NCERT Solutions Class 12 Maths Chapter 6

NCERT Solutions Class 12 Mathematics Chapter 6 – Application of Derivatives

Mathematics is a subject requiring a strong conceptual understanding of its applications. Hence, students are advised to study the subject from good resources to gain in-depth knowledge about  Mathematics chapters with examples, solutions, theorems as well as exercises and to score well in exams.

The Class 12 Mathematics Chapter 6 ‘Application of derivatives’ is a part of the Calculus section of Mathematics. It covers the various applications of derivatives and their role while doing calculations. The vital topics covered in Chapter 6 Class 12 Mathematics include:

  • Introduction
  • Rate of Change of Quantities
  • Increasing and Decreasing Functions
  • Tangents and Normals
  • Approximations
  • Maxima and Minima
  • Maximum and Minimum Values of a Function in a Closed Interval

The chapter’s important formulas are listed in the NCERT Solutions Class 12 Mathematics Chapter 6. Also, one can find easy ways to carry out calculations after referring to them thoroughly and consistently.

Extramarks is a reliable and trustworthy source for all the NCERT-related study material. One can find NCERT textbooks, NCERT solutions, NCERT exemplars, NCERT revision notes, NCERT formulas, NCERT-based mock tests and the NCERT solutions Class 12 Mathematics Chapter 6 on the Extramarks official website.

Key Topics Covered in NCERT Solutions Class 12 Mathematics Chapter 6

NCERT Solutions Class 12 Mathematics Chapter 6 is about derivatives and their applications.

This chapter is a part of Calculus and requires the study of differential calculus. One should have a good command of it to excel in this chapter.

If you have a hold on calculus, this chapter will help students to learn to carry out calculations easily. As a result, they will be able to approach problems more logically. The entire chapter is covered thoroughly in the NCERT Solutions Class 12 Mathematics Chapter 6 and is available on the Extramarks website. 

After completing Chapter 6 Mathematics Class 12, students will learn to analyse the problems with a better approach and be able to solve them easily.

Introduction

A derivative is the rate of change or the amount on which a particular function changes at one given point. 

Tangent line

In the above-given figure, the function is represented in black colour, and a tangent is represented in red colour.

Rate of Change of Quantities

The derivative ds/dt is used to show the rate of change of distance s to the time t.

Assume a particular quantity y varies with another quantity x which satisfies y = f(x), here dy/dx  or  f’(x) shows the rate of change of y w.r.t. x and [dy/dx]x = x0 or f’(x0) shows the rate of change of y w.r.t. x at x = x0.

Now, assume the two variables x and y are varying w.r.t. another variable t i.e. x = f(t) and y = g(t) 

Thus, by chain rule

dy/dx = (dy/dt)/(dx/dt) here dx/dt ≠ 0

So, the rate of change of y to x could be calculated using the rate of change of y at a given time and that of x to t.

Increasing and Decreasing Functions

The function’s derivative might determine if it is increasing or decreasing at any intervals in its domain.

Assume I will be an open interval contained in the domain of the real-valued function f. Then f is said to be 

(i) increasing on I when x1 < x2 in I => f(x1) ≤ f(x2) for all x1, x2 Є I.

(ii) strictly increasing on I if x1 < x2 in I => f(x1) < f(x2) for all x1, x2 Є I.

(iii) decreasing on I if x1 < x2 in I => f(x1) ≥ f(x2) for all x1, x2 Є I.

(iv) strictly decreasing on I if x1 < x2 in I => f(x1) > f(x2) for all x1, x2 Є I. 

However, some functions are neither increasing nor decreasing. 

The graphical representations of all these functions are given below:

Increasing and Decreasing Functions

function f will be said to be increasing at x0 when there exists an interval I = (x0 – h, x0 + h), h > 0 such that for  x1, x2 ∈  I,

x1 < x2 in I => f (x1) ≤ f (x2)

With the help of a theorem listed in the NCERT Solutions Class 12 Mathematics Chapter 6, you can test for increasing and decreasing functions for a given interval.

Tangents and Normals

For the given equation of a straight line that is passing through a given point (x0, y0) having a finite slope, m is represented as y – y0 = m(x – x0)

Tangents and Normals

Assume the given curve y = f(x), and the tangent of the curve at that point (x0, y0) will be

[dy/dx](x0, y0) or f’(x0)

Now, the equation of the tangent of the curve y = f(x) at (x0, y0) will be

y – y0 = f’(x0)(x – x0)

The slope of the normal to curve y = f(x) at  (x0, y0) is given by -1/ f’(x0) here f’(x0) ≠ 0

For the equation of normal to the curve, y = f(x) at (x0, y0) will be

Y – y0 = (-1/f’(x0))(x – x0)

(y – y0)* f’(x0) +(x – x0) = 0

Particular cases

(i) If the slope of the tangent line is zero, then tan θ = 0, i.e. θ = 0, which means a tangent line is parallel to the x-axis. For this case, the equation of the given tangent at the point (x0, y0) will be y = y0.

(ii) If θ -> π/2 then tan θ → ∞, that means the tangent line will be perpendicular to the x-axis, that is parallel to the y-axis. For this case, the equation of the tangent at (x0, y0) will be x = x0.

Approximations

An approximation is anything which is similar but not the same as something else.

Assume f : D => R, D Ì R, will be a given function and assume y = f (x). Assume ∆x denotes a small increment in terms of x.

Approximations

Now, consider the increment in y corresponding to the increment in x will be ∆y = f (x + ∆x) – f (x).

(i) The differential of x is represented as dx = ∆x.

(ii) The differential of y is represented as dy = f’(x) dx or dy = (dy/dx) * ∆x

Maxima and Minima

In the section, you will learn the different methods of calculating a function’s maximum and minimum values in a given domain. You will also learn about the absolute maximum and minimum of a function used to find the solution to many applied problems.

You will clearly understand this topic through the definitions and theorems included in the NCERT Solutions Class 12 Mathematics Chapter 6 available on the Extramarks official website.

Maximum and Minimum Values of a Function in a Closed Interval

You will learn about the two theorems to find out the absolute maximum and minimum values of a function upon a closed interval I.

Theorem: Let f be a continuous function on an interval I = [a, b]. Then f has the absolute maximum value, as well as f attains it at least once in I. Also, f has the absolute minimum value and attains it at least once in I.

Theorem: Let f be a differentiable function on a closed interval I and let c be any interior point of I. Then

(i) f′(c) = 0 when f attains its absolute maximum value at c.

(ii) f′(c) = 0 when f attains its absolute minimum value at c.

NCERT Solutions Class 12 Mathematics Chapter 6 Exercise &  Solutions

Find all the NCERT solutions to the exercises covered in the chapter in the NCERT Solutions Class 12 Mathematics Chapter 6. It is prepared by the subject experts while adhering to the NCERT book and following the CBSE guidelines and curriculum. 

All the vital topics and key concepts are covered in a point-wise manner. NCERT Solutions Class 12 Mathematics Chapter 6 is written end-to-end, highlighting everything in detail by the faculty experts. . Therefore, it is trusted by students and teachers across the private and government schools.

You can avail of the NCERT Solutions Class 12 Mathematics Chapter 6 from the Extramarks website.

Extramarks provides one-stop solutions to all your problems. To enjoy the maximum benefit of these resources, students just need to register themselves at Extramarks’ official website and stay ahead of the pack.

Click on the below links to view exercise-specific questions and solutions for NCERT Solutions Class 12 Mathematics Chapter 6:

  • Class 12 Mathematics Chapter 6: Questions and Answers

Along with Class 12 Mathematics solutions, you can explore NCERT Solutions on our Extramarks website for all primary and secondary classes.

  • NCERT Solutions Class 1
  • NCERT Solutions Class 2
  • NCERT Solutions Class 3
  • NCERT Solutions Class 4
  • NCERT Solutions Class 5
  • NCERT Solutions Class 6
  • NCERT Solutions Class 7
  • NCERT Solutions Class 8
  • NCERT Solutions Class 9
  • NCERT Solutions Class 10
  • NCERT Solutions Class 11
  • NCERT Solutions Class 12

NCERT Solutions Class 12 Mathematics Chapter 6 Exercise & Answer Solutions

NCERT Solutions Class 12 Mathematics Chapter 6 Exercise and Answer Solutions are available for students to refer for free on the Extramarks website. The material offers step-by-step solutions that help students understand how to solve problems relating to the chapter. The solution also helps students solve complex questions in a simplified manner. Students may refer to NCERT Solutions Class 12 Mathematics Chapter 6 to strengthen their basics.

Students may refer to the links below to download exercise-specific questions and solutions for NCERT Solutions Class 12 Mathematics Chapter 6 Application of Derivatives:

NCERT Exemplar Class 12 Mathematics

NCERT Exemplar Class 12 Mathematics book is an excellent source for students preparing for JEE Mains, NEET, MHT-CET etc. It has questions according to the topics and concepts covered in the NCERT textbook. This aids students in solving all types of questions confidently.

It has different questions with varying levels of difficulty, which helps students to improve their performance in various tests and exams and definitely builds their confidence level in the process. The questions are selected from different sources for students to prepare and improve their performance. It is also a complete source of information for CBSE students preparing for their 12th standard examinations. The students think logically about a problem after referring to the NCERT Solutions Class 12 Mathematics Chapter 6 and NCERT Exemplar.

The NCERT solutions Class 12 Mathematics Chapter 6 is prepared after analysing CBSE past years’ question papers. It contains extra questions from the NCERT Class 12 Mathematics textbook. Students can refer to NCERT Exemplar for Class 12 Mathematics for more practice and face their examinations with courage. They can assure themselves that nothing remains untouched in the chapter and will score very well in all their examinations. To get good grades in exams students must refer to multiple study resources, practice a lot of questions and stick to a study schedule and follow it religiously to come out with flying colours. 

Key Features for NCERT Solutions Class 12 Mathematics Chapter 6

Regular practice is quite necessary for the students to excel. Hence, NCERT Solutions Class 12 Mathematics Chapter 6 helps students develop the habit of regular practice and to clarify their doubts then and there, take regular tests to assess their performance and get proper feedback to step up their learning. . The key features are as follows: 

  • You can find all the topics covered as well as in text to end text exercises from the chapter covered in the NCERT Solutions Class 12 Mathematics Chapter 6.
  • It helps students analyse the easy and difficult topics in the chapter.
  • After completing the NCERT Solutions Class 12 Mathematics Chapter 6, students will become experts in solving derivatives problems.

FAQs (Frequently Asked Questions)

You can make your Class 12 Mathematics strong by following these steps: 

  • By studying all the concepts and topics from the NCERT textbook thoroughly.
  • By referring to class lectures, the authentic and reliable study material and one-to-one guidance.
  • By learning formulas, theorems, notes, and definitions and revising from time to time.
  • By practising problems from different sources besides practising from NCERT books.
  •  Make  NCERT Solutions Class 12 Mathematics Chapter 6 an integral part of the study material.
  • By giving periodic mock tests and getting regular feedback.

Class 12 Mathematics NCERT textbook covers all the topics listed in the CBSE Class 12 Mathematics board examinations syllabus. Hence, NCERT is enough for CBSE Class 12 Mathematics board examination if students follow it sincerely, consistently and properly with the right strategy and guidance.