NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives (Ex 6.4) Exercise 6.4

The Central Board of Secondary Education, or CBSE, is a National Board of Secondary Education for public and private schools in New Delhi. The CBSE Board is supervised and controlled by the Government of India. In 1921, it was created as the Uttar Pradesh Board of High School and Intermediate Education, with jurisdiction over Rajputana, Central India, and Gwalior. The government of India formed the Board of High School and Intermediate Education in 1929, which covered the schools of Ajmer, Merwara, Central India, and Gwalior. Later, it was limited to the cities of Ajmer, Bhopal, and Vindhya Pradesh. It was renamed the Central Board of Secondary Education in 1952. The promotion criteria for Class 12 students are 33% overall, along with 33% in both theory and practical examinations. If students do not score well in one subject, they may write the compartment for that subject in July.

The CBSE Board oversees NCERT. The National Council of Educational Research and Training (NCERT), established by the Government of India in 1961, provides support and advice to the sentral and state governments. The organization creates policies and programmes to improve the quality of education in schools. NCERT’s primary mission is to conduct, promote, and coordinate research in the field of school education. Furthermore, NCERT works with international organizations, visits foreign delegations, and trains educational staff from developing nations. NCERT is in charge of creating and releasing model textbooks, supplemental materials, newsletters, journals, educational kits, and multimedia digital products.

The basis of human understanding of the world is mathematics; thus, it is also an essential component of human intellect and logic. In addition to developing mental discipline, mathematics encourages logical reasoning and cognitive clarity. Furthermore, mathematical knowledge is essential for comprehending topics while preparing for the Class 12 board examinations. Class 12 mathematics often requires the use of mathematical concepts, and the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 helps students practice. Mathematical concepts and terminologies are essential to pursuing careers in science, engineering, commerce, astronomy, economics, and other such fields and disciplines.

In addition to mathematics, derivatives are used in a variety of other fields. There are many applications of them in Physics, for example, determining velocity, acceleration, etc. Derivatives are used to determine the rate at which one quantity changes with respect to another. It is widely used in chemistry to determine the rate at which chemical reactions take place. It is also possible to use derivatives to solve the equation of the tangent to a curve. As a result, it is imperative that students thoroughly understand the fundamentals in this chapter to be able to employ them in several other subjects. An introduction to derivatives is provided in this chapter, which focuses on function differentiability. Several derivatives of certain functions as well as their applications are discussed in this chapter.

By solving each sum provided in the six exercises in this chapter, the NCERT Solutions for Mathematics Chapter 6 allows students to study the entire chapter at a steady pace. As a result of the concepts discussed in the NCERT solutions, students will be able to understand the real-world applications of derivatives. Additionally, it can be used to prepare for a variety of competitive examinations.

Extramarks provides a variety of study materials to assist students in understanding the concepts presented in this chapter. The study materials, including the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, provide a comprehensive review of all the key concepts outlined in the CBSE-recommended syllabus for the board examinations. Many qualified teachers designed the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 to help students prepare for the board examinations that are going to be imposed by the CBSE. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 can also be used to prepare students for a variety of college entrance exams, such as the JEE and VITEEE. Practising the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 at least twice is recommended for students to fully comprehend the questions.

The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are prepared to assist students during their preparation for the Class 12 board examinations in the most effective way possible. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are discussed in detail, using examples that are relevant and easy to understand. Furthermore, practice questions are supplied at the end of each topic to assist students in performing better in Chapter 6. It is strongly recommended that students keep these NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 ready during exam preparation to utilise them as a quick and effective study tool. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are intended to aid students by providing them with solutions to their problems so that they can focus on evaluating their conceptual understanding.

The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 for Class 12 Mathematics provide a strong conceptual foundation for all topics covered in the CBSE Class 12 Mathematics Syllabus. It explains all the major theorems and formulas in detail to help students attain a better conceptual understanding. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 aid students in their preparation for college entrance exams such as JEE Mains, BITSAT, VITEEE, and other aptitude-based exams.

Extramarks offers the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 curated by skilled specialists to assist students in the smooth and detailed learning of topic-specific ideas. These NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 provide extensive step-by-step explanations of math problems in the textbooks. Extramarks provides Class 12 Mathematics revision notes, solved sample problems, past years’ papers, and worksheets as study materials for students preparing for their Class 12 board exams. Apart from that, Extramarks provides solutions for all classes, such as NCERT Solutions Class 11, NCERT Solutions Class 10, NCERT Solutions Class 9, and many more.

Besides providing the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, the students in secondary classes can also refer to the solutions available as the NCERT Solutions Class 8, NCERT Solutions Class 7, NCERT Solutions Class 6, and many others on the Extramarks website.

The availability of several questions before the examination is not sufficient for students. They also need access to well-explained NCERT Solutions. It is beneficial to download the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 available before answering the questions. In any examination, students who can comprehend and learn quickly are going to perform better. This also allows the students to devote more time to other parts of learning while keeping their minds calm. Understanding the principles of the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 helps students progress in their studies. The concepts provided in this chapter can be confusing and challenging at times, but the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are useful learning resources. Using these learning resources, the students can make mathematics easier to understand.

NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives (Ex 6.4) Exercise 6.4

The students who wish to excel in the Class 12 board exams are recommended to download the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 available in PDF format on the Extramarks website. It might not be possible for students to access the internet at all times; hence, the students can use the downloaded PDF of the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 anywhere at their convenience, offline as well.

Click here to download the PDF of the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4:

Access NCERT Solutions For Class 12 Chapter 6 – Applications of Derivative

Benefits of NCERT Solutions for Class 12 Maths Chapter 6

The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are underrated, even though most of the students rely on them while preparing for Chapter 6 of Class 12 Mathematics. The NCERT textbook is the most used study material in Class 12, increasing the need for the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are required for Class 12 students to prepare for board exams. Extramarks provides the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 and other learning resources that provide students with enough practice before the Class 12 examinations. Only checking the answer is not sufficient to understand the method used to achieve the solution. By referring to the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, the students can get clarity on the procedure and steps. In this manner, students become capable of answering the questions asked in the board examination.

The use of Derivatives is discussed in Chapter 6 of the NCERT Mathematics textbook. For students to understand the principles discussed in this chapter, they should complete the preceding chapter on Continuity and Differentiability. Using NCERT Solutions for Mathematics Chapter 5, students can gain a comprehensive understanding of the numerous characteristics of Limits and Continuity of Functions. In reading through each question’s complete solution, students gain a better understanding of Continuity and Differentiability. It is the purpose of this chapter to put the concepts presented in the previous chapter into practice. Exercise 6.4 in this chapter is based on approximation. To answer the questions, students must refer to the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 to verify the solutions. Besides, the students must develop a solid understanding of the principles presented in this exercise. It is usually beneficial to solve exercises from the NCERT book since these problems frequently appear in board exams. It is important to note, however, that some questions in this exercise may be difficult for students to answer. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are therefore made available by Extramarks.

The students need to ensure that the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are referred to because some platforms might not be reliable for accessing the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4. Chapter 6 is a complex chapter, which could be challenging for the students. Having an authentic source to access the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 allows students to accelerate their learning and preparation. Through the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, students can understand and gain knowledge about the solutions, including all the steps from the beginning. The students can access the practice modules on the Extramarks website with the assistance of the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4.

Students can access the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 on the Extramarks website and their mobile application. As the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are curated by subject experts, they are considered a reliable source of information for the students. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are explained step-by-step and are as per NCERT textbooks. To access the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, students can refer to Extramarks’ website.

Apart from the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, the website also provides elaborate study material to help students attain a proper clarification of the concepts before attempting to sit for any exams. For students who face challenges with this chapter or the concepts, learning resources that are easily available on the Extramarks website can be a viable option.

The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 is prepared in accordance with the revised guidelines and syllabus released by the CBSE Board for Class 12 Mathematics. Apart from getting to access the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 for Class 12 Mathematics Chapter 6 Application of Derivatives, the students can additionally go through the entire Exercise 6.4 and practice the questions for understanding the concepts in the chapter.

Having access to the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 helps the students understand the questions given in the NCERT textbooks while having a clear understanding of the approach to each question. There is no step-by-step explanation for every question in the NCERT Mathematics Class 12 textbook. Students can develop a solid foundational and conceptual understanding of the topic by using the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4.  By practising with the textbook questions and referring to the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, students are given a comprehensive guide to practice and self-evaluation. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are cross-checked for accuracy by multiple experts to ensure that the students are provided with a thorough understanding of the topic. In NCERT textbooks, mathematical concepts are explained clearly. Several high-weighted topics, such as Derivatives, Calculus, and many more, are presented in a straightforward manner. In each chapter of the NCERT book, numerous questions are quite helpful in clarifying all the fundamentals.

While preparing for board exams, it is highly recommended that the students refer to the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4. Listed below are some benefits of using Extramarks’ NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4:

  • Students are provided with the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 in such a manner as to aid them in enjoying the learning process.
  • The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 aims to help students understand the concepts of every chapter.
  • Students will be able to boost their confidence with the in-depth explanations provided in the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4.
  • The students can download the PDF and access the solutions in offline mode as well.

How Can Extramarks Help Students By Employing The Solutions of NCERT Class 12 Chapter 6

Visiting the Extramarks website provides students with a variety of benefits. It is also possible for students without laptops or computers to access Extramarks’ services through their mobile applications. They provide students with assistance through their Learning App feature, which engages students with animated learning modules that are created using the latest technologies in Animation and Graphics. Extramarks’ pedagogy supports the idea  that learning is better when it is interactive.

They use a three-pronged approach of Learn, Practice, and Test. They help students with their studies and exam preparation to make their mobile application more accessible to students.

Through the Learning App, Extramarks offers live classes handled by highly qualified professionals to provide their best resources to learners.

By subscribing to Extramarks’ learning platform, the students can access their curriculum-mapped learning modules for CBSE and other major boards through which they can appear for competitive exams like JEE, NEET, and other exams. Extramarks provides NCERT Solutions for all classes and subjects to help students with their homework and exam preparations, including the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4. The students can access many study materials available on the online platform to assist them in getting prepared for the exam. The study materials include past years’ papers, sample papers, assignments, worksheets, and doubt-solving groups. Through their Learning App, Extramarks tries to bridge the gap between the strengths and weaknesses of the students. This helps them to answer confidently during the Class 12 examination.

Why choose Extramarks?

As an online learning platform, Extramarks is trusted by several educational institutions as it provides end-to-end learning solutions that connect learners and teachers. It is estimated that Extramarks is associated with more than 10,000 schools and around 1 crore students. In addition to this, the company has been making waves around the world, with a strong presence in India, South Africa, the Middle East, and Indonesia. The goal of Extramarks is to assist students in embracing the changing world and preparing them for the future by being their trusted learning partner.

Here are a few reasons why students should choose Extramarks while preparing for the Class 12 examinations:

  1. Students can learn from the best teachers who are subject experts. Using the media-based learning modules, each topic is taught in great depth. They always emphasize the idea of thorough, and quick learning to assist students in comprehending the material better, which in turn allows them to gradually improve their scores.
  2. The Extramarks’ Learning App includes chapter-by-chapter worksheets, interactive games, unlimited practice questions, and more to help students master all chapters and topics. The students can check their knowledge through quizzes with rising difficulty levels, MCQs, and mock tests to track their progress. The application monitors their progress and creates thorough information and analyses to help the students personalize their experience on the learning platform. Based on the results of this performance analysis, the students can gain a deeper understanding of their strong and weak areas, enabling them to plan their studies more effectively.
  3. The Learning App includes the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4, solved question papers, practice papers, and other study materials. Students can use these materials to achieve high scores.
  4. Extramarks’ online learning app is a self-learning tool that allows users to learn at their own pace. They can practice with customized tests and evaluate themselves with their reports.
  5. Extramarks provide life to dull textbook concepts by incorporating pictures and animations. Their 2D and 3D animation teams are experts at making concepts talk, making comprehension and retention a breeze during online learning.
  6. Extramarks provides topic-based learning solutions for all subjects including the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4.
  7. The Learning App is well-known for its curriculum-mapped learning modules for CBSE, and other boards, as well as competitive exams. Taking courses with Extramarks eliminates the need for additional assistance.

Extramarks creates online learning solutions for students. The students can also access the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 on their website and learning application.

Q.1 Using differentials, find the approximate value o f e a c h o f the following up to 3 places of d e c i m a l : ( i ) 25 .3 ( i i ) 49 .5 ( i i i ) 0 .6 ( i v ) ( 0 .009 ) 1 3 ( v ) ( 0 .999 ) 1 10 ( v i ) ( 15 ) 1 4 ( v i i ) ( 26 ) 1 3 ( v i i i ) ( 255 ) 1 4 ( i x ) ( 82 ) 1 4 ( x ) ( 401 ) 1 2 ( x i ) ( 0 .0037 ) 1 2 ( x i i ) ( 26 .57 ) 1 3 ( x i i i ) ( 81 .5 ) 1 4 ( x i v ) ( 3 .968 ) 3 2 ( x v ) ( 32 .15 ) 1 5

Ans

(i)25.3Lety=x, x=25 and Δx=0.3dydx=12xThen,      Δy=x+Δxx    =25.325    =25.3525.3=Δy+5Now, dy is approximately equal to Δy and is given by,        dy=(dydx)Δx    =12x(0.3)    =1225(0.3)    =12×5×0.3    =0.03Hence, the approximate value of25.3is 5+0.03=5.03.(ii)49.5Lety=x, x=49 and Δx=0.5dydx=12xThen,      Δy=x+Δxx    =49.549    =49.5749.5=Δy+7Now, dy is approximately equal to Δy and is given by,        dy=(dydx)Δx    =12x(0.5)    =1249(0.5)    =12×7×0.5    =0.035Hence, the approximate value of49.5is 7+ 0.035=7.035.(iii)0.6Lety=x, x=1 and Δx= 0.4dydx=12xThen,      Δy=x+Δxx    =0.61  0.6=Δy+1Now, dy is approximately equal to Δy and is given by,        dy=(dydx)Δx    =12x( 0.4)    =121( 0.4)    = 0.2Hence, the approximate value of0.6is 1 0.2=0.8(iv)(0.009)13Lety=x13, x=0.008 and Δx=0.001dydx=13x23Then,            Δy=(x+Δx)13x13          =(0.009)130.2(0.009)13=Δy+0.2Now, dy is approximately equal to Δy and is given by,      dydx=13x23(Δx)      =13(0.008)23(0.001)      =13(0.04)(0.001)=0.0010.12      =0.008Hence, the approximate value of(0.009)23is 0.2 + 0.008=0.208

( v ) ( 0.999 ) 1 10 Let y= x 1 10 ,x=1 and Δx=0.001 dy dx = 1 10 x 9 10 Then, Δy= ( x+Δx ) 1 10 ( x ) 1 10 = ( 0.999 ) 1 10 ( 1 ) 1 10 ( 0.999 ) 1 10 =Δy+1 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 10 x 9 10 ×0.001 = 1 10 ( 1 ) 9 10 ×0.001 = 0.001 10 =0.0001 Hence, the approximate value of ( 0.999 ) 1 10 is 1+( 0.001 )=0.9999 ( vi ) ( 15 ) 1 4 Lety= x 1 4 ,x=16 and Δx=1 dy dx = 1 4 x 3 4 Then, Δy= ( x+Δx ) 1 4 x 1 4 = ( 15 ) 1 4 ( 16 ) 1 4 ( 15 ) 1 4 =Δy+2 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 4 x 3 4 ×1 = 1 4 ( 16 ) 3 4 ×1 = 1 4×8 ×1=0.03125 Hence, the approximate value of ( 15 ) 1 4 is 2+( 0.03125 )=1.96875 ( vii ) ( 26 ) 1 3 Lety= x 1 3 ,x=27 and Δx=1 dy dx = 1 3 x 2 3 Then, Δy= ( x+Δx ) 1 3 x 1 3 = ( 26 ) 1 3 ( 27 ) 1 3 ( 26 ) 1 3 =Δy+3 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 3 x 2 3 ×1 = 1 3 ( 27 ) 2 3 ×1 = 1 3×9 ×1 =0.0 370 ¯ Hence, the approximate value of ( 26 ) 1 3 is 3+( 0.0370 )=2.9629 ( viii ) ( 255 ) 1 4 Lety= x 1 4 ,x=256 and Δx=1 dy dx = 1 4 x 3 4 Then, Δy= ( x+Δx ) 1 4 x 1 4 = ( 255 ) 1 4 ( 256 ) 1 4 ( 255 ) 1 4 =Δy+4 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 4 x 3 4 ×( 1 ) = 1 4 ( 256 ) 3 4 ×( 1 ) = 1 4× 4 3 =0.0039 Hence, the approximate value of ( 255 ) 1 4 is 4+(0.0039)=3.9961 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaaGceaqabeaadaqadaqaaiaadAhaaiaawIcacaGLPaaadaqadaqaaiaaicdacaGGUaGaaGyoaiaaiMdacaaI5aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaaaakeaacaWGmbGaamyzaiaadshacaaMb8UaaeiiaiaabMhacqGH9aqpcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaaGccaGGSaGaaGPaVlaadIhacqGH9aqpcaaIXaGaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHuoarcaqG4bGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaigdaaeaacqGHshI3daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiaaicdacaWG4bWaaWbaaSqabeaadaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaaaaaaaaGcbaGaamivaiaadIgacaWGLbGaamOBaiaacYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyiLdqKaamyEaiabg2da9maabmaabaGaamiEaiabgUcaRiabgs5aejaadIhaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaigdacaaIWaaaaaaakiabgkHiTmaabmaabaGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGymaiaaicdaaaaaaaGcbaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaeWaaeaacaaIWaGaaiOlaiaaiMdacaaI5aGaaGyoaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGymaiaaicdaaaaaaOGaeyOeI0YaaeWaaeaacaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaaaakeaadaqadaqaaiaaicdacaGGUaGaaGyoaiaaiMdacaaI5aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaaGccqGH9aqpcqGHuoarcaWG5bGaey4kaSIaaGymaaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaaeizaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGSbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaabccacaqG0bGaae4BaiaabccacqGHuoarcaqG5bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGKbGaaeyEaiabg2da9maabmaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabgs5aejaadIhaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaGymaaqaaiaaigdacaaIWaGaamiEamaaCaaaleqabaWaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaaaaaaakiabgEna0kabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaIXaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIXaGaaGimamaabmaabaGaaGymaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaaaaaaakiabgEna0kabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaIXaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqGHsisldaWcaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIXaaabaGaaGymaiaaicdaaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaigdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaGPaVpaabmaabaGaaGimaiaac6cacaaI5aGaaGyoaiaaiMdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaigdacaaIWaaaaaaakiaaykW7caWGPbGaam4CaaqaaiaaxMaacaaIXaGaey4kaSYaaeWaaeaacqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGyoaiaaiMdacaaI5aGaaGyoaaqaamaabmaabaGaamODaiaadMgaaiaawIcacaGLPaaacaqGGaWaaeWaaeaacaaIXaGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaaakeaacaWGmbGaamyzaiaadshacaaMc8UaamyEaiabg2da9iaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaOGaaeilaiaaykW7caaMc8UaaeiEaiabg2da9iaaigdacaaI2aGaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHuoarcaqG4bGaeyypa0JaeyOeI0IaaGymaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIZaaabGaMakacyciI0aaaaaaaaaaakeaacaqGubGaaeiAaiaabwgacaqGUbGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgs5aejaadMhacqGH9aqpdaqadaqaaiaadIhacqGHRaWkcqGHuoarcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiabgkHiTiaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaaGcbaGaaCzcaiaaxMaacqGH9aqpdaqadaqaaiaaigdacaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaadGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdaaaaaaOGaeyOeI0YaaeWaaeaacaaIXaGaaGOnaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIXaGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiabg2da9iabgs5aejaadMhacqGHRaWkcaaIYaaabaGaaeOtaiaab+gacaqG3bGaaeilaiaabccacaqGKbGaaeyEaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabYgacaqG5bGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqGSbGaaeiiaiaabshacaqGVbGaaeiiaiabgs5aejaabMhacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabsgacaqG5bGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaeyiLdqKaamiEaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaiGjGisdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIZaaabGaMakacyciI0aaaaaaaaaGccqGHxdaTcqGHsislcaaIXaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaaigdaaeaacGaMaIinamaabmaabaGaaGymaiaaiAdaaiaawIcacaGLPaaadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaI4maaqaiGjGcGaMaIinaaaaaaaaaOGaey41aqRaeyOeI0IaaGymaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaiGjGisdacqGHxdaTcaaI4aaaaiabgEna0kabgkHiTiaaigdacqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIZaGaaGymaiaaikdacaaI1aaabaGaaeisaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGaaeOzaiaaykW7daqadaqaaiaaigdacaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiaaykW7caWGPbGaam4CaiaaykW7caqGGaaabaGaaCzcaiaabkdacqGHRaWkdaqadaqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiodacaaIXaGaaGOmaiaaiwdaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaaiOlaiaaiMdacaaI2aGaaGioaiaaiEdacaaI1aaabaWaaeWaaeaacaWG2bGaamyAaiaadMgaaiaawIcacaGLPaaacaqGGaWaaeWaaeaacaaIYaGaaGOnaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaaakeaacaWGmbGaamyzaiaadshacaaMc8UaamyEaiabg2da9iaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaOGaaeilaiaaykW7caaMc8UaaeiEaiabg2da9iaaikdacaaI3aGaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHuoarcaqG4bGaeyypa0JaeyOeI0IaaGymaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGiodacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIYaaabGaMakacyciIZaaaaaaaaaaakeaacaqGubGaaeiAaiaabwgacaqGUbGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgs5aejaadMhacqGH9aqpdaqadaqaaiaadIhacqGHRaWkcqGHuoarcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiabgkHiTiaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaaCzcaiaaxMaacqGH9aqpdaqadaqaaiaaikdacaaI2aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiabgkHiTmaabmaabaGaaGOmaiaaiEdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaaGOmaiaaiAdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaOGaeyypa0JaeyiLdqKaamyEaiabgUcaRiaaiodaaeaacaqGobGaae4BaiaabEhacaqGSaGaaeiiaiaabsgacaqG5bGaaeiiaiaabMgacaqGZbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiBaiaabMhacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabYgacaqGGaGaaeiDaiaab+gacaqGGaGaeyiLdqKaaeyEaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqGSaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeizaiaabMhacqGH9aqpdaqadaqaamaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaaaiaawIcacaGLPaaacqGHuoarcaWG4baabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciIZaGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaIOmaaqaiGjGcGaMaI4maaaaaaaaaOGaey41aqRaeyOeI0IaaGymaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9macyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaI4mamacycyadaqaiGjGcGaMaIOmaiacyciI3aaacGaMaAjkaiacycOLPaaadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaIOmaaqaiGjGcGaMaI4maaaaaaaaaOGaey41aqRaeyOeI0IaaGymaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9macyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaI4maiadycOHxdaTcGaMaIyoaaaacqGHxdaTcqGHsislcaaIXaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaWaa0aaaeaacaaIZaGaaG4naiaaicdaaaaabaGaaeisaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGaaeOzaiaaykW7daqadaqaaiaaikdacaaI2aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiaaykW7caWGPbGaam4CaiaaykW7caqGGaaabaGaaCzcaiaabodacqGHRaWkdaqadaqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiodacaaI3aGaaGimaaGaayjkaiaawMcaaiabg2da9iaabkdacaqGUaGaaeyoaiaabAdacaqGYaGaaeyoaaqaamaabmaabaGaamODaiaadMgacaWGPbGaamyAaaGaayjkaiaawMcaamaabmaabaGaaGOmaiaaiwdacaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaaaOqaaiaadYeacaWGLbGaamiDaiaaykW7caWG5bGaeyypa0JaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaGccaqGSaGaaGPaVlaaykW7caqG4bGaeyypa0JaaGOmaiaaiwdacaaI2aGaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHuoarcaqG4bGaeyypa0JaeyOeI0IaaGymaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIZaaabGaMakacyciI0aaaaaaaaaaakeaacaqGubGaaeiAaiaabwgacaqGUbGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgs5aejaadMhacqGH9aqpdaqadaqaaiaadIhacqGHRaWkcqGHuoarcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiabgkHiTiaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaaGcbaGaaCzcaiaaxMaacqGH9aqpdaqadaqaaiaaikdacaaI1aGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiabgkHiTmaabmaabaGaaGOmaiaaiwdacaaI2aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIYaGaaGynaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaamacyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaIinaaaaaaGccqGH9aqpcqGHuoarcaWG5bGaey4kaSIaaGinaaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaaeizaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGSbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaabccacaqG0bGaae4BaiaabccacqGHuoarcaqG5bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGKbGaaeyEaiabg2da9maabmaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabgs5aejaadIhaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIZaaabGaMakacyciI0aaaaaaaaaGccqGHxdaTdaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdadGaMagWaaeacycOaiGjGikdacGaMaIynaiacyciI2aaacGaMaAjkaiacycOLPaaadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaI4maaqaiGjGcGaMaIinaaaaaaaaaOGaey41aq7aaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacqGHsislcaaIXaaabaGaaGinaiabgEna0kaaisdadaahaaWcbeqaaiaaiodaaaaaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaiodacaaI5aaabaGaaeisaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGaaeOzaiaaykW7daqadaqaaiaaikdacaaI1aGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiaaykW7caWGPbGaam4CaaqaaiaaxMaacaqG0aGaey4kaSIaaeikaiabgkHiTiaabcdacaqGUaGaaeimaiaabcdacaqGZaGaaeyoaiaabMcacqGH9aqpcaqGZaGaaeOlaiaabMdacaqG5aGaaeOnaiaabgdaaaaa@CFF5@

( ix ) ( 82 ) 1 4 Lety= x 1 4 ,x=81 and Δx=1 dy dx = 1 4 x 3 4 Then, Δy= ( x+Δx ) 1 4 x 1 4 = ( 82 ) 1 4 ( 81 ) 1 4 ( 82 ) 1 4 =Δy+3 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 4 x 3 4 ×( 1 ) = 1 4 ( 81 ) 3 4 ×( 1 ) = 1 4× 3 3 =0.009 Hence, the approximate value of ( 82 ) 1 4 is 3+(0.009)=3.009 ( x ) ( 401 ) 1 2 Lety= x 1 2 ,x=400 and Δx=1 dy dx = 1 2 x Then, Δy= x+Δx x = 401 400 = 401 20 401 =Δy+20 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 2 x ( 1 ) = 1 2 400 ( 1 ) = 1 2×20 ×( 1 ) =0.025 Hence, the approximate value of 401 is 20+0.025=20.025. ( xi ) ( 0.0037 ) 1 2 Lety= x 1 2 ,x=0.0036 and Δx=0.0001 dy dx = 1 2 x Then, Δy= x+Δx x = 0.0037 0.0036 = 0.0037 0.06 0.0037 =Δy+0.06 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 2 x ( 0.0001 ) = 1 2 0.0036 ( 0.0001 ) = 1 2×0.06 ×( 0.0001 ) =0.00083 Hence, the approximate value of 0.0037 is 0.06+0.00083=0.06083 ( xii ) ( 26.57 ) 1 3 Lety= x 1 3 ,x=27 and Δx=0.43 dy dx = 1 3 x 2 3 Then, Δy= ( x+Δx ) 1 3 x 1 3 = ( 26.57 ) 1 3 ( 27 ) 1 3 ( 26.57 ) 1 3 =Δy+3 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 3 x 2 3 ×0.43 = 1 3 ( 27 ) 2 3 ×0.43 = 1 3( 9 ) ×0.43=0.015 Hence, the approximate value of ( 26.57 ) 1 3 is 30.015=2.984 ( xiii ) ( 81.5 ) 1 4 Lety= x 1 4 ,x=81 and Δx=0.5 dy dx = 1 4 x 3 4 Then, Δy= ( x+Δx ) 1 4 x 1 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaaGceaqabeaadaqadaqaaiaadMgacaWG4baacaGLOaGaayzkaaGaaGPaVpaabmaabaGaaGioaiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaaGcbaGaamitaiaadwgacaWG0bGaaGPaVlaadMhacqGH9aqpcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiaabYcacaaMc8UaaGPaVlaabIhacqGH9aqpcaaI4aGaaGymaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaeyiLdqKaaeiEaiabg2da9iaaigdaaeaacqGHshI3daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaI4maaqaiGjGcGaMaIinaaaaaaaaaaGcbaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaGccqGHsislcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaaaOqaaiaaxMaacaWLjaGaeyypa0ZaaeWaaeaacaaI4aGaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiabgkHiTmaabmaabaGaaGioaiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaaGioaiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaamacyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaIinaaaaaaGccqGH9aqpcqGHuoarcaWG5bGaey4kaSIaaG4maaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaaeizaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGSbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaabccacaqG0bGaae4BaiaabccacqGHuoarcaqG5bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGKbGaaeyEaiabg2da9maabmaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabgs5aejaadIhaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciIZaaabGaMakacyciI0aaaaaaaaaGccqGHxdaTdaqadaqaaiaaigdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdadGaMagWaaeacycOaiGjGiIdacGaMaIymaaGaiGjGwIcacGaMaAzkaaWaiGjGCaaaleqcycyaiGjGdGaMaUaaaeacycOaiGjGiodaaeacycOaiGjGisdaaaaaaaaakiabgEna0oaabmaabaGaaGymaaGaayjkaiaawMcaaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaGymaaqaaiaaisdacqGHxdaTcaaIZaWaaWbaaSqabeaacaaIZaaaaaaakiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaI5aaabaGaaeisaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGaaeOzaiaaykW7daqadaqaaiaaiIdacaaIYaaacaGLOaGaayzkaaWaaWbaaSqabeaadGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdaaaaaaOGaaGPaVlaadMgacaWGZbaabaGaaCzcaiaabodacqGHRaWkcaqGOaGaaeimaiaab6cacaqGWaGaaeimaiaabMdacaqGPaGaeyypa0Jaae4maiaab6cacaqGWaGaaeimaiaabMdaaeaadaqadaqaaiaadIhaaiaawIcacaGLPaaacaaMc8UaaGPaVpaabmaabaGaaGinaiaaicdacaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaaaOqaaiaadYeacaWGLbGaamiDaiaaykW7caWG5bGaeyypa0JaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaGccaqGSaGaaGPaVlaaykW7caqG4bGaeyypa0JaaeinaiaabcdacaqGWaGaaeiiaiaabggacaqGUbGaaeizaiaabccacqGHuoarcaqG4bGaeyypa0JaaeymaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaacaWG4baaleqaaaaaaOqaaiaabsfacaqGObGaaeyzaiaab6gacaqGSaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgs5aejaadMhacqGH9aqpdaGcaaqaaiaadIhacqGHRaWkcqGHuoarcaWG4baaleqaaOGaeyOeI0YaaOaaaeaacaWG4baaleqaaaGcbaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaiGjGkaaabGaMakacyciI0aGaiGjGicdacGaMaIymaaWcbKaMacGccqGHsisldaGcaaqaaiaaisdacaaIWaGaaGimaaWcbeaaaOqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maakaaabaGaaGinaiaaicdacaaIXaaaleqaaOGaeyOeI0IaaGOmaiaaicdaaeaacaaMc8UaaGPaVpaakaaabaGaaGinaiaaicdacaaIXaaaleqaaOGaeyypa0JaeyiLdqKaamyEaiabgUcaRiaaikdacaaIWaaabaGaaeOtaiaab+gacaqG3bGaaeilaiaabccacaqGKbGaaeyEaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabYgacaqG5bGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqGSbGaaeiiaiaabshacaqGVbGaaeiiaiabgs5aejaabMhacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabsgacaqG5bGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaeyiLdqKaamiEaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaGymaaqaaiaaikdadaGcaaqaaiaadIhaaSqabaaaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmamaakaaabaGaaGinaiaaicdacaaIWaaaleqaaaaakmaabmaabaGaaGymaaGaayjkaiaawMcaaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaGymaaqaaiaaikdacqGHxdaTcaaIYaGaaGimaaaacqGHxdaTdaqadaqaaiaaigdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIWaGaaiOlaiaaicdacaaIYaGaaGynaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGGaGaae4BaiaabAgacaaMc8+aaOaaaeaacaaI0aGaaGimaiaaigdaaSqabaGccaaMc8UaaeyAaiaabohacaqGGaGaaeOmaiaabcdacqGHRaWkcaqGWaGaaeOlaiaabcdacaqGYaGaaeynaiabg2da9iaabkdacaqGWaGaaeOlaiaabcdacaqGYaGaaeynaiaab6caaeaadaqadaqaaiaadIhacaWGPbaacaGLOaGaayzkaaGaaGPaVlaaykW7daqadaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaG4naaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaaakeaacaWGmbGaamyzaiaadshacaaMc8UaamyEaiabg2da9iaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaOGaaeilaiaaykW7caaMc8UaaeiEaiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaGOnaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaeyiLdqKaaeiEaiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGymaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaacaWG4baaleqaaaaaaOqaaiaabsfacaqGObGaaeyzaiaab6gacaqGSaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaOaaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaWcbeaakiabgkHiTmaakaaabaGaamiEaaWcbeaaaOqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9macycOcaaqaiGjGcGaMaIimaiacycOGUaGaiGjGicdacGaMaIimaiacyciIZaGaiGjGiEdaaSqajGjGaOGaeyOeI0YaaOaaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaG4maiaaiAdaaSqabaaakeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaGcaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaG4naaWcbeaakiabgkHiTiaaicdacaGGUaGaaGimaiaaiAdaaeaacaaMc8+aaOaaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaG4maiaaiEdaaSqabaGccqGH9aqpcqGHuoarcaWG5bGaey4kaSIaaGimaiaac6cacaaIWaGaaGOnaaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaaeizaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGSbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaabccacaqG0bGaae4BaiaabccacqGHuoarcaqG5bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGKbGaaeyEaiabg2da9maabmaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabgs5aejaadIhaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaacaWG4baaleqaaaaakmaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIXaaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmamaakaaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiodacaaI2aaaleqaaaaakmaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIXaaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabgEna0kaaicdacaGGUaGaaGimaiaaiAdaaaGaey41aq7aaeWaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaigdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaiIdacaaIZaaabaGaaeisaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGaaeOzaiaaykW7daGcaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaG4naaWcbeaakiaaykW7caqGPbGaae4CaiaabccaaeaacaWLjaGaaCzcaiaaicdacaGGUaGaaGimaiaaiAdacqGHRaWkcaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaiIdacaaIZaGaeyypa0Jaaeimaiaab6cacaqGWaGaaeOnaiaabcdacaqG4aGaae4maaqaamaabmaabaGaamiEaiaadMgacaWGPbaacaGLOaGaayzkaaGaaGPaVpaabmaabaGaaGOmaiaaiAdacaGGUaGaaGynaiaaiEdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaamitaiaadwgacaWG0bGaaGPaVlaadMhacqGH9aqpcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiaabYcacaaMc8UaaGPaVlaabIhacqGH9aqpcaaIYaGaaG4naiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaeyiLdqKaaeiEaiabg2da9iabgkHiTiaaicdacaGGUaGaaGinaiaaiodaaeaacqGHshI3daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciIZaGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaIOmaaqaiGjGcGaMaI4maaaaaaaaaaGcbaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaGccqGHsislcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaaaOqaaiaaxMaacaWLjaGaeyypa0ZaaeWaaeaacaaIYaGaaGOnaiaac6cacaaI1aGaaG4naaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaGccqGHsisldaqadaqaaiaaikdacaaI3aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaaaOqaaiaaykW7daqadaqaaiaaikdacaaI2aGaaiOlaiaaiwdacaaI3aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiabg2da9iabgs5aejaadMhacqGHRaWkcaaIZaaabaGaaeOtaiaab+gacaqG3bGaaeilaiaabccacaqGKbGaaeyEaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabYgacaqG5bGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqGSbGaaeiiaiaabshacaqGVbGaaeiiaiabgs5aejaabMhacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabsgacaqG5bGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaeyiLdqKaamiEaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9macyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaI4maiacyc4G4bWaiGjGCaaaleqcycyaiGjGdGaMaUaaaeacycOaiGjGikdaaeacycOaiGjGiodaaaaaaaaakiabgEna0kabgkHiTiaaicdacaGGUaGaaGinaiaaiodaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGiodadGaMagWaaeacycOaiGjGikdacGaMaI4naaGaiGjGwIcacGaMaAzkaaWaiGjGCaaaleqcycyaiGjGdGaMaUaaaeacycOaiGjGikdaaeacycOaiGjGiodaaaaaaaaakiabgEna0kabgkHiTiaaicdacaGGUaGaaGinaiaaiodaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGiodadGaMagWaaeacycOaiGjGiMdaaiacycOLOaGaiGjGwMcaaaaacqGHxdaTcqGHsislcaaIWaGaaiOlaiaaisdacaaIZaGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGymaiaaiwdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaGPaVpaabmaabaGaaGOmaiaaiAdacaGGUaGaaGynaiaaiEdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiodaaaaaaOGaaGPaVlaabMgacaqGZbGaaeiiaaqaaiaaxMaacaWLjaGaaG4maiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaI1aGaeyypa0JaaeOmaiaab6cacaqG5aGaaeioaiaabsdaaeaadaqadaqaaiaadIhacaWGPbGaamyAaiaadMgaaiaawIcacaGLPaaacaaMc8+aaeWaaeaacaaI4aGaaGymaiaac6cacaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaaaOqaaiaadYeacaWGLbGaamiDaiaaykW7caWG5bGaeyypa0JaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaGccaqGSaGaaGPaVlaaykW7caqG4bGaeyypa0JaaGioaiaaigdacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiabgs5aejaabIhacqGH9aqpcaaIWaGaaiOlaiaaiwdaaeaacqGHshI3daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaI4maaqaiGjGcGaMaIinaaaaaaaaaaGcbaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGinaaaaaaGccqGHsislcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaaaaaa@200B@

= ( 81.5 ) 1 4 ( 81 ) 1 4 ( 81.5 ) 1 4 =Δy+3 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 4 x 3 4 ×( 0.5 ) = 1 4 ( 81 ) 3 4 ×( 0.5 ) = 0.5 4× 3 3 =0.0046 Hence, the approximate value of ( 81.5 ) 1 4 is 3+0.0046=3.0046 ( xiv ) ( 3.968 ) 3 2 Lety= x 3 2 ,x=4 and Δx=0.032 dy dx = 3 2 x 1 2 Then, Δy= ( x+Δx ) 3 2 x 3 2 = ( 3.968 ) 3 2 ( 4 ) 3 2 ( 3.968 ) 3 2 =Δy+8 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 3 2 x 1 2 ×( 0.032 ) = 3 2 ( 4 ) 1 2 ×( 0.032 ) = 3 2 ×2×( 0.032 )=0.096 Hence, the approximate value of ( 3.968 ) 3 2 is 80.096=7.904 ( xv ) ( 32.15 ) 1 5 Lety= x 1 5 ,x=32 and Δx=0.15 dy dx = 1 5 x 4 5 Then, Δy= ( x+Δx ) 1 5 x 1 5 = ( 32.15 ) 1 5 ( 32 ) 1 5 ( 32.15 ) 1 4 =Δy+2 Now, dy is approximately equal to Δy and is given by, dy=( dy dx )Δx = 1 5 x 4 5 ×( 0.15 ) = 1 5 ( 32 ) 4 5 ×( 0.15 ) = 0.15 5× 2 4 =0.00187 Hence, the approximate value of ( 32.15 ) 1 4 is 2+0.00187=2.00187 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaaGceaqabeaacaWLjaGaaCzcaiabg2da9maabmaabaGaaGioaiaaigdacaGGUaGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiabgkHiTmaabmaabaGaaGioaiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaisdaaaaaaaGcbaGaaGPaVlaaykW7caaMc8+aaeWaaeaacaaI4aGaaGymaiaac6cacaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaadGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdaaaaaaOGaeyypa0JaeyiLdqKaamyEaiabgUcaRiaaiodaaeaacaqGobGaae4BaiaabEhacaqGSaGaaeiiaiaabsgacaqG5bGaaeiiaiaabMgacaqGZbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiBaiaabMhacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabYgacaqGGaGaaeiDaiaab+gacaqGGaGaeyiLdqKaaeyEaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqGSaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeizaiaabMhacqGH9aqpdaqadaqaamaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaaaiaawIcacaGLPaaacqGHuoarcaWG4baabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaI4maaqaiGjGcGaMaIinaaaaaaaaaOGaey41aq7aaeWaaeaacaaIWaGaaiOlaiaaiwdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGisdadGaMagWaaeacycOaiGjGiIdacGaMaIymaaGaiGjGwIcacGaMaAzkaaWaiGjGCaaaleqcycyaiGjGdGaMaUaaaeacycOaiGjGiodaaeacycOaiGjGisdaaaaaaaaakiabgEna0oaabmaabaGaaGimaiaac6cacaaI1aaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIWaGaaiOlaiaaiwdaaeaacaaI0aGaey41aqRaaG4mamaaCaaaleqabaGaaG4maaaaaaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaGinaiaaiAdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaGPaVpaabmaabaGaaGioaiaaigdacaGGUaGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaiGjGlaaabGaMakacyciIXaaabGaMakacyciI0aaaaaaakiaaykW7caWGPbGaam4CaaqaaiaaxMaacaqGZaGaey4kaSIaaGimaiaac6cacaaIWaGaaGimaiaaisdacaaI2aGaeyypa0Jaae4maiaab6cacaaIWaGaaGimaiaaisdacaaI2aaabaWaaeWaaeaacaWG4bGaamyAaiaadAhaaiaawIcacaGLPaaacaaMc8+aaeWaaeaacaaIZaGaaiOlaiaaiMdacaaI2aGaaGioaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaaakeaacaWGmbGaamyzaiaadshacaaMc8UaamyEaiabg2da9iaadIhadaahaaWcbeqaamaalaaabaGaaG4maaqaaiaaikdaaaaaaOGaaeilaiaaykW7caaMc8UaaeiEaiabg2da9iaaisdacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiabgs5aejaabIhacqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIZaGaaGOmaaqaaiabgkDiEpaalaaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaiaadIhadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaaGcbaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaGccqGHsislcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaiodaaeaacaaIYaaaaaaaaOqaaiaaxMaacaWLjaGaeyypa0ZaaeWaaeaacaaIZaGaaiOlaiaaiMdacaaI2aGaaGioaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaqadaqaaiaaisdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaG4maaqaaiaaikdaaaaaaaGcbaGaaGPaVlaaykW7daqadaqaaiaaiodacaGGUaGaaGyoaiaaiAdacaaI4aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaiodaaeaacaaIYaaaaaaakiabg2da9iabgs5aejaadMhacqGHRaWkcaaI4aaabaGaaeOtaiaab+gacaqG3bGaaeilaiaabccacaqGKbGaaeyEaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiCaiaabchacaqGYbGaae4BaiaabIhacaqGPbGaaeyBaiaabggacaqG0bGaaeyzaiaabYgacaqG5bGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqGSbGaaeiiaiaabshacaqGVbGaaeiiaiabgs5aejaabMhacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabsgacaqG5bGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaeyiLdqKaamiEaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaG4maaqaaiaaikdaaaGaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaGccqGHxdaTdaqadaqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiodacaaIYaaacaGLOaGaayzkaaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIZaaabaGaaGOmaaaadaqadaqaaiaaisdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaOGaey41aq7aaeWaaeaacqGHsislcaaIWaGaaiOlaiaaicdacaaIZaGaaGOmaaGaayjkaiaawMcaaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaG4maaqaaiaaikdaaaGaey41aqRaaGOmaiabgEna0oaabmaabaGaeyOeI0IaaGimaiaac6cacaaIWaGaaG4maiaaikdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaI5aGaaGOnaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGGaGaae4BaiaabAgacaaMc8+aaeWaaeaacaaIZaGaaiOlaiaaiMdacaaI2aGaaGioaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaGccaaMc8UaamyAaiaadohaaeaacaWLjaGaaeioaiabgkHiTiaaicdacaGGUaGaaGimaiaaiMdacaaI2aGaeyypa0Jaae4naiaab6cacaqG5aGaaeimaiaabsdaaeaadaqadaqaaiaadIhacaWG2baacaGLOaGaayzkaaGaaGPaVpaabmaabaGaaG4maiaaikdacaGGUaGaaGymaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaiwdaaaaaaaGcbaGaamitaiaadwgacaWG0bGaaGPaVlaadMhacqGH9aqpcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI1aaaaaaakiaabYcacaaMc8UaaGPaVlaabIhacqGH9aqpcaaIZaGaaGOmaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaeyiLdqKaaeiEaiabg2da9iaaicdacaGGUaGaaGymaiaaiwdaaeaacqGHshI3daWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaiGjGlaaabGaMakacyciIXaaabGaMakacyciI1aGaiGjGdIhadGaMaYbaaSqajGjGbGaMaoacyc4caaqaiGjGcGaMaIinaaqaiGjGcGaMaIynaaaaaaaaaaGcbaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHuoarcaWG5bGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaeyiLdqKaamiEaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGynaaaaaaGccqGHsislcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI1aaaaaaaaOqaaiaaxMaacaWLjaGaeyypa0ZaaeWaaeaacaaIZaGaaGOmaiaac6cacaaIXaGaaGynaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGynaaaaaaGccqGHsisldaqadaqaaiaaiodacaaIYaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI1aaaaaaaaOqaaiaaykW7caaMc8UaaGPaVpaabmaabaGaaG4maiaaikdacaGGUaGaaGymaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaamacyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaIinaaaaaaGccqGH9aqpcqGHuoarcaWG5bGaey4kaSIaaGOmaaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaaeizaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabchacaqGWbGaaeOCaiaab+gacaqG4bGaaeyAaiaab2gacaqGHbGaaeiDaiaabwgacaqGSbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaabccacaqG0bGaae4BaiaabccacqGHuoarcaqG5bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabYcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGKbGaaeyEaiabg2da9maabmaabaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabgs5aejaadIhaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGiwdacGaMaoiEamacycihaaWcbKaMagacyc4aiGjGlaaabGaMakacyciI0aaabGaMakacyciI1aaaaaaaaaGccqGHxdaTdaqadaqaaiaaicdacaGGUaGaaGymaiaaiwdaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdGaMaUaaaeacycOaiGjGigdaaeacycOaiGjGiwdadGaMagWaaeacycOaiGjGiodacGaMaIOmaaGaiGjGwIcacGaMaAzkaaWaiGjGCaaaleqcycyaiGjGdGaSaYbaaWqajalGbGaSaoacWc4caaqaialGcGaSaIinaaqaialGcGaSaIynaaaaaaaaaaaakiabgEna0oaabmaabaGaaGimaiaac6cacaaIXaGaaGynaaGaayjkaiaawMcaaaqaaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaabaGaaGimaiaac6cacaaIXaGaaGynaaqaaiaaiwdacqGHxdaTcaaIYaWaaWbaaSqabeaacaaI0aaaaaaakiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGioaiaaiEdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaiaabMgacaqGTbGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaaGPaVpaabmaabaGaaG4maiaaikdacaGGUaGaaGymaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaamacyc4caaqaiGjGcGaMaIymaaqaiGjGcGaMaIinaaaaaaGccaaMc8UaamyAaiaadohaaeaacaWLjaGaaeOmaiabgUcaRiaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGioaiaaiEdacqGH9aqpcaqGYaGaaeOlaiaaicdacaaIWaGaaGymaiaaiIdacaaI3aaaaaa@FA42@

Q.2 Find the approximate value of f 2.01 , where f x =4x 2 +5x+2

Ans

Let x=2 and Δx=0.01. Then, we have:f(2.01)=f(x + Δx)=4(x + Δx)2+ 5(x + Δx)+ 2Since,  Δy=f(x+Δx)f(x).​ Therefore,f(x+Δx)=f(x)+Δyf(x)+f(x)Δx[dx=Δx]    f(2.01)(4x2+5x+2)+(8x+5)Δx{4(2)2+5(2)+2}+(8×2+5)(0.01)28+21×0.01=28+0.2128.21Hence, the approximate value of f (2.01) is 28.21.

Q.3 Find the approximate value of f (5.001), where f (x) = x3 – 7x2 + 15.

Ans

Letx=5 and Δx=0.001.Then, wehave:f(5.001)=f(x+Δx)=(x+Δx)37(x+Δx)2+15Since,Δy =f(x+Δx)f(x).Therefore,f(x+Δx)=f(x)+Δyf(x)+f(x)Δx[dx=Δx]f(5.001)(x37x2+15)+(3x214x)Δx{(5)37(5)2+15}+{3(5)214(5)}(0.01)35+5×(0.01)=35+0.0534.995Hence, the approximate value of f(5.001) is 34.995.

Q.4 Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

Ans

Side of cube is x metres.Volume of a cube is given byV=x3dV=(dVdx)Δx=(ddxx3)Δx=(3x2)Δx=(3x2)(0.01x)[1%ofx=0.01x]=0.03x3Hence,the approximate change in the volume of thecube is 0.03x3m3.

Q.5 Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

Ans

Let side of cube be x metres.Then,Surface area of cube=6x2S=6x2  dSdx=ddx(6x2)=12x  dS=(dSdx)Δx=(12x)(0.01x)[1% of x=0.01x]=0.12x2Hence, the approximate change in the surface area of the cube is 0.12x2 m2.

Q.6 If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.

Ans

Let r be the radius of the sphere and Δr be the error in measuring the radius.Then,r = 7 m and Δr = 0.02 mNow, the volume V of the sphere is given by,  V=43πr3dVdr=ddr(43πr3)        =4πr2        dV=(dVdr)Δr        =(4πr2)Δr        =4π(7)2×0.02=3.92πm3Hence, the approximate error in calculating the volume is 3.92π m3.

Q.7 If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating ‘its surface area’

Ans

Let r be the radius of the sphere and Δr be the error in measuring the radius.Then, r = 9 m and Δr = 0.03 mNow, the surface area of the sphere (S) is given by,S=4πr2Differentiating w.r.t. r, we get    dSdr=8πrdS=(dSdr)Δr=(8πr)×0.03  m2=(8π×9)×0.03  m2=2.16πm2Hence, the approximate error in calculating the surface area is 2.16π m2.

Q.8 If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66 B. 57.66 C. 67.66 D. 77.66

Ans

Let x=3 and Δx=0.02. Then, we have:f(3.02)=f(x + Δx)=3(x + Δx)2+ 15(x + Δx)+ 5Since,  Δy=f(x+Δx)f(x).​ Therefore,f(x+Δx)=f(x)+Δyf(x)+f(x)Δx[dx=Δx]    f(3.02)(3x2 +15x + 5)+(6x+15)Δx{3(3)2+15(3)+5}+(6×3+15)(0.01)77+33×0.02=77+0.6677.66Hence, the approximate value of f (3.02) is 77.66.The correct answer is D.

Q.9 The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 B. 0.6 x3 m3

C. 0.09 x3 m3 D. 0.9 x3 m3

Ans

Let side of cube is x metres. SoThe Volume of a cube is given by V=x3      dV=(dVdx)Δx    =(ddxx3)Δx  =(3x2)Δx  =(3x2)(0.03x)[3% ofx=0.03x]  =0.09x3Hence, the approximate change in the Volume of the cube is 0.09x3 m3.The correct option is C.

Please register to view this section

FAQs (Frequently Asked Questions)

1. How beneficial are the NCERT Solutions Class 12 for the conceptual clarification of Class 12 students?

Once the students are complete with their preparation, the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 are a fantastic way to practice questions and score well. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 helps the students identify their mistakes and improve, which in turn clears their concepts. Apart from that, the students can access the study materials and other resources from Extramarks to ace their preparations. 

2. How to prepare effectively for the Class 12 Mathematics Examination?

Preparing for the NCERT Class 12 Mathematics Examination requires a good comprehension of the complete course content. The students are advised to finish the entire syllabus at least one month before the onset of the Class 12 board examinations. As a result, students can efficiently prepare and thoroughly revise the topics. Students should solve the questions included in the past years’ papers and sample papers to become well-prepared for the exams. Students’ confidence improves when they can solve the questions correctly, which in turn improves their performance on tests.

3. How useful are sample papers and past years' papers as study resources?

The Class 12 Mathematics sample papers and past years’ papers provide students with numerous repetitive questions to practice. As part of the Class 12 paper, students are provided with questions from the exam that are relevant to it and assist the learners in understanding the examination pattern. These Class 12 study materials can be used by students to gain a greater sense of confidence. It is beneficial for students to practice these papers so that they may be able to succeed in entrance exams and other competitive examinations as well. 

4. Are Extramarks' NCERT Solutions available for primary classes as well?

Students of Class 12 can find the NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 on the Extramarks website. The answers to textbook questions are important because they build the foundation of the topics included in the chapter. Besides that, the questions are the suggested source of learning material for students. The NCERT Solutions For Class 12 Maths Chapter 6 Exercise 6.4 available on the Extramarks website are prepared by experts which assist students in completing their curriculum on time. This allows the students to concentrate on learning concepts better to build a better foundation.

5. Are Extramarks' NCERT Solutions available for primary classes as well?

Students in primary classes sometimes face difficulties while solving the NCERT textbook questions. Hence, they do not always get access to ask their doubts from teachers and parents, instead, they can refer to the NCERT solutions from the Extramarks website. The NCERT Solutions Class 5, NCERT Solutions Class 4. Apart from that, the students in Class 1, Class 2, and Class 3 can also access NCERT Solutions Class 3, NCERT Solutions Class 2, and NCERT Solutions Class 1 to assist them while preparing for their exams. 

6. Are Extramarks' NCERT Solutions available for primary classes as well?

Students in primary classes sometimes face difficulties while solving the NCERT textbook questions. Hence, they do not always get access to ask their doubts from teachers and parents, instead, they can refer to the NCERT solutions from the Extramarks website. The NCERT Solutions Class 5, NCERT Solutions Class 4. Apart from that, the students in Class 1, Class 2, and Class 3 can also access NCERT Solutions Class 3, NCERT Solutions Class 2, and NCERT Solutions Class 1 available to assist the students while preparing for their exams.