Ncert Solutions class 12 maths chapter 1 exercise 1.1
Home » NCERT Solutions » Ncert Solutions class 12 maths chapter 1 exercise 1.1
-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Q.1 Determine whether each of the following relations are reflexive, symmetric and transitive:
(i ) Relation R in the set A = {1, 2, 3…13, 14}
defined as R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers
defined as R = {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y): x − y is as integer}
(v) Relation R in the set A of human beings in a
town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y): x and y live in the same locality}
(c) R = {(x, y): x is exactly 7 cm taller than y}
(d) R = {(x, y): x is wife of y}
(e) R = {(x, y): x is father of y}
Ans
i) A = {1, 2, 3 … 13, 14}
R = {(x, y): 3x − y = 0 or y=3x}
∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}
Given relation R is not reflexive because
(1, 1), (2, 2), (3,3)… (14, 14) ∉ R.
Also, R is not a symmetric relation as
(2, 6) ∈R, but (6,2) ∉ R.
Also, R is not transitive as (1, 3), (3, 9) ∈R,
but (1, 9) ∉ R.
Hence, R is neither reflexive, nor symmetric, nor transitive.
Q.2
Ans
Q.3 Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.
Ans
Given A = {1, 2, 3, 4, 5, 6}. A relation R is defined
on A as: R = {(a, b): b = a + 1}
Q.4
Ans
∴
Q.5
Ans
Q.6 Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
Ans
Q.7 Show that the relation R in the set A of all the books in a library of a college, given by
R = {(x, y): x and y have same number of pages} is an equivalence relation.
Ans
Q.8 Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b): |a – b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Ans
Q.9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaahofacaWHObGaaC4BaiaahEhacaqGGaGaaCiDaiaahIga caWHHbGaaCiDaiaabccacaWHLbGaaCyyaiaahogacaWHObGaaeiiai aah+gacaWHMbGaaeiiaiaahshacaWHObGaaCyzaiaabccacaWHYbGa aCyzaiaahYgacaWHHbGaaCiDaiaahMgacaWHVbGaaCOBaiaabccaca WHsbGaaeiiaiaahMgacaWHUbGaaeiiaiaahshacaWHObGaaCyzaiaa bccacaWHZbGaaCyzaiaahshacaaMc8oabaGaaeyqaiaabccacaqG9a GaaeiiamaacmaabaGaamiEaiabgIGiolaadQfacaGGSaGaaGimaiab gsMiJkaadIhacqGHKjYOcaaIXaGaaGOmaaGaay5Eaiaaw2haaiaacY cacaGGGcGaaC4zaiaahMgacaWH2bGaaCyzaiaah6gacaqGGaGaaCOy aiaahMhacaaMc8UaaGPaVdqaaiaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8+aaeWaaeaaieqacaWFPbaacaGLOaGaayzkaaGaaGPaVlaa=jfa caWF9aWaaiWaaeaadaqadaqaaiaa=fgacaWFSaGaa8NyaaGaayjkai aawMcaaiaa=Pdadaabdaqaaiaa=fgacaWFTaGaa8NyaaGaay5bSlaa wIa7aiaaykW7caWFPbGaa83Caiaa=bcacaWFHbGaa8hiaiaa=1gaca WF1bGaa8hBaiaa=rhacaWFPbGaa8hCaiaa=XgacaWFLbGaa8hiaiaa =9gacaWFMbGaa8hiaiaa=rdaaiaawUhacaGL9baaaeaacaWLjaGaaC zcaiaaykW7daqadaqaaiaa=LgacaWFPbaacaGLOaGaayzkaaGaaGPa Vlaa=jfacaWF9aWaaiWaaeaadaqadaqaaiaa=fgacaWFSaGaa8Nyaa GaayjkaiaawMcaaiaa=PdacaWFHbGaa8xpaiaa=jgaaiaawUhacaGL 9baaaeaacaWFPbGaa83Caiaa=bcacaWFHbGaa8NBaiaa=bcacaWFLb Gaa8xCaiaa=vhacaWFPbGaa8NDaiaa=fgacaWFSbGaa8xzaiaa=5ga caWFJbGaa8xzaiaa=bcacaWFYbGaa8xzaiaa=XgacaWFHbGaa8hDai aa=LgacaWFVbGaa8NBaiaa=5cacaWFGaGaa8Nraiaa=LgacaWFUbGa a8hzaiaa=bcacaWF0bGaa8hAaiaa=vgacaWFGaGaa83Caiaa=vgaca WF0bGaa8hiaiaa=9gacaWFMbGaa8hiaiaa=fgacaWFSbGaa8hBaiaa =bcacaWFLbGaa8hBaiaa=vgacaWFTbGaa8xzaiaa=5gacaWF0bGaa8 3Caaqaaiaa=bcacaWFYbGaa8xzaiaa=XgacaWFHbGaa8hDaiaa=vga caWFKbGaa8hiaiaa=rhacaWFVbGaa8hiaiaa=fdacaWFGaGaa8xAai aa=5gacaWFGaGaa8xzaiaa=fgacaWFJbGaa8hAaiaa=bcacaWFJbGa a8xyaiaa=nhacaWFLbGaa8Nlaaaaaa@FED7@
Ans
Q.10 Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Ans
Q.11 Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1, T2 and T3 are related?
Ans
Q.12 Give an example of a relation. Which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
Ans
Q.13 Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2 have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Ans
Q.14 Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is
an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Ans
Q.15
Ans
Q.16
Ans