b e x +2x )x( a e x +b e x + x 2 ) + x 2 2 = ax e x + bx e x +2x+2a e x 2b e x +4x ax e x bx e x x 3 + x 2 2 =2a e x 2b e x x 3 + x 2 +6x20 L.H.S.R.H.S. Thus, the given function is not a solution of corresponding diffrential equation. ( ii )The given equation is: y= e x ( acosx+bsinx ) ( i ) Differentiating w.r.t. x, we get dy dx = e x d dx ( acosx+bsinx )+( acosx+bsinx ) d dx e x = e x ( asinx+bcosx )+( acosx+bsinx ) e x = e x ( asinx+bcosx+acosx+bsinx ) Again, differentiating w.r.t. x, we get d 2 y d x 2 = e x d dx ( asinx+bcosx+acosx+bsinx ) +( asinx+bcosx+acosx+bsinx ) d dx e x = e x ( acosxbsinxasinx+bcosx ) +( asinx+bcosx+acosx+bsinx ) e x = e x ( acosx bsinx asinx+bcosxasinx+bcosx + acosx + bsinx ) = e x ( 2asinx+2bcosx ) Substituting the value of d 2 y d x 2 and dy dx in given differential equation, we get: L.H.S.= d 2 y d x 2 2 dy dx +2y = e x ( 2asinx+2bcosx )2 e x ( asinx+bcosx+acosx+bsinx ) +2 e x ( acosx+bsinx ) = e x ( 2asinx+2bcosx+2asinx2bcosx2acosx2bsinx +2acosx+2bsinx ) = e x ( 0 )=0 L.H.S.=R.H.S. Thus, the given function is a solution of corresponding diffrential equation. ( iii )The given equation is: y=x sin 3x ( i ) Differentiating w.r.t. x, we get dy dx =x d dx sin 3x+sin 3x d dx x =x.3cos3x+sin3x.1 =3xcos3x+sin3x Again, differentiating w.r.t. x, we get d 2 y d x 2 =3x d dx cos3x+cos3x d dx 3x+ d dx sin3x =9xsin3x+3cos3x+3cos3x =9xsin3x+6cos3x Substituting the value of d 2 y d x 2 and dy dx in given differential equation, we get: L.H.S.= d 2 y d x 2 +9y6 cos 3x =9xsin3x+6cos3x+9x sin 3x6 cos 3x =0 L.H.S.=R.H.S. Thus, the given function is a solution of corresponding diffrential equation. ( iv )The given equation is: x 2 =2 y 2 logy ( i ) Differentiating w.r.t. x, we get 2x=2 y 2 d dx logy+2 logy d dx y 2 =2 y 2 1 y dy dx +2 logy( 2y dy dx ) =( 2y+4y logy ) dy dx x=( y+2y logy ) dy dx dy dx = x y( 1+2 logy ) Substituting the value of dy dx in given differential equation, we get: L.H.S.=( x 2 + y 2 ) dy dx xy =( 2 y 2 logy+ y 2 ) x y( 1+2 logy ) xy = y 2 ( 2 logy+1 ) x y( 1+2 logy ) xy =xyxy =0=R.H.S. Thus, the given function is a solution of corresponding diffrential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaamiEaiabg2da9maabmaabaGaamyEaiab gUcaRiaaikdacaWG5bacbeGaa8hiaiGacYgacaGGVbGaai4zaiaadM haaiaawIcacaGLPaaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaa dIhaaaaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaai abg2da9maalaaabaGaamiEaaqaaiaadMhadaqadaqaaiaaigdacqGH RaWkcaaIYaGaa8hiaiGacYgacaGGVbGaai4zaiaadMhaaiaawIcaca GLPaaaaaaabaGaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGa aeiDaiaabwhacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshaca qGObGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaa bccacaqGVbGaaeOzaiaabccadaWcaaqaaiaadsgacaWG5baabaGaam izaiaadIhaaaGaaeiiaiaabMgacaqGUbGaaeiiaiaabEgacaqGPbGa aeODaiaabwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgaca qGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaa bccaaeaacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwga caqG0bGaaeOoaaqaaiaabYeacaqGUaGaaeisaiaab6cacaqGtbGaae Olaiaab2dadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaS aaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaiabgkHiTiaadIha caWG5baabaGaaCzcaiaaykW7cqGH9aqpdaqadaqaaiaaikdacaWG5b WaaWbaaSqabeaacaaIYaaaaOGaa8hiaiGacYgacaGGVbGaai4zaiaa dMhacqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaay zkaaWaaSaaaeaacaWG4baabaGaamyEamaabmaabaGaaGymaiabgUca RiaaikdacaWFGaGaciiBaiaac+gacaGGNbGaamyEaaGaayjkaiaawM caaaaacqGHsislcaWG4bGaamyEaaqaaiaaxMaacqGH9aqpcaWG5bWa aWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaaIYaGaa8hiaiGacYgaca GGVbGaai4zaiaadMhacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaSaa aeaacaWG4baabaGaamyEamaabmaabaGaaGymaiabgUcaRiaaikdaca WFGaGaciiBaiaac+gacaGGNbGaamyEaaGaayjkaiaawMcaaaaacqGH sislcaWG4bGaamyEaaqaaiaaxMaacqGH9aqpcaWG4bGaamyEaiabgk HiTiaadIhacaWG5baabaGaaCzcaiabg2da9iaaicdacqGH9aqpcaqG sbGaaeOlaiaabIeacaqGUaGaae4uaiaab6caaeaacaqGubGaaeiAai aabwhacaqGZbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGa ae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOzaiaabwhaca qGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaa bohacaqGGaGaaeyyaiaabccacaqGZbGaae4BaiaabYgacaqG1bGaae iDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG JbGaae4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6 gacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqGPbGa aeOzaiaabAgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggaca qGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaa b+gacaqGUbGaaeOlaaaaaa@3332@

Q.98 Form the differential equation representing the family of curves given by (x – a)2 +2y2 = a2, where a is an arbitrary constant.

Ans.

The given equation is: ( xa ) 2 + 2y 2 = a 2 x 2 2ax+ a 2 +2 y 2 = a 2 x 2 2ax+2 y 2 =0

Differentiating w.r.t. x, we get

2x2a+4y dy dx =0 dy dx = 2a2x 4y = ax 2y ( ii ) From equation ( i ),a= x 2 +2 y 2 2x Putting value of a in equation( ii ),we get dy dx = ( x 2 +2 y 2 2x )x 2y = x 2 +2 y 2 2 x 2 4xy = 2 y 2 x 2 4xy Which is the differential equation of the family of curves. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabkdacaWG4bGaeyOeI0IaaGOmaiaadggacqGHRaWkcaaI 0aGaamyEamaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacq GH9aqpcaaIWaaabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacq GH9aqpdaWcaaqaaiaaikdacaWGHbGaeyOeI0IaaGOmaiaadIhaaeaa caaI0aGaamyEaaaaaeaacaWLjaGaaGPaVlaaykW7caWLjaGaaCzcai aaykW7caaMc8Uaeyypa0ZaaSaaaeaacaWGHbGaeyOeI0IaamiEaaqa aiaaikdacaWG5baaaiaaxMaacaGGUaGaaiOlaiaac6cadaqadaqaai aadMgacaWGPbaacaGLOaGaayzkaaaabaGaaeOraiaabkhacaqGVbGa aeyBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgaca qGVbGaaeOBaiaabccadaqadaqaaiaadMgaaiaawIcacaGLPaaacaGG SaGaaGPaVlaadggacqGH9aqpdaWcaaqaaiaadIhadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaamyEamaaCaaaleqabaGaiGgGikda aaaakeaacaaIYaGaamiEaaaaaeaacaqGqbGaaeyDaiaabshacaqG0b GaaeyAaiaab6gacaqGNbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwha caqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaaeyAai aab6gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGa ae4Baiaab6gadaqadaqaaiaabMgacaqGPbaacaGLOaGaayzkaaGaae ilaiaaykW7caaMc8Uaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG 0baabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWc aaqaamaabmaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiaadMhadaahaaWcbeqaaiacObiIYaaaaaGcbaGa aGOmaiaadIhaaaaacaGLOaGaayzkaaGaeyOeI0IaamiEaaqaaiaaik dacaWG5baaaaqaaiaaxMaacaaMc8UaaGPaVlaaxMaacaWLjaGaaGPa VlaaykW7cqGH9aqpdaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIYaGaamyEamaaCaaaleqabaGaiGgGikdaaaGccqGH sislcaaIYaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaca WG4bGaamyEaaaaaeaacaWLjaGaaGPaVlaaykW7caWLjaGaaCzcaiaa ykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIYaGaamyEamaaCaaaleqaba GaiGgGikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaGc baGaaGinaiaadIhacaWG5baaaaqaaiaabEfacaqGObGaaeyAaiaabo gacaqGObGaaeiiaiaabMgacaqGZbGaaeiiaiaabshacaqGObGaaeyz aiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabgha caqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4Bai aabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabAgacaqGHbGa aeyBaiaabMgacaqGSbGaaeyEaiaabccacaqGVbGaaeOzaiaabccaca qGJbGaaeyDaiaabkhacaqG2bGaaeyzaiaabohacaqGUaaaaaa@2701@

Q.99 Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3xy2) dx = (y3 – 3x2y) dy, where c is a parameter.

Ans.

The given differential equation is:(x33xy2)dx =(y33x2y)dy     dydx=(x33xy2)(y33x2y)LetF(x, y)=(x33xy2)(y33x2y),thenF(λx, λy)=(λ3x33λ3xy2)(λ3y33λ3x2y)=λ3(x33xy2)λ3(y33x2y)=λ0F(x,y)Therefore, F(x,y) is a homogenous function of degree zero. So,the given differential equation is a homogenous differentialequation.For solving equation (i), substitute y=vx and dydx=v+xdvdx,we get      v+xdvdx=(x33v2x3)(v3x33vx3)              =(13v2)(v33v)            xdvdx=(13v2)(v33v)v              =13v2v4+3v2(v33v) = ( 1 v 4 ) ( v 3 3v ) ( v 3 3v )dv ( 1 v 4 ) = dx x Integrating both sides, we get ( v 3 3v )dv ( 1 v 4 ) = 1 x dx ( i ) LetI= ( v 3 3v )dv ( 1 v 4 ) = v 3 dv ( 1 v 4 ) 3 vdv ( 1 v 4 ) = 1 4 log( 1 v 4 ) 3 4 log| 1 v 2 1+ v 2 | From eqeuation( i ),weget 1 4 log( 1 v 4 ) 3 4 log| 1 v 2 1+ v 2 |=log| x |+logC 1 4 log{ ( 1 v 4 ) | 1 v 2 1+ v 2 | 3 }=logC| x | log{ ( 1 v 4 ) | 1 v 2 1+ v 2 | 3 }=4logC| x | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeyypa0ZaaSaaaeaadaqadaqaaiaaigdacqGHsisl caWG2bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaaabaWaiG jGbmaabGaMakacycyG2bWaiGjGCaaaleqcycyaiGjGcGaMag4maaaa kiadycOHsislcGaMag4maiacycyG2baacGaMaAjkaiacycOLPaaaaa aabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa laaabaWaaeWaaeaacaqG2bWaaWbaaSqabeaacaqGZaaaaOGaeyOeI0 Iaae4maiaabAhaaiaawIcacaGLPaaacaWGKbGaamODaaqaamaabmaa baGaaGymaiabgkHiTiaadAhadaahaaWcbeqaaiaaisdaaaaakiaawI cacaGLPaaaaaGaeyypa0ZaaSaaaeaacaWGKbGaamiEaaqaaiaadIha aaaabaGaaeysaiaab6gacaqG0bGaaeyzaiaabEgacaqGYbGaaeyyai aabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeOyaiaab+gacaqG0bGa aeiAaiaabccacaqGZbGaaeyAaiaabsgacaqGLbGaae4CaiaabYcaca qGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWdbaqaamaalaaabaWa aeWaaeaacaqG2bWaaWbaaSqabeaacaqGZaaaaOGaeyOeI0Iaae4mai aabAhaaiaawIcacaGLPaaacaWGKbGaamODaaqaamaabmaabaGaaGym aiabgkHiTiaadAhadaahaaWcbeqaaiaaisdaaaaakiaawIcacaGLPa aaaaaaleqabeqdcqGHRiI8aOGaaGPaVlabg2da9maapeaabaWaaSaa aeaacaaIXaaabaGaamiEaaaaaSqabeqaniabgUIiYdGccaaMc8Uaam izaiaadIhacaWLjaGaaeOlaiaab6cacaqGUaWaaeWaaeaacaqGPbaa caGLOaGaayzkaaaabaGaaeitaiaabwgacaqG0bGaaGPaVlaadMeacq GH9aqpdaWdbaqaamaalaaabaWaaeWaaeaacaqG2bWaaWbaaSqabeaa caqGZaaaaOGaeyOeI0Iaae4maiaabAhaaiaawIcacaGLPaaacaWGKb GaamODaaqaamaabmaabaGaaGymaiabgkHiTiaadAhadaahaaWcbeqa aiaaisdaaaaakiaawIcacaGLPaaaaaaaleqabeqdcqGHRiI8aaGcba GaaCzcaiabg2da9maapeaabaWaaSaaaeaacaqG2bWaaWbaaSqabeaa caqGZaaaaOGaamizaiaadAhaaeaadaqadaqaaiaaigdacqGHsislca WG2bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaaaaaWcbeqa b0Gaey4kIipakiabgkHiTiaaiodadaWdbaqaamaalaaabaGaaeODai aadsgacaWG2baabaWaaeWaaeaacaaIXaGaeyOeI0IaamODamaaCaaa leqabaGaaGinaaaaaOGaayjkaiaawMcaaaaaaSqabeqaniabgUIiYd aakeaacaWLjaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGin aaaaciGGSbGaai4BaiaacEgadaqadaqaaiaaigdacqGHsislcaWG2b WaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaa aeaacaaIZaaabaGaaGinaaaaciGGSbGaai4BaiaacEgadaabdaqaam aalaaabaGaaGymaiabgkHiTiaadAhadaahaaWcbeqaaiaaikdaaaaa keaacaaIXaGaey4kaSIaamODamaaCaaaleqabaGaaGOmaaaaaaaaki aawEa7caGLiWoaaeaacaqGgbGaaeOCaiaab+gacaqGTbGaaeiiaiaa bwgacaqGXbGaaeyzaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaae OBamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaaMc8Uaae4D aiaabwgacaaMc8Uaae4zaiaabwgacaqG0baabaGaeyOeI0YaaSaaae aacaaIXaaabaGaaGinaaaaciGGSbGaai4BaiaacEgadaqadaqaaiaa igdacqGHsislcaWG2bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaay zkaaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaGinaaaaciGGSbGaai4B aiaacEgadaabdaqaamaalaaabaGaaGymaiabgkHiTiaadAhadaahaa WcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaamODamaaCaaaleqa baGaaGOmaaaaaaaakiaawEa7caGLiWoacaaMc8Uaeyypa0JaciiBai aac+gacaGGNbWaaqWaaeaacaWG4baacaGLhWUaayjcSdGaey4kaSIa ciiBaiaac+gacaGGNbGaam4qaaqaaiabgkHiTmaalaaabaGaaGymaa qaaiaaisdaaaGaciiBaiaac+gacaGGNbWaaiWaaeaadaqadaqaaiaa igdacqGHsislcaWG2bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaay zkaaWaaqWaaeaadaWcaaqaaiaaigdacqGHsislcaWG2bWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGymaiabgUcaRiaadAhadaahaaWcbeqaai aaikdaaaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIZaaaaaGc caGL7bGaayzFaaGaeyypa0JaciiBaiaac+gacaGGNbGaam4qamaaem aabaGaamiEaaGaay5bSlaawIa7aaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlGacYgacaGGVbGaai4zamaacmaabaWaaeWaae aacaaIXaGaeyOeI0IaamODamaaCaaaleqabaGaaGinaaaaaOGaayjk aiaawMcaamaaemaabaWaaSaaaeaacaaIXaGaeyOeI0IaamODamaaCa aaleqabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcaWG2bWaaWbaaSqa beaacaaIYaaaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaaG4maa aaaOGaay5Eaiaaw2haaiabg2da9iabgkHiTiaaisdaciGGSbGaai4B aiaacEgacaWGdbWaaqWaaeaacaWG4baacaGLhWUaayjcSdaaaaa@A5F9@       log{(1v4)(1v21+v2)3}=log(C|x|)4                  (1v4)(1+v21v2)3=(C|x|)4              (1y4x4)(1+y2x21y2x2)3=(C|x|)4      (x4y4x4)(x2+y2x2x2y2x2)3=(C|x|)4    (x2y2)(x2+y2)x4(x2+y2x2y2)3=1(C|x|)4    (x2+y2)4x4(x2y2)2=1(C)4x4        (C)4(x2+y2)4=(x2y2)2    (x2y2)=(C)2(x2+y2)2    (x2y2)=C(x2+y2)2[Let  C=(C)2]Hence, the given result is proved.

Q.100 Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

Ans.

The equation of circle with centre(a,a) and radius a which touches the coordinate aes is:(xa)2+(ya)2=a2...(i)Differentiating equation(i), w.r.t. x, we get2(xa)+2(ya)y=0      (xa)+(ya)y=0          xa+yyay=0        x+yya(1+y)=0        a=x+yy(1+y)Substituting the value of a in equation(i), we get    {xx+yy(1+y)}2+{yx+yy(1+y)}2={x+yy(1+y)}2{x(1+y)xyy(1+y)}2+{y(1+y)xyy(1+y)}2={x+yy(1+y)}2    {x+xyxyy(1+y)}2+{y+yyxyy(1+y)}2={x+yy(1+y)}2 { xyyy ( 1+y ) } 2 + { yx ( 1+y ) } 2 = { x+yy ( 1+y ) } 2 ( xy ) 2 y 2 + ( xy ) 2 = ( x+yy ) 2 ( xy ) 2 ( y 2 +1 )= ( x+yy ) 2 ( x+yy ) 2 = ( xy ) 2 ( y 2 +1 ) Which is the required differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daGadaqaamaalaaabaGaamiEai aadMhacaGGNaGaeyOeI0IaamyEaiaadMhacaGGNaaabaWaaeWaaeaa caaIXaGaey4kaSIaamyEaiaacEcaaiaawIcacaGLPaaaaaaacaGL7b GaayzFaaWaiGjGCaaaleqcycyaiGjGcGaMaIOmaaaakiabgUcaRmaa cmaabaWaaSaaaeaacaWG5bGaeyOeI0IaamiEaaqaamaabmaabaGaaG ymaiabgUcaRiaadMhacaGGNaaacaGLOaGaayzkaaaaaaGaay5Eaiaa w2haamaaCaaaleqabaGaaGOmaaaakiabg2da9maacmaabaWaaSaaae aacaWG4bGaey4kaSIaamyEaiaadMhacaGGNaaabaWaaeWaaeaacaaI XaGaey4kaSIaamyEaiaacEcaaiaawIcacaGLPaaaaaaacaGL7bGaay zFaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyO0H4TaaCzcaiaaxMaa caWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaamiE aiabgkHiTiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa GccaWG5bGaai4jamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaa baGaamiEaiabgkHiTiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaGccqGH9aqpdaqadaqaaiaadIhacqGHRaWkcaWG5bGaamyE aiaacEcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacq GHshI3caWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaa caWG4bGaeyOeI0IaamyEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakmaabmaabaGaamyEaiaacEcadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWG4b Gaey4kaSIaamyEaiaadMhacaGGNaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaGcbaGaeyO0H4TaaCzcaiaaxMaacaWLjaGaaCzcai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7ca aMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daqadaqaaiaadIhacqGHRaWkcaWG5bGaamyEaiaacEcaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaqadaqaaiaa dIhacqGHsislcaWG5baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOWaaeWaaeaacaWG5bGaai4jamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdaaiaawIcacaGLPaaaaeaacaqGxbGaaeiAaiaabMgaca qGJbGaaeiAaiaabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMgacaqGYbGaae yzaiaabsgacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqG YbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabw gacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOl aaaaaa@3535@

Q.101

Find the general solution of the differential equationdydx+1y21x2=0.

Ans.

The given differential equation is:          dydx+1y21x2=0        dydx=1y21x2        dy1y2=dx1x2Integrating both sides, we get    sin1y=sin1x+C    sin1x+sin1y=C Thus, the general solution of the given differential equation is: sin -1 x+ sin -1 y=C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaaeiiaiaabsha caqGObGaaeyzaiaabccacaqGNbGaaeyzaiaab6gacaqGLbGaaeOCai aabggacaqGSbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGa aeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshaca qGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaa bccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaae OBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG 1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabo hacaqG6aaabaGaaGPaVlaabohacaqGPbGaaeOBamaaCaaaleqabaGa aeylaiaabgdaaaGccaqG4bGaey4kaSIaiGjGbohacGaMagyAaiacyc yGUbWaiGjGCaaaleqcycyaiGjGcGaMagylaiacycyGXaaaaOGaiGjG bMhacqGH9aqpcaWGdbaaaaa@8BB1@

Q.102

Show that the general solution of the differential equationdydx+y2+y+1x2+x+1=0 is given by(x+y+1)=A(1xy2xy),where A is parameter.

Ans.

The differential equation is:                          dydx+y2+y+1x2+x+1=0                    dydx=y2+y+1x2+x+1                      dy(y2+y+1)=dxx2+x+1      dy(y2+y+1)+dxx2+x+1=0Integrating both sides, we get      dy(y2+y+1)+dxx2+x+1=C  dy(y+12)2+(32)2+dx(x+12)2+(32)2=C1(32)tan1(2y+13)+1(32)tan1(2x+13)=C tan1(2y+13)+tan1(2x+13)=32C    tan1{(2y+13)+(2x+13)1(2y+13)(2x+13)}=32C      tan1{3(2y+1+2x+1)3(2y+1)(2x+1)}=32Ctan1{3(2y+2x+2)3(4xy+2x+2y+1)}=32C          tan1{23(y+x+1)2(12xyxy)}=32C                  {3(y+x+1)(12xyxy)}=tan(32C)(y+x+1)=13tan(32C)(12xyxy)(y+x+1)=A(12xyxy)[WhereA=13tan(32C)]Thus, the given result is proved. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaykW7ciGG0bGaaiyyaiaac6gadaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaaGOmaiaadMhacq GHRaWkcaaIXaaabaWaaOaaaeaacaaIZaaaleqaaaaaaOGaayjkaiaa wMcaaiabgUcaRiaaykW7ciGG0bGaaiyyaiaac6gadaahaaWcbeqaai abgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaaGOmaiaadIhacqGH RaWkcaaIXaaabaWaaOaaaeaacaaIZaaaleqaaaaaaOGaayjkaiaawM caaiabg2da9maalaaabaWaaOaaaeaacaaIZaaaleqaaaGcbaGaaGOm aaaacaWGdbaabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlGacs hacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaacmaa baWaaSaaaeaadaqadaqaamaalaaabaGaaGOmaiaadMhacqGHRaWkca aIXaaabaWaaOaaaeaacaaIZaaaleqaaaaaaOGaayjkaiaawMcaaiab gUcaRmaabmaabaWaaSaaaeaacaaIYaGaamiEaiabgUcaRiaaigdaae aadaGcaaqaaiaaiodaaSqabaaaaaGccaGLOaGaayzkaaaabaGaaGym aiabgkHiTmaabmaabaWaaSaaaeaacaaIYaGaamyEaiabgUcaRiaaig daaeaadaGcaaqaaiaaiodaaSqabaaaaaGccaGLOaGaayzkaaWaaeWa aeaadaWcaaqaaiaaikdacaWG4bGaey4kaSIaaGymaaqaamaakaaaba GaaG4maaWcbeaaaaaakiaawIcacaGLPaaaaaaacaGL7bGaayzFaaGa eyypa0ZaaSaaaeaadaGcaaqaaiaaiodaaSqabaaakeaacaaIYaaaai aadoeaaeaacqGHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaiWaaeaadaWcaaqaamaakaaabaGaaG4maaWcbeaakmaa bmaabaGaaGOmaiaadMhacqGHRaWkcaaIXaGaey4kaSIaaGOmaiaadI hacqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaGaaG4maiabgkHiTmaa bmaabaGaaGOmaiaadMhacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaae WaaeaacaaIYaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaa caGL7bGaayzFaaGaeyypa0ZaaSaaaeaadaGcaaqaaiaaiodaaSqaba aakeaacaaIYaaaaiaadoeaaeaacqGHshI3caaMc8UaciiDaiaacgga caGGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaiWaaeaadaWcaa qaamaakaaabaGaaG4maaWcbeaakmaabmaabaGaaGOmaiaadMhacqGH RaWkcaaIYaGaamiEaiabgUcaRiaaikdaaiaawIcacaGLPaaaaeaaca aIZaGaeyOeI0YaaeWaaeaacaaI0aGaamiEaiaadMhacqGHRaWkcaaI YaGaamiEaiabgUcaRiaaikdacaWG5bGaey4kaSIaaGymaaGaayjkai aawMcaaaaaaiaawUhacaGL9baacqGH9aqpdaWcaaqaamaakaaabaGa aG4maaWcbeaaaOqaaiaaikdaaaGaam4qaaqaaiabgkDiElaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7ciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaa GcdaGadaqaamaalaaabaGaaGOmamaakaaabaGaaG4maaWcbeaakmaa bmaabaGaamyEaiabgUcaRiaadIhacqGHRaWkcaaIXaaacaGLOaGaay zkaaaabaGaaGOmamaabmaabaGaaGymaiabgkHiTiaaikdacaWG4bGa amyEaiabgkHiTiaadIhacqGHsislcaWG5baacaGLOaGaayzkaaaaaa Gaay5Eaiaaw2haaiabg2da9maalaaabaWaaOaaaeaacaaIZaaaleqa aaGcbaGaaGOmaaaacaWGdbaabaGaeyO0H4TaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaxMaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aacmaabaWaaSaaaeaadaGcaaqaaiaaiodaaSqabaGcdaqadaqaaiaa dMhacqGHRaWkcaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaaaqaam aabmaabaGaaGymaiabgkHiTiaaikdacaWG4bGaamyEaiabgkHiTiaa dIhacqGHsislcaWG5baacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haai abg2da9iGacshacaGGHbGaaiOBamaabmaabaWaaSaaaeaadaGcaaqa aiaaiodaaSqabaaakeaacaaIYaaaaiaadoeaaiaawIcacaGLPaaaae aacqGHshI3caWLjaGaaCzcaiaaxMaacaWLjaWaaeWaaeaacaWG5bGa ey4kaSIaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaaigdaaeaadaGcaaqaaiaaiodaaSqabaaaaOGaciiDaiaa cggacaGGUbWaaeWaaeaadaWcaaqaamaakaaabaGaaG4maaWcbeaaaO qaaiaaikdaaaGaam4qaaGaayjkaiaawMcaamaabmaabaGaaGymaiab gkHiTiaaikdacaWG4bGaamyEaiabgkHiTiaadIhacqGHsislcaWG5b aacaGLOaGaayzkaaaabaGaeyO0H4TaaCzcaiaaxMaacaWLjaGaaCzc amaabmaabaGaamyEaiabgUcaRiaadIhacqGHRaWkcaaIXaaacaGLOa GaayzkaaGaeyypa0JaamyqamaabmaabaGaaGymaiabgkHiTiaaikda caWG4bGaamyEaiabgkHiTiaadIhacqGHsislcaWG5baacaGLOaGaay zkaaGaaGPaVdqaaiaaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzc amaadmaabaGaam4vaiaadIgacaWGLbGaamOCaiaadwgacaaMc8Uaam yqaiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaaG4maaWcbeaa aaGcciGG0bGaaiyyaiaac6gadaqadaqaamaalaaabaWaaOaaaeaaca aIZaaaleqaaaGcbaGaaGOmaaaacaWGdbaacaGLOaGaayzkaaaacaGL BbGaayzxaaaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqGGa GaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabkhacaqGLbGaae4CaiaabwhacaqGSbGaaeiDai aabccacaqGPbGaae4CaiaabccacaqGWbGaaeOCaiaab+gacaqG2bGa aeyzaiaabsgacaqGUaaaaaa@A62B@

Q.103

Find the equation of the curve passing through the point(0, π4)  whose differential equation is sinxcosy dx+cosxsiny dy=0.

Ans.

The given differential equation is sinxcosydx+cosxsinydy=0Dividing equation by cos x cos y, we getsinxcosydx+cosxsinydycos x cos y=0  tanxdx+tanydy=0Integrating both sides, we get    tanxdx+tanydy=logC        logsecx+logsecy=logC                logsecxsecy=logC      secxsecy=C...(i)The curve passes through (0,π4), we get      sec0secπ4=C1.2=CC=2Putting C=2 in equation (i), we getsecxsecy=2      cosy=secx2Which is the required equation of the curve.

Q.104 Find the particular solution of the differential equation (1 + e2x) dy + ( 1 + y2) ex dx = 0, given that y = 1 when x = 0.

Ans.

The given differential equation is    (1+e2x)dy+(1+y2)exdx=0dy(1+y2)+exdx(1+e2x)=0Integrating both sides, we getdy(1+y2)+exdx{1+(ex)2}=0tan1y+tan1ex=C...(i)Now,y=1 at x=0tan11+tan1e0=C  π4+tan11=C    π4+π4=CC=π2Putting  C=π2 in equation (i), we gettan1y+tan1ex=π2This is the required particular question of given differential equation.

Q.105

Solve the differential equation y exydx=(xexy+y2)dy  (y0).

Ans.

The given differential equation is:        yexydx=(xexy+y2)dy  (y0)  yexydxdy=(xexy+y2)yexydxdyxexy=y2(ydxdyx)exy=y2(ydxdyx)y2exy=1  ...(i)Let  exy=tDifferentiating w.r.t. y, we get    ddxexy=dtdxexy(yddyxxddyyy2)=dtdx exy(ydxdyxy2)=dtdx...(ii)From equation(i) and equation(ii), we getdtdx=1dt=dxIntegrating both sides, we getdt=dx    t=x+C        exy=x+CThis is the general solution of the given differential equation.

Q.106 Find a particular solution of the differential equation (x – y) (dx + dy) = dx – dy, given that y = – 1, when x = 0.

Ans.

The differential equation is:          (xy)(dx+dy)=dxdy(xy)dx+(xy)dy=dxdy      (xy+1)dy=(1x+y)dx      dydx=(1x+y)(xy+1)      dydx=1(xy)1+(xy)...(i) Letv=xy dv dx =1 dy dx dy dx =1 dv dx Substituting value of ( xy ) and dy dx in equation( i ), we get 1 dv dx = 1v 1+v dv dx =1 1v 1+v = 1+v1+v 1+v dv dx = 2v 1+v 1+v v dv=2dx Integrating both sides, we get ( 1 v +1 ) dv=2 dx log| v |+v=2x+C log| xy |+xy=2x+C log| xy |=x+y+C ( ii ) Now, y=1 at x=0 log| 1 |=01+CC=1 Substituting C=1 in equation ( ii ), we get log| xy |=x+y+1 This is the required particular solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaadYeacaWGLbGaamiDaiaaykW7caWG2bGaeyypa0JaamiE aiabgkHiTiaadMhacqGHshI3daWcaaqaaiaadsgacaWG2baabaGaam izaiaadIhaaaGaeyypa0JaaGymaiabgkHiTmaalaaabaGaamizaiaa dMhaaeaacaWGKbGaamiEaaaacqGHshI3daWcaaqaaiaadsgacaWG5b aabaGaamizaiaadIhaaaGaeyypa0JaaGymaiabgkHiTmaalaaabaGa amizaiaadAhaaeaacaWGKbGaamiEaaaaaeaacaqGtbGaaeyDaiaabk gacaqGZbGaaeiDaiaabMgacaqG0bGaaeyDaiaabshacaqGPbGaaeOB aiaabEgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGGa Gaae4BaiaabAgacaqGGaWaaeWaaeaacaqG4bGaeyOeI0IaaeyEaaGa ayjkaiaawMcaaiaabccacaqGHbGaaeOBaiaabsgacaqGGaWaaSaaae aacaWGKbGaamyEaaqaaiaadsgacaWG4baaaiaabccacaqGPbGaaeOB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGa ae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxM aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaigdacqGHsisldaWcaaqaaiaadsgacaWG2baabaGaamizaiaadI haaaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamODaaqaaiaaigda cqGHRaWkcaWG2baaaaqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaayk W7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWG2baabaGaamiz aiaadIhaaaGaeyypa0JaaGymaiabgkHiTmaalaaabaGaaGymaiabgk HiTiaadAhaaeaacaaIXaGaey4kaSIaamODaaaaaeaacaWLjaGaaCzc aiaaxMaacaWLjaGaaGPaVlabg2da9maalaaabaGaaGymaiabgUcaRi aadAhacqGHsislcaaIXaGaey4kaSIaamODaaqaaiaaigdacqGHRaWk caWG2baaaaqaaiabgkDiElaaxMaacaWLjaGaaCzcaiaaykW7caaMc8 UaaGPaVlaaykW7daWcaaqaaiaadsgacaWG2baabaGaamizaiaadIha aaGaeyypa0ZaaSaaaeaacaaIYaGaamODaaqaaiaaigdacqGHRaWkca WG2baaaaqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7caaMc8Ua aGPaVpaalaaabaGaaGymaiabgUcaRiaadAhaaeaacaWG2baaaiaads gacaWG2bGaeyypa0JaaGOmaiaadsgacaWG4baabaGaaeysaiaab6ga caqG0bGaaeyzaiaabEgacaqGYbGaaeyyaiaabshacaqGPbGaaeOBai aabEgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGa aeyAaiaabsgacaqGLbGaae4CaiaabYcacaqGGaGaae4Daiaabwgaca qGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVpaapeaabaWaaeWaaeaadaWcaaqaaiaaig daaeaacaWG2baaaiabgUcaRiaaigdaaiaawIcacaGLPaaaaSqabeqa niabgUIiYdGccaaMc8UaamizaiaadAhacqGH9aqpcaaIYaWaa8qaae aacaWGKbGaamiEaaWcbeqab0Gaey4kIipaaOqaaiabgkDiElaaxMaa caWLjaGaaGPaVlGacYgacaGGVbGaai4zamaaemaabaGaamODaaGaay 5bSlaawIa7aiabgUcaRiaadAhacqGH9aqpcaaIYaGaamiEaiabgUca RiaadoeaaeaacqGHshI3caaMc8UaaGPaVlaaykW7ciGGSbGaai4Bai aacEgadaabdaqaaiaadIhacqGHsislcaWG5baacaGLhWUaayjcSdGa ey4kaSIaamiEaiabgkHiTiaadMhacqGH9aqpcaaIYaGaamiEaiabgU caRiaadoeaaeaacqGHshI3caaMc8UaaGPaVlaaxMaacaWLjaGaaGPa VlGacYgacaGGVbGaai4zamaaemaabaGaamiEaiabgkHiTiaadMhaai aawEa7caGLiWoacqGH9aqpcaWG4bGaey4kaSIaamyEaiabgUcaRiaa doeacaWLjaGaaiOlaiaac6cacaGGUaWaaeWaaeaacaWGPbGaamyAaa GaayjkaiaawMcaaaqaaiaad6eacaWGVbGaam4DaiaacYcacaqGGaGa aeyEaiabg2da9iabgkHiTiaaigdacaqGGaGaaeyyaiaabshacaqGGa GaaeiEaiabg2da9iaabcdaaeaacqGHshI3caaMc8UaaGPaVlaaxMaa caWLjaGaaGPaVlGacYgacaGGVbGaai4zamaaemaabaGaaGymaaGaay 5bSlaawIa7aiabg2da9iaaicdacqGHsislcaaIXaGaey4kaSIaam4q aiabgkDiElaadoeacqGH9aqpcaaIXaaabaGaae4uaiaabwhacaqGIb Gaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyAaiaab6ga caqGNbGaaeiiaiaaboeacqGH9aqpcaqGXaGaaeiiaiaabMgacaqGUb GaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+ga caqGUbGaaeiiamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaaca qGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqa aiaaykW7caaMc8UaaCzcaiaaxMaacaaMc8UaciiBaiaac+gacaGGNb WaaqWaaeaacaWG4bGaeyOeI0IaamyEaaGaay5bSlaawIa7aiabg2da 9iaadIhacqGHRaWkcaWG5bGaey4kaSIaaGymaaqaaiaabsfacaqGOb GaaeyAaiaabohacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIga caqGLbGaaeiiaiaabkhacaqGLbGaaeyCaiaabwhacaqGPbGaaeOCai aabwgacaqGKbGaaeiiaiaabchacaqGHbGaaeOCaiaabshacaqGPbGa ae4yaiaabwhacaqGSbGaaeyyaiaabkhacaqGGaGaae4Caiaab+gaca qGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4Baiaa bAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaae ODaiaabwgacaqGUbGaaeiiaaqaaiaabsgacaqGPbGaaeOzaiaabAga caqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBai aabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGa aeOBaiaab6caaaaa@113A@

Q.107

Solve the differential equation[e2xxyx]dxdy=1(x0)

Ans.

The differential equationis:[e2xxyx]dxdy=1(x0)dydx=[e2xxyx]dydx+yx=e2xxComparing the given equation with dydx+Py=Q, we get    P=1x and Q=e2xxNow, I.F.=ePdx        =e1xdx=e2xThe general solution of the given differential equation is:  y(I.F.)=(Q×I.F.)dx+C  y(e2x)=(e2xx×e2x)dx+C      =(1x)dx+C y( e 2 x )=2 x +C This is the general solution of the given equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaamyEamaabmaa baGaamyzamaaCaaaleqabaGaaGOmamaakaaabaGaamiEaaadbeaaaa aakiaawIcacaGLPaaacqGH9aqpcaaIYaWaaOaaaeaacaWG4baaleqa aOGaey4kaSIaam4qaaqaaiaabsfacaqGObGaaeyAaiaabohacaqGGa GaaeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEga caqGLbGaaeOBaiaabwgacaqGYbGaaeyyaiaabYgacaqGGaGaae4Cai aab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa ae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgaca qGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaa bggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@75F8@

Q.108

Find a particular solution of the differential equation dydx+ycotx=4xcosecx  (x0), given thaty=0when x=π2.

Ans.

The differential equation is:dydx+ycotx=4xcosecx  (x0)This is a linear differential equation in the form of dydx+Py=Q,where  P=cotx and Q=4xcosecxNow,  I.F.=ePdx        =ecotxdx        =elogsinx        =sinxThe general solution of given differential equation is:  y(I.F.)=(Q×I.F.)dx+C  ysinx=(4xcosecx×sinx)dx+C      =4xdx+C =4 x 2 2 +C ysinx=2 x 2 +C ( i ) Which is general solution of the given differential equation. Now, y=0 when x= π 2 From equation ( i ), we have ( 0 )sin π 2 =2 ( π 2 ) 2 +CC= π 2 2 Putting value of C in equation ( i ), we get ysinx=2 x 2 π 2 2 This is the particular solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaeyypa0JaaGinamaalaaabaGaamiEamaaCaaaleqabaGaaG OmaaaaaOqaaiaaikdaaaGaey4kaSIaam4qaaqaaiabgkDiElaaxMaa caaMc8UaaGPaVlaaykW7caqG5bGaci4CaiaacMgacaGGUbGaamiEai abg2da9iaaikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa am4qaiaaxMaacaGGUaGaaiOlaiaac6cadaqadaqaaiaadMgaaiaawI cacaGLPaaaaeaacaqGxbGaaeiAaiaabMgacaqGJbGaaeiAaiaabcca caqGPbGaae4CaiaabccacaqGNbGaaeyzaiaab6gacaqGLbGaaeOCai aabggacaqGSbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGa aeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshaca qGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaa bccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaae OBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG 1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaabaGaaeOtai aab+gacaqG3bGaaeilaiaabccacaqG5bGaeyypa0JaaGimaiaabcca caqG3bGaaeiAaiaabwgacaqGUbGaaeiiaiaadIhacqGH9aqpdaWcaa qaaGGaaiab=b8aWbqaaiaaikdaaaaabaGaaeOraiaabkhacaqGVbGa aeyBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgaca qGVbGaaeOBaiaabccadaqadaqaaiaabMgaaiaawIcacaGLPaaacaqG SaGaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabw gaaeaacaWLjaGaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIWaaacaGL OaGaayzkaaGaci4CaiaacMgacaGGUbWaaSaaaeaacqWFapaCaeaaca aIYaaaaiabg2da9iaaikdadaqadaqaamaalaaabaGae8hWdahabaGa aGOmaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGdbGaeyO0H4Taam4qaiabg2da9iabgkHiTmaalaaabaGae8hW da3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaeaacaqGqbGaae yDaiaabshacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabAhacaqG HbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabo eacaqGGaGaaeyAaiaab6gacaqGGaGaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGGaWaaeWaaeaacaqGPbaaca GLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGa aeyzaiaabshaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaeyEaiGaco hacaGGPbGaaiOBaiaadIhacqGH9aqpcaaIYaGaamiEamaaCaaaleqa baGaaGOmaaaakiabgkHiTmaalaaabaGae8hWda3aaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaaaeaacaqGubGaaeiAaiaabMgacaqGZbGa aeiiaiaabMgacaqGZbGaaeiiaiaabshacaqGObGaaeyzaiaabccaca qGWbGaaeyyaiaabkhacaqG0bGaaeyAaiaabogacaqG1bGaaeiBaiaa bggacaqGYbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaae yAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabc cacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOB aiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1b GaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@4D38@

Q.109

Find a particular solution of the differential equation (x+1)dydx=2ey1, given that y=0when x=0.

Ans.

The differential equation is:(x+1)dydx=2ey1dy(2ey1)=dx(x+1)Integrating both sides, we get        dy(2ey1)=1(x+1)dx e y dy ( 2 e y ) = 1 ( x+1 ) dx log( 2 e y )=log| x+1 |+logC log ( 2 e y ) 1 =log| C( x+1 ) | ( 2 e y ) 1 =C( x+1 ) ( 2 e y )= 1 C( x+1 ) ( i ) Now, y=0 when x=0 ( 2 e 0 )= 1 C( 0+1 ) ( 21 )= 1 C C=1 Putting value C in equation ( i ), we get ( 2 e y )= 1 1( x+1 ) e y =2 1 x+1 = 2x+21 x+1 y=log| 2x+1 x+1 |,x1 This is the particular solution of the given differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiabgkDiElaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daWdbaqaamaalaaabaGaamyzam aaCaaaleqabaGaamyEaaaakiaadsgacaWG5baabaWaaeWaaeaacaaI YaGaeyOeI0IaamyzamaaCaaaleqabaGaamyEaaaaaOGaayjkaiaawM caaaaaaSqabeqaniabgUIiYdGccaaMc8Uaeyypa0Zaa8qaaeaadaWc aaqaaiaaigdaaeaadaqadaqaaiaadIhacqGHRaWkcaaIXaaacaGLOa GaayzkaaaaaaWcbeqab0Gaey4kIipakiaaykW7caWGKbGaamiEaaqa aiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHsislciGGSbGaai4BaiaacEgadaqadaqaaiaaikdacqGHsisl caWGLbWaaWbaaSqabeaacaWG5baaaaGccaGLOaGaayzkaaGaeyypa0 JaciiBaiaac+gacaGGNbWaaqWaaeaacaWG4bGaey4kaSIaaGymaaGa ay5bSlaawIa7aiabgUcaRiGacYgacaGGVbGaai4zaiaadoeaaeaacq GHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ciGGSbGa ai4BaiaacEgadaqadaqaaiaaikdacqGHsislcaWGLbWaaWbaaSqabe aacaWG5baaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaeyypa0JaciiBaiaac+gacaGGNbWaaqWaaeaacaWGdbWaae WaaeaacaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5bSlaa wIa7aaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqa daqaaiaaikdacqGHsislcaWGLbWaaWbaaSqabeaacaWG5baaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0Ja am4qamaabmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaaae aacqGHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+aaeWaaeaacaaIYaGaeyOeI0IaamyzamaaCaaaleqabaGa amyEaaaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaai aadoeadaqadaqaaiaadIhacqGHRaWkcaaIXaaacaGLOaGaayzkaaaa aiaaxMaacaGGUaGaaiOlaiaac6cadaqadaqaaiaadMgaaiaawIcaca GLPaaaaeaacaqGobGaae4BaiaabEhacaGGSaGaaeiiaiaabMhacqGH 9aqpcaaIWaGaaeiiaiaabEhacaqGObGaaeyzaiaab6gacaqGGaGaam iEaiabg2da9iaabcdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqadaqaaiaaikdacqGH sislcaWGLbWaaWbaaSqabeaacaaIWaaaaaGccaGLOaGaayzkaaGaey ypa0ZaaSaaaeaacaaIXaaabaGaam4qamaabmaabaGaaGimaiabgUca RiaaigdaaiaawIcacaGLPaaaaaaabaGaeyO0H4TaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaaGOmai abgkHiTiaaigdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigda aeaacaWGdbaaaaqaaiabgkDiElaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa doeacqGH9aqpcaaIXaaabaGaaeiuaiaabwhacaqG0bGaaeiDaiaabM gacaqGUbGaae4zaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyz aiaabccacaqGdbGaaeiiaiaabMgacaqGUbGaaeiiaiaabwgacaqGXb GaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabmaa baGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4Daiaabwgaca qGGaGaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaaGOmaiabgkHiTiaa dwgadaahaaWcbeqaaiaadMhaaaaakiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaaigdaaeaacaaIXaWaaeWaaeaacaWG4bGaey4kaSIaaGym aaGaayjkaiaawMcaaaaaaeaacqGHshI3caWLjaGaaCzcaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadwgadaahaaWcbeqaaiaa dMhaaaGccqGH9aqpcaaIYaGaeyOeI0YaaSaaaeaacaaIXaaabaGaam iEaiabgUcaRiaaigdaaaaabaGaaCzcaiaaxMaacaWLjaGaaGPaVlaa ykW7cqGH9aqpdaWcaaqaaiaaikdacaWG4bGaey4kaSIaaGOmaiabgk HiTiaaigdaaeaacaWG4bGaey4kaSIaaGymaaaaaeaacaWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG5b Gaeyypa0JaciiBaiaac+gacaGGNbWaaqWaaeaadaWcaaqaaiaaikda caWG4bGaey4kaSIaaGymaaqaaiaadIhacqGHRaWkcaaIXaaaaaGaay 5bSlaawIa7aiaacYcacaaMc8UaamiEaiabgcMi5kabgkHiTiaaigda aeaacaqGubGaaeiAaiaabMgacaqGZbGaaeiiaiaabMgacaqGZbGaae iiaiaabshacaqGObGaaeyzaiaabccacaqGWbGaaeyyaiaabkhacaqG 0bGaaeyAaiaabogacaqG1bGaaeiBaiaabggacaqGYbGaaeiiaiaabo hacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeii aiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNb GaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabAga caqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyai aabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGa ae4Baiaab6gacaqGUaaaaaa@2A37@

Q.110 The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time.
If the population of the village was 20,000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?

Ans.

Let number of people in a village at any instant(t) be P.Then, according to question:dPdtαPdPdt=kP [Where k is a proportionality constant.]dPP=kdtIntegrating both sides,we get        dPP=kdt      logP=kt+C...(i)In the year 1999, t = 0 and P = 20,000log20,000=k(0)+C  C=log20,000Putting value of C in equation(i), we get              logP=kt+log20,000    ...(ii)In the year 2004, t = 5years and P = 25,000, then from equation(ii),we have  log25,000=k(5)+log20,000 log 25,000 20,000 =5k k= 1 5 log( 5 4 ) Putting value of k in equation( ii ), we have logP= 1 5 log( 5 4 )t+log20,000 In the year 2009, t=10 years logP=10× 1 5 log( 5 4 )+log20,000 logP=2log( 5 4 )+log20,000 logP=log ( 5 4 ) 2 +log20,000 =log{ ( 5 4 ) 2 ×20,000 } P= 5 4 × 5 4 ×20,000=31250 Therefore, the population of the village in year 2009 is 31250. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlGacYgacaGGVbGaai4zamaalaaa baGaaeOmaiaabwdacaqGSaGaaeimaiaabcdacaqGWaaabaGaaeOmai aabcdacaqGSaGaaeimaiaabcdacaqGWaaaaiabg2da9iaaiwdacaWG RbaabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaadUgacqGH9aqpdaWcaa qaaiaaigdaaeaacaaI1aaaaiGacYgacaGGVbGaai4zamaabmaabaWa aSaaaeaacaaI1aaabaGaaGinaaaaaiaawIcacaGLPaaaaeaacaqGqb GaaeyDaiaabshacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabAha caqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiai aabUgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyzaiaabghacaqG1bGa aeyyaiaabshacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgacaqGPb aacaGLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqG ObGaaeyyaiaabAhacaqGLbaabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7ciGGSbGaai4BaiaacEgacaWGqbGaeyypa0ZaaSaaae aacaaIXaaabaGaaGynaaaaciGGSbGaai4BaiaacEgadaqadaqaamaa laaabaGaaGynaaqaaiaaisdaaaaacaGLOaGaayzkaaGaamiDaiabgU caRiGacYgacaGGVbGaai4zaiaabkdacaqGWaGaaeilaiaabcdacaqG WaGaaeimaaqaaiaabMeacaqGUbGaaeiiaiaabshacaqGObGaaeyzai aabccacaqG5bGaaeyzaiaabggacaqGYbGaaeiiaiaabkdacaqGWaGa aeimaiaabMdacaqGSaGaaeiiaiaabshacqGH9aqpcaqGXaGaaeimai aabccacaqG5bGaaeyzaiaabggacaqGYbGaae4CaaqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaciiBaiaac+gacaGGNbGaamiu aiabg2da9iaabgdacaqGWaGaey41aq7aaSaaaeaacaaIXaaabaGaaG ynaaaaciGGSbGaai4BaiaacEgadaqadaqaamaalaaabaGaaGynaaqa aiaaisdaaaaacaGLOaGaayzkaaGaey4kaSIaciiBaiaac+gacaGGNb GaaeOmaiaabcdacaqGSaGaaeimaiaabcdacaqGWaaabaGaeyO0H4Ta aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7ciGGSbGaai4BaiaacEgacaWGqbGaeyypa0Ja aGOmaiGacYgacaGGVbGaai4zamaabmaabaWaaSaaaeaacaaI1aaaba GaaGinaaaaaiaawIcacaGLPaaacqGHRaWkciGGSbGaai4BaiaacEga caqGYaGaaeimaiaabYcacaqGWaGaaeimaiaabcdaaeaacqGHshI3ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlGacYgacaGGVbGaai4zaiaadcfacqGH9aqpci GGSbGaai4BaiaacEgadaqadaqaamaalaaabaGaaGynaaqaaiaaisda aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaci iBaiaac+gacaGGNbGaaeOmaiaabcdacaqGSaGaaeimaiaabcdacaqG WaaabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7cqGH9aqpciGGSbGaai4BaiaacEgadaGadaqaamaabmaabaWa aSaaaeaacaaI1aaabaGaaGinaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaGccqGHxdaTcaaIYaGaaGimaiaacYcacaaIWaGaaGim aiaaicdaaiaawUhacaGL9baaaeaacaWLjaGaaCzcaiaaykW7caaMc8 Uaamiuaiabg2da9maalaaabaGaaGynaaqaaiaaisdaaaGaey41aq7a aSaaaeaacaaI1aaabaGaaGinaaaacqGHxdaTcaaIYaGaaGimaiaacY cacaaIWaGaaGimaiaaicdacqGH9aqpcaaIZaGaaGymaiaaikdacaaI 1aGaaGimaaqaaiaabsfacaqGObGaaeyzaiaabkhacaqGLbGaaeOzai aab+gacaqGYbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGa aeiiaiaabchacaqGVbGaaeiCaiaabwhacaqGSbGaaeyyaiaabshaca qGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaa bIgacaqGLbGaaeiiaiaabAhacaqGPbGaaeiBaiaabYgacaqGHbGaae 4zaiaabwgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyEaiaabwgacaqG HbGaaeOCaiaabccacaqGYaGaaeimaiaabcdacaqG5aGaaeiiaiaabM gacaqGZbGaaeiiaiaabodacaqGXaGaaeOmaiaabwdacaqGWaGaaeOl aaaaaa@A18D@

Q.111

The general solution of the differential equation ydx xdyy = 0  is(A) xy = C (B) x = Cy2  (C) y = Cx (D) y = Cx2

Ans.

The differential equation is:ydxxdyy=0    dxxdyy=0Integrating both sides, we get1xdx1ydy=logC    logxlogy=logC    log(xy)=logC      xy=C    y=1Cx    y=Cxwhere,C=1CThis is the general solution of the given differential equation.Hence, the correct option is C.

Q.112

The general solution of a differential equation of the typedydx+P1x=Q1is(A)yeP1dy=(Q1eP1dy)dy+C(B)yeP1dX=(Q1eP1dX)dx+C(C)xeP1dy=(Q1eP1dy)dy+C(D)xeP1dx=(Q1eP1dx)dx+C

Ans.

Thedifferential equation of the typedxdy+P1x=Q1 is a linear differential equation.                  I.F.=eP1dyThe general solution of given differential equation is:x(I.F.)=(Q×I.F.)dy+CxeP1dy=(Q1×eP1dy)dy+CTherefore, the correct option is C.

Q.113

The general solution of the differential equation exdy+(yex+2x)dx=0 is(A) xey+x2=C      (B) xey+y2=C(C) yex+x2=C      (D) yey+x2=C

Ans.

The differential equation is    exdy+(yex+2x)dx=0exdydx+yex=2x        dydx+y=2xexThis is a linear differential equation in the form of dydx+Py=Q,where  P=1 and Q=2xexNow,  I.F.=ePdx        =e1dx        =exThe general solution of given differential equation is:  y(I.F.)=(Q×I.F.)dx+C        yex=(2xex×ex)dx+C      =2xdx+C      =2x22+C        yex=x2+C    yex+x2=CHence, the correct option is C.

Please register to view this section

FAQs (Frequently Asked Questions)

1. How many problems are there in total in NCERT Solutions Class 12 Mathematics Chapter 9 Differential Equations?

NCERT Solutions Class 12 Mathematics Chapter 9 – Differential Equations has 113 questions separated into seven exercises. In addition to repetitive revision, a miscellaneous exercise consists of higher-order questions that push candidates to think outside of the box and help them apply their auxiliary mathematical skills. These are wonderful sums that aid students in gaining a comprehensive understanding of the subject.

2. Why should I practise NCERT Solutions Class 12 Mathematics Chapter 9?

Students will gain confidence in solving questions on this topic by regularly practising the NCERT Solutions Class 12 Mathematics Chapter 9. They will be able to attempt the paper stress-free throughout any examination, whether it is a board or competitive exam, resulting in imminent success. Aside from that, by revisiting these solutions, students can build a solid Mathematical foundation that will serve them well throughout their lives.

3. Is it necessary for one to practise all the NCERT Solutions for Class 12 mathematics Differential Equations?

Perfection requires a lot of practise. As a result, you should practise all the sums in the NCERT Solutions Class 12 Mathematics chapter 9 -Differential Equations at least twice. This chapter presents several new concepts built on previously taught material and, as a result, can be perplexing at times. Students not only pave the route to a higher exam result by solving each problem, but they also ensure that these topics come in use in real-life situations as well.

4. What is the significance of NCERT Solutions for Class 12 Mathematics Chapter 9?

The board exams are based on NCERT Solutions Class 12 Mathematics Chapter 9. CBSE papers are based on the NCERT textbook format. Furthermore, these issues are organised so that they provide readers with a 360-degree view of the chapter. Extramarks recommend students use these to gain a thorough understanding of the subject and double-check their responses after solving a question.

 

5. Are there answers to all the textbook problems in the NCERT Solutions for Class 12 Mathematics Chapter 9?

The NCERT Solutions for Class 12 Mathematics Chapter 9 are created by subject specialists at Extramarks and are accessible in the aforementioned links. These solutions are based entirely on the most recent CBSE Syllabus 2022-23, and they cover all of the key concepts for the first as well as the second term exams. The textbook questions are addressed in a step-by-step fashion based on marks weightage in the second-term exams.