NCERT Solutions for Class 11 Physics Chapter 15

NCERT Solutions for Class 11 Physics Chapter 15 – Waves

A wave is a quivering disruption that travels across a medium due to the regular motion of particles in that medium.  Class 11 Physics gives a solid foundation for future engineering and medical science courses.

Many new topics, such as Doppler effects, wave types, and their interrelationships,  have been introduced in NCERT solutions for Class 11 Physics Chapter 15. Students in class 11 must get in-depth knowledge and conceptual clarity  of various  topics in this subject in order to perform better on exams and in competitive tests.

Students will learn about the increasing importance of waves in  both mediums thanks to Extramarks  NCERT solutions.

Our team of subject matter experts   have created NCERT Solutions for Class 11 Physics Chapter 15 Waves with the goal of assisting students in their term – II exams. Students can obtain additional information about the chapter and have a short refresher before their second term test by practicing questions from the NCERT textbook using the 

Solutions. NCERT Solutions for Class 11 Physics Chapter 15,  have been in accordance with the latest CBSE Syllabus 2022-23, to give a solid foundation of fundamental topics that will aid students in their higher studies.

 NCERT Solutions for Class 11 Physics Chapter 15 – Waves

NCERT Solutions for Class 11 Physics Chapter 15 include answers to extra questions created by Extramarks specialists, as well as exemplary problems, worksheets, short and long answer questions, MCQs, and tips and techniques for CBSE exam preparation with NCERT Solutions.

This chapter contains different types of questions and responses on important topics in physics, such as questions on wave dynamics and so on. This chapter’s questions are frequently used in second-term exams and will lead you through each and every topic and form of waves, including stress on strings, sound speed in air, transverse wave, and the influence of sound speed in air on parameters such as pressure, humidity, and temperature. This chapter also includes questions on ultrasonic sound wavelengths, transverse harmonic waves, and their applications.

NCERT Solutions for Class 11 Physics Chapter 15 

NCERT Class 11 Physics Chapter 15 solutions cover all of the important subjects and subtopics with detailed explanations to help students in class 11 better understand the concepts.

Students will find many practice problems as well as a full explanation of the chapter’s questions and solutions in the Waves Class 11 NCERT solutions.

The foundation for class 12 CBSE boards, which defines the basis  to gain admittance into higher educational institutes, is laid by  Physics, Chemistry & Mathematics  . This chapter in particular lays emphasis on concepts and theoretical components which is  important for the Class 12 CBSE board examination point of view. It was created using the  latest CBSE syllabus  followed by NCERT books which are crucial for CBSE board students .  

Physics is a science that involves a lot of numbers, formulae, and graphs. Before the final exam, students frequently seek quick references. The PDF includes a variety of practice questions, including short- and long-answer type questions, multiple-choice questions, diagrammatic and  graphic representations..

Before the class 11 final exams, students can quickly review and revise various formulas and numerical valuations without feeling anxious or stressed.

NCERT Solutions : An overview of  Physics Chapter 15

We used a wire as a reference for signifying a wave motion in the NCERT Solutions for Class 11 Physics, and we  learn about the transverse displacement of a wire that is clamped on both sides, and  how to find out the amplitude of a point at a specific distance in the wire. We also  had queries about determining the speed of sound in a wire with pistons at one end and a tuning fork at the other. During competitive tests, these topics are quite significant. Waves is also one of the most significant topics in Physics, and students frequently get questions based on them in various competitive exams.  NCERT Solutions for Class 11 Physics can help you to crack these exams with ease since all these tricky questions have been covered in practice tests, sample papers and the like.

Solving questions about the speed of sound in a steel medium can teach us a lot about waves. There are concerns about how your guitar strings make sound and the frequency of each string on a guitar. We now understand why the pressure antinode of a sound wave is also a displacement node and vice versa. We’ll also learn how a blind dolphin navigates around obstacles in a river and seeks prey. If a man stands at a specific distance from an observer and blows a horn, we can determine the frequency of the horn-based on whether the man is running towards or away from the observer.

A similar example can be  of a truck blowing the horn at a man at a petrol pump, how to find its frequency, speed and wavelength.

Some of the characteristics of waves include: frequency, amplitude, wavelength, phase, resonance, and displacement of waves such as longitudinal and transverse motion in diverse mediums.

The Waves Chapter of Class 11 includes a wide range of topics, including:

  • Waves
  • The nature of waves in various mediums
  • Waves and their qualities are represented graphically
  • Wave by wave comparison
  • Sound velocity
  • A symphony of motion
  • Calculation and resonance between waves
  • Oscillation displacement and velocity

Subtopics of Class 11 Physics Chapter 15 Waves

  1. Introduction
  2. Transverse and longitudinal waves
  3. Displacement relation in a progressive wave
  4. The speed of a travelling wave
  5. The principle of superposition of waves
  6. Reflection of waves
  7. Beats
  8. Doppler effect

Rotating electrons, protons, neutrons, and other elementary particles are linked to waves. Molecules and atoms are also related to waves. 

To assist students, Extramarks gives chapter-by-chapter NCERT Solutions for all classes. For students to learn more efficiently, all of the solutions in this study material are explained in simple language and in an interactive format.

These NCERT Solutions for Class 11 Physics, Chapter 15, Waves, cover all aspects of the topic, including definitions and examples. These NCERT Solutions are available free of cost.. Students must access NCERT Solutions to take maximum advantage  by visiting Extramarks website for guided practice and brilliant performance this year and the year ahead.

Benefits of NCERT Solutions for Class 11 Physics Chapter 15 

 Following are the benefits of NCERT Solutions:

  • Students will be able to approach their revision with more clarity and less fear, doubt or anxiousness for the final Class 11 exam.  Students can ace such exams more confidently  with the help of the NCERT Solutions. .
  • Students can access NCERT Solutions  to put themselves in a better position for competitive exams.  The majority of students take JEE Main,JEE Advanced and medical  exams. Additionally, the content from Solutions can be of great help in their preparation.
  • Extramarks website offers free NCERT solutions for Class 11 Physics..
  • The NCERT Solutions for Class 11 Physics Chapter 15 Waves were created by a team of teachers with  years of experience teaching science and engineering students across the country and abroad.
  • Students can easily access NCERT Solutions for Class 11 Physics Chapter 15 from anywhere. It saves time and is tailor-made for easy comprehension and thorough preparation.

Define Overtone

 It’s an important chapter in Physics. An overtone is a sound frequency that is higher than the fundamental frequency. The term “overtone” is applied to higher-frequency standing waves.

It is a frequency that is typically generated by instruments. Second harmonic is another name for overtone. One of the key advantages of overtone is that it can adapt to any fundamental frequency valuation.

Q.1 A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?

Ans.

Here,mass of string,M=2.50 kg Tensionproduced in the string,T=200 N Length of string,l=20.0 m Mass per unit length,m= M l = 2.50 20.0 =0.125 kgm 1 Velocity of the transverse wave in the stringisgivenas: v= T μ = 200 0.125 = 1600 =40 ms 1 Time taken by the disturbance to reach the other endisgivenas: t= Lengthofstring Velocityoftransversewaveinstring = l v = 20 40 =0.50s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaab2gacaqGHbGaae4CaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeilaiaaysW7caqGnbGaaGjbVlaab2dacaaMe8UaaeOmaiaab6cacaqG1aGaaeimaiaabccacaqGRbGaae4zaaqaaiaabsfacaqGLbGaaeOBaiaabohacaqGPbGaae4Baiaab6gacaaMe8UaaeiCaiaabkhacaqGVbGaaeizaiaabwhacaqGJbGaaeyzaiaabsgacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaabYcacaaMe8UaaeivaiaaysW7caqG9aGaaGjbVlaabkdacaqGWaGaaeimaiaabccacaqGobaabaGaaeitaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaabYcacaaMe8UaaeiBaiaaysW7caqG9aGaaGjbVlaabkdacaqGWaGaaeOlaiaabcdacaqGGaGaaeyBaaqaaiaab2eacaqGHbGaae4CaiaabohacaqGGaGaaeiCaiaabwgacaqGYbGaaeiiaiaabwhacaqGUbGaaeyAaiaabshacaqGGaGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeilaiaaysW7caqGTbGaaGjbVlabg2da9iaaysW7daWcaaqaaiaad2eaaeaacaWGSbaaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaqGYaGaaiOlaiaabwdacaaIWaaabaGaaeOmaiaaicdacaGGUaGaaGimaaaacaaMe8Uaeyypa0JaaGjbVlaaicdacaGGUaGaaGymaiaaikdacaaI1aGaaGjbVlaabUgacaqGNbGaaeyBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaaMe8UaaeODaiaaysW7caqG9aGaaGjbVpaakaaabaWaaSaaaeaacaWGubaabaGaeqiVd0gaaaWcbeaakiaaysW7cqGH9aqpcaaMe8+aaOaaaeaadaWcaaqaaiaaikdacaaIWaGaaGimaaqaaiaaicdacaGGUaGaaGymaiaaikdacaaI1aaaaaWcbeaakiaaysW7cqGH9aqpcaaMe8+aaOaaaeaacaaIXaGaaGOnaiaaicdacaaIWaaaleqaaOGaaGjbVlabg2da9iaaysW7caaI0aGaaGimaiaaysW7caqGTbGaae4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaabsfacaqGPbGaaeyBaiaabwgacaqGGaGaaeiDaiaabggacaqGRbGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabsgacaqGPbGaae4CaiaabshacaqG1bGaaeOCaiaabkgacaqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabshacaqGVbGaaeiiaiaabkhacaqGLbGaaeyyaiaabogacaqGObGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGVbGaaeiDaiaabIgacaqGLbGaaeOCaiaabccacaqGLbGaaeOBaiaabsgacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaqG6aaabaGaaeiDaiaaysW7caqG9aGaaGjbVpaalaaabaGaaeitaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaGjbVlaab+gacaqGMbGaaGjbVlaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaGjbVlaab+gacaqGMbGaaGjbVlaabshacaqGYbGaaeyyaiaab6gacaqGZbGaaeODaiaabwgacaqGYbGaae4CaiaabwgacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaaysW7caqGPbGaaeOBaiaaysW7caqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgaaaGaaGjbVlabg2da9iaaysW7daWcaaqaaiaadYgaaeaacaWG2baaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaaIYaGaaGimaaqaaiaaisdacaaIWaaaaiaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaI1aGaaGimaiaaysW7caqGZbaaaaa@AC83@

Q.2 A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s–1? (g = 9.8 m s–2)

Ans.

Here,height of tower,s=300 m Initial velocity of stone,u=0 Accelerationduetogravity,g=9 .8 ms -2 Speed of sound in air= 340 ms -1 Let time taken by the stone to hit the surfaceofwater= t 1 Accordingto second equation of motion,wehave: s=u t 1 + 1 2 g t 1 2 300=0+ 1 2 ×9.8× t 1 2 t 1 = 300×2 9.8 =7.82s Time taken by sound to reach the top of the tower: t 2 = h v = 300 340 =0.88s Total time after which the splash is heardisgivenas: t= t 1 + t 2 =7.82+0.88=8.7 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabIgacaqGLbGaaeyAaiaabEgacaqGObGaaeiDaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaae4BaiaabEhacaqGLbGaaeOCaiaabYcacaaMe8Uaae4CaiaaysW7caqG9aGaaGjbVlaabodacaqGWaGaaeimaiaabccacaqGTbaabaGaaeysaiaab6gacaqGPbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaaeiDaiaab+gacaqGUbGaaeyzaiaabYcacaaMe8UaaeyDaiaaysW7caqG9aGaaGjbVlaabcdaaeaacaqGbbGaae4yaiaabogacaqGLbGaaeiBaiaabwgacaqGYbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaaMe8UaaeizaiaabwhacaqGLbGaaGjbVlaabshacaqGVbGaaGjbVlaabEgacaqGYbGaaeyyaiaabAhacaqGPbGaaeiDaiaabMhacaqGSaGaaGjbVlaabEgacaaMe8UaaeypaiaaysW7caqG5aGaaeOlaiaabIdacaqGGaGaaeyBaiaabohadaahaaWcbeqaaiaab2cacaqGYaaaaaGcbaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyyaiaabMgacaqGYbGaaGjbVlaab2dacaaMe8Uaae4maiaabsdacaqGWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabYeacaqGLbGaaeiDaiaabccacaqG0bGaaeyAaiaab2gacaqGLbGaaeiiaiaabshacaqGHbGaae4AaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiDaiaab+gacaqGUbGaaeyzaiaabccacaqG0bGaae4BaiaabccacaqGObGaaeyAaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG1bGaaeOCaiaabAgacaqGHbGaae4yaiaabwgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4DaiaabggacaqG0bGaaeyzaiaabkhacaaMe8UaaeypaiaaysW7caqG0bWaaSbaaSqaaiaabgdaaeqaaaGcbaGaaeyqaiaabogacaqGJbGaae4BaiaabkhacaqGKbGaaeyAaiaab6gacaqGNbGaaGjbVlaabshacaqGVbGaaeiiaiaabohacaqGLbGaae4yaiaab+gacaqGUbGaaeizaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqGTbGaae4BaiaabshacaqGPbGaae4Baiaab6gacaqGSaGaaGjbVlaabEhacaqGLbGaaGjbVlaabIgacaqGHbGaaeODaiaabwgacaqG6aaabaGaam4CaiaaysW7cqGH9aqpcaaMe8UaamyDaiaabshadaWgaaWcbaGaaeymaaqabaGccaaMe8Uaey4kaSIaaGjbVpaalaaabaGaaGymaaqaaiaaikdaaaGaam4zaiaabshadaWgaaWcbaGaaeymaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacqGH0icxcaaIZaGaaGimaiaaicdacaaMe8Uaeyypa0JaaGjbVlaaicdacaaMe8Uaey4kaSIaaGjbVpaalaaabaGaaGymaaqaaiaaikdaaaGaaGjbVlabgEna0kaaysW7caqG5aGaaiOlaiaabIdacaaMe8Uaey41aqRaaGjbVlaabshadaWgaaWcbaGaaeymaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacqGH0icxcaqG0bWaaSbaaSqaaiaabgdaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodacaaIWaGaaGimaiabgEna0kaaikdaaeaacaqG5aGaaiOlaiaabIdaaaaaleqaaOGaeyypa0JaaG4naiaac6cacaaI4aGaaGOmaiaaysW7caWGZbaabaGaaeivaiaabMgacaqGTbGaaeyzaiaabccacaqG0bGaaeyyaiaabUgacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqG0bGaae4BaiaabccacaqGYbGaaeyzaiaabggacaqGJbGaaeiAaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaab+gacaqGWbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaae4BaiaabEhacaqGLbGaaeOCaiaabQdacaaMe8UaaGjbVlaaysW7caaMe8oabaGaamiDamaaBaaaleaacaaIYaaabeaakiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaWGObaabaGaamODaaaacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaG4maiaaicdacaaIWaaabaGaaG4maiaaisdacaaIWaaaaiaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaI4aGaaGioaiaaysW7caWGZbaabaGaeyinIWLaaeivaiaab+gacaqG0bGaaeyyaiaabYgacaqGGaGaaeiDaiaabMgacaqGTbGaaeyzaiaabccacaqGHbGaaeOzaiaabshacaqGLbGaaeOCaiaabccacaqG3bGaaeiAaiaabMgacaqGJbGaaeiAaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabchacaqGSbGaaeyyaiaabohacaqGObGaaeiiaiaabMgacaqGZbGaaeiiaiaabIgacaqGLbGaaeyyaiaabkhacaqGKbGaaGjbVlaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaGjbVlaabggacaqGZbGaaeOoaiaaysW7aeaacaWG0bGaaGjbVlabg2da9iaaysW7caqG0bWaaSbaaSqaaiaabgdaaeqaaOGaaGjbVlabgUcaRiaaysW7caWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGjbVlabg2da9iaaysW7caqG3aGaaiOlaiaabIdacaqGYaGaaGjbVlabgUcaRiaaysW7caaIWaGaaiOlaiaabIdacaqG4aGaaGjbVlabg2da9iaaysW7caqG4aGaaiOlaiaabEdacaqGGaGaae4Caaaaaa@FCE4@

Q.3 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20°C = 343 ms–1.

Ans.

Here, length of wire,l= 12 m Mass of wire,m= 2.10 kg Velocity of transverse wave,v= 343 ms -1 Mass per unit length,μ= m l = 2.10 12 =0.175 kgm 1 Lettensioninthewire=T Velocity of the transverse wave isgivenbytherelation: using the relation: v= T μ T= v 2 μ= ( 343 ) 2 ×0.175 = 20588.5752.06×1 0 4 N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaeiiaiaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccacaqG3bGaaeyAaiaabkhacaqGLbGaaeilaiaaysW7caqGSbGaeyypa0JaaeiiaiaabgdacaqGYaGaaeiiaiaab2gaaeaacaqGnbGaaeyyaiaabohacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabEhacaqGPbGaaeOCaiaabwgacaGGSaGaaGjbVlaab2gacqGH9aqpcaqGGaGaaeOmaiaac6cacaqGXaGaaGimaiaabccacaqGRbGaae4zaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGYbGaaeyyaiaab6gacaqGZbGaaeODaiaabwgacaqGYbGaae4CaiaabwgacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabYcacaaMe8UaaeODaiaaysW7caqG9aGaaGjbVlaabodacaqG0aGaae4maiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGnbGaaeyyaiaabohacaqGZbGaaeiiaiaabchacaqGLbGaaeOCaiaabccacaqG1bGaaeOBaiaabMgacaqG0bGaaeiiaiaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabYcacaaMe8UaeqiVd0MaaGjbVlabg2da9iaaysW7daWcaaqaaiaad2gaaeaacaWGSbaaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaqGYaGaaiOlaiaabgdacaaIWaaabaGaaGymaiaaikdaaaGaaGjbVlabg2da9iaaysW7caaIWaGaaiOlaiaaigdacaaI3aGaaGynaiaaysW7caqGRbGaae4zaiaab2gadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaqGmbGaaeyzaiaabshacaaMe8UaaeiDaiaabwgacaqGUbGaae4CaiaabMgacaqGVbGaaeOBaiaaysW7caqGPbGaaeOBaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4DaiaabMgacaqGYbGaaeyzaiaaysW7caqG9aGaaGjbVlaabsfacaqGGaGaaGjbVdqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeOyaiaabMhacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOoaaqaaiaabwhacaqGZbGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabQdaaeaacaWG2bGaeyypa0ZaaOaaaeaadaWcaaqaaiaadsfaaeaacqaH8oqBaaaaleqaaaGcbaGaeyinIWLaaeivaiabg2da9iaabAhadaahaaWcbeqaaiaabkdaaaGccqaH8oqBcqGH9aqpcaqGGaWaaeWaaeaacaqGZaGaaeinaiaabodaaiaawIcacaGLPaaadaahaaWcbeqaaiaabkdaaaGccqGHxdaTcaaIWaGaaiOlaiaabgdacaqG3aGaaeynaiaabccaaeaacqGH9aqpcaqGGaGaaeOmaiaaicdacaqG1aGaaeioaiaabIdacaGGUaGaaeynaiaabEdacaqG1aGaaGjbVlabgIKi7kaaysW7caqGYaGaaiOlaiaaicdacaqG2aGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaabsdaaaGccaqGGaGaaeOtaaaaaa@4CBF@

Q.4

Use the formulav= γP ρ to explain why the speed ofsound in air ( a ) is independent of pressure,( b ) increases with temperature, ( c ) increases with humidity. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakqaabeqaaiaabwfacaqGZbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOzaiaab+gacaqGYbGaaeyBaiaabwhacaqGSbGaaeyyaiaaysW7caqG2bGaeyypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaabcfaaeaacqaHbpGCaaGaaGjbVdWcbeaakiaabshacaqGVbGaaeiiaiaabwgacaqG4bGaaeiCaiaabYgacaqGHbGaaeyAaiaab6gacaqGGaGaae4DaiaabIgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaaysW7caqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabccacaqGHbGaaeyAaiaabkhaaeaadaqadaqaaiaabggaaiaawIcacaGLPaaacaqGGaGaaeyAaiaabohacaqGGaGaaeyAaiaab6gacaqGKbGaaeyzaiaabchacaqGLbGaaeOBaiaabsgacaqGLbGaaeOBaiaabshacaqGGaGaae4BaiaabAgacaqGGaGaaeiCaiaabkhacaqGLbGaae4CaiaabohacaqG1bGaaeOCaiaabwgacaqGSaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaeiiaiaabMgacaqGUbGaae4yaiaabkhacaqGLbGaaeyyaiaabohacaqGLbGaae4CaiaabccacaqG3bGaaeyAaiaabshacaqGObGaaeiiaiaabshacaqGLbGaaeyBaiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeilaaqaamaabmaabaGaae4yaaGaayjkaiaawMcaaiaabccacaqGPbGaaeOBaiaabogacaqGYbGaaeyzaiaabggacaqGZbGaaeyzaiaabohacaqGGaGaae4DaiaabMgacaqG0bGaaeiAaiaabccacaqGObGaaeyDaiaab2gacaqGPbGaaeizaiaabMgacaqG0bGaaeyEaiaab6caaaaa@BDAE@

Ans.

( a )Itisgiventhat: v= γP ρ (i) Here,ρ=Density ρ= Mass Volume = M V Here,MandVrepresentthemolecularweightandvolumeofgasrespectively. Equation(i)becomes: v= γPV M (ii) From the ideal gas equation forn=1: PV=RT At constanttemperature( T ),PV=Constant As bothMandγare constants, v= Constant At a constant temperature, the speed of sound in agaseous medium isdoesnotdependon the change in thepressure of the gas. ( b )Itisgiventhat: v= γP ρ (i) Fromtheidealgasequation,forn=1,wehave: PV=RT P= RT V (ii) Puttingequation(ii)inequation(i),weobtain: v= γRT Vρ = γRT M (iii) Here,massM( =ρV ),γ andRare constants From equation( iii ),itcanbeobservedthat: v T The speed of sound in a gas is directly proportionalto the square root of thetemperature ofthe gaseous medium.Itimpliesthat the speed of thesound increaseswith therise in the temperature of the gaseous medium. ( c )Itisgiventhat: v= γP ρ (i) Letspeedofsoundinthemoistair= v m Letspeedofsoundinthedryair= v d Letdensityofmoistair= ρ m Letdensityofdryair= ρ d Usingequation(i),thespeedofsoundinthemoistairisgivenas: v m = γP ρ m (ii) Usingequation(i),thespeedofsoundinthemoistairisgivenas: v d = γP ρ d (iii) Dividingequation(ii)and(iii),weobtain: v m v d = γP ρ m × ρ d γP = ρ d ρ m However,the water vapour decreases thedensityofair. ρ d < ρ m v d > v m Speed of sound in moist air is more than it isin dry air. In theair,thespeed of sound increases with humidity. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaaysW7caqGjbGaaeiDaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqG0bGaaeiAaiaabggacaqG0bGaaeOoaaqaaiaadAhacqGH9aqpdaGcaaqaamaalaaabaGaeq4SdCMaamiuaaqaaiabeg8aYbaaaSqabaGccqGHsgIRcaqGOaGaaeyAaiaabMcaaeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7cqaHbpGCcqGH9aqpcaqGebGaaeyzaiaab6gacaqGZbGaaeyAaiaabshacaqG5baabaGaeqyWdiNaeyypa0ZaaSaaaeaacaqGnbGaaeyyaiaabohacaqGZbaabaGaaeOvaiaab+gacaqGSbGaaeyDaiaab2gacaqGLbaaaiabg2da9maalaaabaGaamytaaqaaiaadAfaaaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8UaaeytaiaaysW7caqGHbGaaeOBaiaabsgacaaMe8UaaeOvaiaaysW7caqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBaiaabshacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaab2gacaqGVbGaaeiBaiaabwgacaqGJbGaaeyDaiaabYgacaqGHbGaaeOCaiaaysW7caqG3bGaaeyzaiaabMgacaqGNbGaaeiAaiaabshacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaabAhacaqGVbGaaeiBaiaabwhacaqGTbGaaeyzaiaaysW7caqGVbGaaeOzaiaaysW7caqGNbGaaeyyaiaabohacaaMe8UaaeOCaiaabwgacaqGZbGaaeiCaiaabwgacaqGJbGaaeiDaiaabMgacaqG2bGaaeyzaiaabYgacaqG5bGaaeOlaaqaaiabgsJiCjaabweacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaabIcacaqGPbGaaeykaiaaysW7caqGIbGaaeyzaiaabogacaqGVbGaaeyBaiaabwgacaqGZbGaaeOoaaqaaiaadAhacqGH9aqpdaGcaaqaamaalaaabaGaeq4SdCMaamiuaiaadAfaaeaacaWGnbaaaaWcbeaakiabgkziUkaabIcacaqGPbGaaeyAaiaabMcaaeaacaqGgbGaaeOCaiaab+gacaqGTbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGPbGaaeizaiaabwgacaqGHbGaaeiBaiaabccacaqGNbGaaeyyaiaabohacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeOzaiaab+gacaqGYbGaaGjbVlaab6gacaaMe8Uaeyypa0JaaGjbVlaabgdacaGG6aaabaGaaeiuaiaabAfacqGH9aqpcaqGsbGaaeivaaqaaiaabgeacaqG0bGaaeiiaiaabogacaqGVbGaaeOBaiaabohacaqG0bGaaeyyaiaab6gacaqG0bGaaGjbVlaabshacaqGLbGaaeyBaiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaGjbVpaabmaabaGaamivaaGaayjkaiaawMcaaiaacYcacaaMe8UaaeiuaiaabAfacaaMe8Uaeyypa0JaaGjbVlaaboeacaqGVbGaaeOBaiaabohacaqG0bGaaeyyaiaab6gacaqG0bGaaGjbVlaaysW7aeaacaqGbbGaae4CaiaabccacaqGIbGaae4BaiaabshacaqGObGaaGjbVlaab2eacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlabeo7aNjaaysW7caqGHbGaaeOCaiaabwgacaqGGaGaae4yaiaab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGZbGaaeilaaqaaiabgsJiCjaabAhacqGH9aqpcaqGGaGaae4qaiaab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshaaeaacqGH0icxcaqGbbGaaeiDaiaabccacaqGHbGaaeiiaiaabogacaqGVbGaaeOBaiaabohacaqG0bGaaeyyaiaab6gacaqG0bGaaeiiaiaabshacaqGLbGaaeyBaiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGGaGaaeyyaiaaysW7caqGNbGaaeyyaiaabohacaqGLbGaae4BaiaabwhacaqGZbGaaeiiaiaab2gacaqGLbGaaeizaiaabMgacaqG1bGaaeyBaiaabccacaqGPbGaae4CaiaaysW7caqGKbGaae4BaiaabwgacaqGZbGaaGjbVlaab6gacaqGVbGaaeiDaiaaysW7caqGKbGaaeyzaiaabchacaqGLbGaaeOBaiaabsgacaaMe8Uaae4Baiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogacaqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabccacaqGPbGaaeOBaaqaaiaabshacaqGObGaaeyzaiaaysW7caqGWbGaaeOCaiaabwgacaqGZbGaae4CaiaabwhacaqGYbGaaeyzaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaabggacaqGZbGaaeOlaaqaamaabmaabaGaaeOyaaGaayjkaiaawMcaaiaaysW7caqGjbGaaeiDaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqG0bGaaeiAaiaabggacaqG0bGaaeOoaaqaaiaadAhacqGH9aqpdaGcaaqaamaalaaabaGaeq4SdCMaamiuaaqaaiabeg8aYbaaaSqabaGccqGHsgIRcaqGOaGaaeyAaiaabMcaaeaacaqGgbGaaeOCaiaab+gacaqGTbGaaGjbVlaabshacaqGObGaaeyzaiaaysW7caqGPbGaaeizaiaabwgacaqGHbGaaeiBaiaaysW7caqGNbGaaeyyaiaabohacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGSaGaaGjbVlaabAgacaqGVbGaaeOCaiaaysW7caqGUbGaeyypa0JaaGymaiaacYcacaaMe8Uaae4DaiaabwgacaaMe8UaaeiAaiaabggacaqG2bGaaeyzaiaabQdaaeaacaWGqbGaamOvaiabg2da9iaadkfacaWGubaabaGaamiuaiabg2da9maalaaabaGaamOuaiaadsfaaeaacaWGwbaaaiabgkziUkaabIcacaqGPbGaaeyAaiaabMcaaeaacaqGqbGaaeyDaiaabshacaqG0bGaaeyAaiaab6gacaqGNbGaaGjbVlaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaabIcacaqGPbGaaeyAaiaabMcacaaMe8UaaeyAaiaab6gacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaaMe8UaaeikaiaabMgacaqGPaGaaeilaiaaysW7caqG3bGaaeyzaiaaysW7caqGVbGaaeOyaiaabshacaqGHbGaaeyAaiaab6gacaqG6aaabaGaamODaiabg2da9maakaaabaWaaSaaaeaacqaHZoWzcaWGsbGaamivaaqaaiaadAfacqaHbpGCaaaaleqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaadkfacaWGubaabaGaamytaaaaaSqabaGccqGHsgIRcaqGOaGaaeyAaiaabMgacaqGPbGaaeykaaqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaab2gacaqGHbGaae4CaiaabohacaaMe8UaaeytamaabmaabaGaeyypa0JaeqyWdiNaaeOvaaGaayjkaiaawMcaaiaacYcacaaMe8Uaeq4SdCMaaeiiaiaabggacaqGUbGaaeizaiaaysW7caqGsbGaaGjbVlaabggacaqGYbGaaeyzaiaabccacaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaaeiDaiaabohaaeaacaqGgbGaaeOCaiaab+gacaqGTbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVpaabmaabaGaaeyAaiaabMgacaqGPbaacaGLOaGaayzkaaGaaeilaiaaysW7caqGPbGaaeiDaiaaysW7caqGJbGaaeyyaiaab6gacaaMe8UaaeOyaiaabwgacaaMe8Uaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabsgacaaMe8UaaeiDaiaabIgacaqGHbGaaeiDaiaabQdaaeaacaWG2bGaeyyhIu7aaOaaaeaacaWGubaaleqaaaGcbaGaeyinIWLaaeivaiaabIgacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGUbGaaeiiaiaabggacaqGGaGaae4zaiaabggacaqGZbGaaeiiaiaabMgacaqGZbGaaeiiaiaabsgacaqGPbGaaeOCaiaabwgacaqGJbGaaeiDaiaabYgacaqG5bGaaeiiaiaabchacaqGYbGaae4BaiaabchacaqGVbGaaeOCaiaabshacaqGPbGaae4Baiaab6gacaqGHbGaaeiBaiaaysW7caqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabghacaqG1bGaaeyyaiaabkhacaqGLbGaaeiiaiaabkhacaqGVbGaae4BaiaabshacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabshacaqGLbGaaeyBaiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeiiaiaab+gacaqGMbGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyyaiaabohacaqGLbGaae4BaiaabwhacaqGZbGaaGjbVdqaaiaab2gacaqGLbGaaeizaiaabMgacaqG1bGaaeyBaiaab6cacaaMe8UaaeysaiaabshacaaMe8UaaeyAaiaab2gacaqGWbGaaeiBaiaabMgacaqGLbGaae4CaiaaysW7caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaaMe8Uaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGJbGaaeOCaiaabwgacaqGHbGaae4CaiaabwgacaqGZbGaaGjbVlaabEhacaqGPbGaaeiDaiaabIgacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabkhacaqGPbGaae4CaiaabwgacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabshacaqGLbGaaeyBaiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyyaiaabohacaqGLbGaae4BaiaabwhacaqGZbGaaeiiaiaab2gacaqGLbGaaeizaiaabMgacaqG1bGaaeyBaiaab6caaeaadaqadaqaaiaabogaaiaawIcacaGLPaaacaaMe8UaaeysaiaabshacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeiDaiaabIgacaqGHbGaaeiDaiaabQdacaaMe8UaaGjbVdqaaiaadAhacqGH9aqpdaGcaaqaamaalaaabaGaeq4SdCMaamiuaaqaaiabeg8aYbaaaSqabaGccqGHsgIRcaGGOaGaamyAaiaacMcaaeaacaqGmbGaaeyzaiaabshacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaaMe8UaaeyAaiaab6gacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaab2gacaqGVbGaaeyAaiaabohacaqG0bGaaGjbVlaabggacaqGPbGaaeOCaiaaysW7caqG9aGaaGjbVlaabAhadaWgaaWcbaGaaeyBaaqabaaakeaacaqGmbGaaeyzaiaabshacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaaMe8UaaeyAaiaab6gacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaabsgacaqGYbGaaeyEaiaaysW7caqGHbGaaeyAaiaabkhacaaMe8UaaeypaiaaysW7caqG2bWaaSbaaSqaaiaabsgaaeqaaaGcbaGaaeitaiaabwgacaqG0bGaaGjbVlaabsgacaqGLbGaaeOBaiaabohacaqGPbGaaeiDaiaabMhacaaMe8Uaae4BaiaabAgacaaMe8UaaeyBaiaab+gacaqGPbGaae4CaiaabshacaaMe8UaaeyyaiaabMgacaqGYbGaaGjbVlabg2da9iabeg8aYnaaBaaaleaacaWGTbaabeaaaOqaaiaabYeacaqGLbGaaeiDaiaaysW7caqGKbGaaeyzaiaab6gacaqGZbGaaeyAaiaabshacaqG5bGaaGjbVlaab+gacaqGMbGaaGjbVlaabsgacaqGYbGaaeyEaiaaysW7caqGHbGaaeyAaiaabkhacaaMe8Uaeyypa0JaeqyWdi3aaSbaaSqaaiaadsgaaeqaaaGcbaGaaeyvaiaabohacaqGPbGaaeOBaiaabEgacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaaMe8UaaeikaiaabMgacaqGPaGaaeilaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaaMe8UaaeyAaiaab6gacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaab2gacaqGVbGaaeyAaiaabohacaqG0bGaaGjbVlaabggacaqGPbGaaeOCaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaWG2bWaaSbaaSqaaiaad2gaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaadcfaaeaacqaHbpGCdaWgaaWcbaGaamyBaaqabaaaaaqabaGccqGHsgIRcaqGOaGaaeyAaiaabMgacaqGPaaabaGaaeyvaiaabohacaqGPbGaaeOBaiaabEgacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaaMe8UaaeikaiaabMgacaqGPaGaaeilaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaaMe8UaaeyAaiaab6gacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaab2gacaqGVbGaaeyAaiaabohacaqG0bGaaGjbVlaabggacaqGPbGaaeOCaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaWG2bWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaadcfaaeaacqaHbpGCdaWgaaWcbaGaamizaaqabaaaaaqabaGccqGHsgIRcaqGOaGaaeyAaiaabMgacaqGPbGaaeykaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyAaiaab6gacaqGNbGaaGjbVlaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaabIcacaqGPbGaaeyAaiaabMcacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaabIcacaqGPbGaaeyAaiaabMgacaqGPaGaaeilaiaaysW7caqG3bGaaeyzaiaaysW7caqGVbGaaeOyaiaabshacaqGHbGaaeyAaiaab6gacaqG6aGaaGjbVlaaysW7aeaadaWcaaqaaiaadAhadaWgaaWcbaGaamyBaaqabaaakeaacaWG2bWaaSbaaSqaaiaadsgaaeqaaaaakiabg2da9maakaaabaWaaSaaaeaacqaHZoWzcaWGqbaabaGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaaaakiabgEna0oaalaaabaGaeqyWdi3aaSbaaSqaaiaadsgaaeqaaaGcbaGaeq4SdCMaamiuaaaaaSqabaGccqGH9aqpdaGcaaqaamaalaaabaGaeqyWdi3aaSbaaSqaaiaadsgaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaaaaaeqaaaGcbaGaaeisaiaab+gacaqG3bGaaeyzaiaabAhacaqGLbGaaeOCaiaabYcacaaMe8UaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGHbGaaeiDaiaabwgacaqGYbGaaeiiaiaabAhacaqGHbGaaeiCaiaab+gacaqG1bGaaeOCaiaabccacaqGKbGaaeyzaiaabogacaqGYbGaaeyzaiaabggacaqGZbGaaeyzaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabsgacaqGLbGaaeOBaiaabohacaqGPbGaaeiDaiaabMhacaaMe8Uaae4BaiaabAgacaaMe8UaaeyyaiaabMgacaqGYbGaaeOlaiaaysW7aeaacqaHbpGCdaWgaaWcbaGaamizaaqabaGccqGH8aapcqaHbpGCdaWgaaWcbaGaamyBaaqabaaakeaacqGH0icxcaWG2bWaaSbaaSqaaiaadsgaaeqaaOGaeyOpa4JaamODamaaBaaaleaacaWGTbaabeaaaOqaaiabgsJiCjaabofacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGUbGaaeiiaiaab2gacaqGVbGaaeyAaiaabohacaqG0bGaaeiiaiaabggacaqGPbGaaeOCaiaabccacaqGPbGaae4CaiaabccacaqGTbGaae4BaiaabkhacaqGLbGaaeiiaiaabshacaqGObGaaeyyaiaab6gacaqGGaGaaeyAaiaabshacaqGGaGaaeyAaiaabohacaaMe8UaaeyAaiaab6gacaqGGaGaaeizaiaabkhacaqG5bGaaeiiaiaabggacaqGPbGaaeOCaiaab6caaeaacqGH0icxcaqGjbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaaMe8UaaeyyaiaabMgacaqGYbGaaeilaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGJbGaaeOCaiaabwgacaqGHbGaae4CaiaabwgacaqGZbGaaeiiaiaabEhacaqGPbGaaeiDaiaabIgacaqGGaGaaeiAaiaabwhacaqGTbGaaeyAaiaabsgacaqGPbGaaeiDaiaabMhacaqGUaaaaaa@E092@

Q.5

You have learnt that a travelling wave in one dimension is represented by a functiony=f( x, t ) wherexandtmust appear in thecombinationxvtorx+vt, i.e. y=f( x±v t ). Is the converse true? Examine ifthe followingfunctions forycan possibly represent a travelling wave: ( a ) ( xvt ) 2 ( b )log[ x+vt x 0 ] ( c ) 1 ( x+vt ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakqaabeqaaiaabMfacaqGVbGaaeyDaiaabccacaqGObGaaeyyaiaabAhacaqGLbGaaeiiaiaabYgacaqGLbGaaeyyaiaabkhacaqGUbGaaeiDaiaabccacaqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabggacaqGGaGaaeiDaiaabkhacaqGHbGaaeODaiaabwgacaqGSbGaaeiBaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaabMgacaqGUbGaaeiiaiaab+gacaqGUbGaaeyzaiaabccacaqGKbGaaeyAaiaab2gacaqGLbGaaeOBaiaabohacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaaeOCaiaabwgacaqGWbGaaeOCaiaabwgacaqGZbGaaeyzaiaab6gacaqG0bGaaeyzaiaabsgacaqGGaGaaeOyaiaabMhacaqGGaGaaeyyaiaabccacaqGMbGaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaaysW7caqG5bGaaGjbVlaab2dacaaMe8UaaeOzamaabmaabaGaaeiEaiaabYcacaqGGaGaaeiDaaGaayjkaiaawMcaaaqaaiaabEhacaqGObGaaeyzaiaabkhacaqGLbGaaGjbVlaabIhacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaabshacaaMe8UaaeyBaiaabwhacaqGZbGaaeiDaiaabccacaqGHbGaaeiCaiaabchacaqGLbGaaeyyaiaabkhacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabogacaqGVbGaaeyBaiaabkgacaqGPbGaaeOBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaabIhacaaMe8Uaae4eGiaaysW7caqG2bGaaeiDaiaaysW7caqGVbGaaeOCaiaaysW7caqG4bGaaGjbVlaabUcacaaMe8UaaeODaiaabshacaqGSaGaaeiiaiaabMgacaqGUaGaaeyzaiaab6cacaqGGcGaaeyEaiaaysW7caqG9aGaaGjbVlaabAgacaaMc8+aaeWaaeaacaqG4bGaaGjbVlaabglacaaMe8UaaeODaiaabccacaqG0baacaGLOaGaayzkaaGaaeOlaiaabccaaeaacaqGjbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGUbGaaeODaiaabwgacaqGYbGaae4CaiaabwgacaqGGaGaaeiDaiaabkhacaqG1bGaaeyzaiaab+dacaqGGaGaaeyraiaabIhacaqGHbGaaeyBaiaabMgacaqGUbGaaeyzaiaabccacaqGPbGaaeOzaiaaysW7caqG0bGaaeiAaiaabwgacaqGGaGaaeOzaiaab+gacaqGSbGaaeiBaiaab+gacaqG3bGaaeyAaiaab6gacaqGNbGaaGjbVlaabAgacaqG1bGaaeOBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccacaqGMbGaae4BaiaabkhacaaMe8UaaeyEaiaaysW7caqGJbGaaeyyaiaab6gacaqGGaGaaeiCaiaab+gacaqGZbGaae4CaiaabMgacaqGIbGaaeiBaiaabMhaaeaacaqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBaiaabshacaqGGaGaaeyyaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqG6aaabaWaaeWaaeaacaqGHbaacaGLOaGaayzkaaGaaGjbVpaabmaabaGaaeiEaiaaysW7caqGtaIaaGjbVlaabAhacaqG0baacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYaaaaaGcbaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaGjbVlaabYgacaqGVbGaae4zaiaaysW7daWadaqaamaalaaabaGaaeiEaiaaysW7caqGRaGaaGjbVlaabAhacaqG0baabaGaaeiEamaaBaaaleaacaqGWaaabeaaaaaakiaawUfacaGLDbaaaeaadaqadaqaaiaabogaaiaawIcacaGLPaaacaaMe8+aaSaaaeaacaqGXaaabaWaaeWaaeaacaqG4bGaaGjbVlaabUcacaaMe8UaaeODaiaabshaaiaawIcacaGLPaaaaaaaaaa@6CB3@

Ans.

No, the converse of the given statement is not true. The essential requirement for a function to represent a travelling wave is that it should remain finite for all values of x and t. Out of the given functions, only function (c) satisfies this condition, the remaining functions cannot represent a travelling wave.

Q.6 A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted sound? Speed of sound in air is 340 m s–1 and in water 1486 m s–1.

Ans.

( a )Here,frequency of ultrasonic sound, ν=1000 kHz = 1 0 6 Hz Speed of sound in air, v a =340 ms -1 Wavelength of the reflected sound is given as: λ r = v a ν = 340 1 0 6 =3.4× 10 4 m ( b )Here,frequency of ultrasonic sound, ν=1000 kHz = 1 0 6 Hz Speed of sound in water, v w = 1486 ms -1 Wavelength of the transmitted sound is given as: λ r = v w ν = 1486 1 0 6 = 1.49×1 0 3 m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaaysW7caqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7caqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeyDaiaabYgacaqG0bGaaeOCaiaabggacaqGZbGaae4Baiaab6gacaqGPbGaae4yaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabYcacaqGGaGaeqyVd4Maeyypa0JaaeymaiaaicdacaaIWaGaaGimaiaabccacaqGRbGaaeisaiaabQhaaeaacqGH9aqpcaqGGaGaaeymaiaaicdadaahaaWcbeqaaiaabAdaaaGccaqGGaGaaeisaiaabQhaaeaacaqGtbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabccacaqGHbGaaeyAaiaabkhacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaaeyyaaqabaGccaaMe8Uaeyypa0JaaGjbVlaabodacaqG0aGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGxbGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabAgacaqGSbGaaeyzaiaabogacaqG0bGaaeyzaiaabsgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaeq4UdW2aaSbaaSqaaiaabkhaaeqaaOGaaGjbVlabg2da9iaaysW7daWcaaqaaiaabAhadaWgaaWcbaGaaeyyaaqabaaakeaacqaH9oGBaaGaaGjbVlabg2da9iaaysW7daWcaaqaaiaabodacaqG0aGaaGimaaqaaiaabgdacaaIWaWaaWbaaSqabeaacaqG2aaaaaaakiaaysW7cqGH9aqpcaaMe8UaaG4maiaac6cacaaI0aGaaGjbVlabgEna0kaaysW7caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaaaakiaaysW7caWGTbaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaGjbVlaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG1bGaaeiBaiaabshacaqGYbGaaeyyaiaabohacaqGVbGaaeOBaiaabMgacaqGJbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeilaiaabccacqaH9oGBcaaMe8Uaeyypa0JaaGjbVlaabgdacaaIWaGaaGimaiaaicdacaqGGaGaae4AaiaabIeacaqG6baabaGaeyypa0JaaeiiaiaabgdacaaIWaWaaWbaaSqabeaacaqG2aaaaOGaaeiiaiaabIeacaqG6baabaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGGaGaae4DaiaabggacaqG0bGaaeyzaiaabkhacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaae4DaaqabaGccaaMe8UaaeypaiaaysW7caqGXaGaaeinaiaabIdacaqG2aGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabEfacaqGHbGaaeODaiaabwgacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabshacaqGYbGaaeyyaiaab6gacaqGZbGaaeyBaiaabMgacaqG0bGaaeiDaiaabwgacaqGKbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaiaaysW7aeaacqaH7oaBdaWgaaWcbaGaaeOCaaqabaGccaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaeODamaaBaaaleaacaWG3baabeaaaOqaaiabe27aUbaacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaeymaiaabsdacaqG4aGaaeOnaaqaaiaabgdacaaIWaWaaWbaaSqabeaacaqG2aaaaaaaaOqaaiabg2da9iaabccacaqGXaGaaiOlaiaabsdacaqG5aGaaGjbVlabgEna0kaaysW7caqGXaGaaGimamaaCaaaleqabaGaai4eGiaabodaaaGccaqGGaGaaeyBaaaaaa@80C9@

Q.7 A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1? The operating frequency of the scanner is 4.2 MHz.

Ans.

Here,speed of sound in the tissue,v=1. 7 kms -1 = 1.7×1 0 3 ms -1 Operating frequency of scanner, ν=4.2 MHz = 4.2×1 0 6 Hz Wavelength of sound in the tissue is given bytherelation: λ= v ν = 1.7×1 0 3 4.2×1 0 6 =4.1× 10 4 m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaaeyAaiaabohacaqGZbGaaeyDaiaabwgacaqGSaGaaGjbVlaabAhacqGH9aqpcaqGXaGaaiOlaiaabEdacaqGGaGaae4Aaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiaabccaaeaacqGH9aqpcaqGGaGaaeymaiaac6cacaqG3aGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaabodaaaGccaqGGaGaaeyBaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaae4taiaabchacaqGLbGaaeOCaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4yaiaabggacaqGUbGaaeOBaiaabwgacaqGYbGaaeilaiaabccacqaH9oGBcqGH9aqpcaqG0aGaaiOlaiaabkdacaqGGaGaaeytaiaabIeacaqG6bGaaeiiaaqaaiabg2da9iaabccacaqG0aGaaiOlaiaabkdacqGHxdaTcaqGXaGaaGimamaaCaaaleqabaGaaeOnaaaakiaabccacaqGibGaaeOEaaqaaiaabEfacaqGHbGaaeODaiaabwgacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabshacaqGPbGaae4CaiaabohacaqG1bGaaeyzaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8UaaeOCaiaabwgacaqGSbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqG6aaabaGaeq4UdWMaeyypa0ZaaSaaaeaacaWG2baabaGaeqyVd4gaaiabg2da9maalaaabaGaaeymaiaac6cacaqG3aGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaabodaaaaakeaacaqG0aGaaiOlaiaabkdacqGHxdaTcaqGXaGaaGimamaaCaaaleqabaGaaeOnaaaaaaGccqGH9aqpcaaI0aGaaiOlaiaaigdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaaaakiaaysW7caqGTbaaaaa@EEBA@

Q.8

A transverse harmonic wave on a string is described byy( x,t )=3.0sin( 36t+0.018x+ π 4 ) Wherexandyare in cm andtin s. The positivedirection ofxis from left to right. ( a ) Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation? ( b ) What are its amplitude and frequency? ( c ) What is the initial phase at the origin? ( d ) What is the least distance between two successive crests in the wave? MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakqaabeqaaiaabgeacaqGGaGaaeiDaiaabkhacaqGHbGaaeOBaiaabohacaqG2bGaaeyzaiaabkhacaqGZbGaaeyzaiaabccacaqGObGaaeyyaiaabkhacaqGTbGaae4Baiaab6gacaqGPbGaae4yaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaab+gacaqGUbGaaeiiaiaabggacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabMgacaqGZbGaaeiiaiaabsgacaqGLbGaae4CaiaabogacaqGYbGaaeyAaiaabkgacaqGLbGaaeizaiaabccacaqGIbGaaeyEaiaaysW7caqG5bWaaeWaaeaacaqG4bGaaeilaiaabshaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaabodacaqGUaGaaeimaiaaykW7caqGZbGaaeyAaiaab6gadaqadaqaaiaabodacaqG2aGaaeiDaiaaysW7caqGRaGaaGjbVlaabcdacaqGUaGaaeimaiaabgdacaqG4aGaaGPaVlaabIhacaaMe8Uaey4kaSIaaGjbVpaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaaaeaacaqGxbGaaeiAaiaabwgacaqGYbGaaeyzaiaaysW7caqG4bGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqG5bGaaGjbVlaabggacaqGYbGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqGJbGaaeyBaiaabccacaqGHbGaaeOBaiaabsgacaqG0bGaaeyAaiaab6gacaqGGaGaae4Caiaab6cacaqGGaGaaeivaiaabIgacaqGLbGaaeiiaiaabchacaqGVbGaae4CaiaabMgacaqG0bGaaeyAaiaabAhacaqGLbGaaGjbVlaabsgacaqGPbGaaeOCaiaabwgacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabIhacaqGPbGaae4CaiaabccacaqGMbGaaeOCaiaab+gacaqGTbGaaeiiaiaabYgacaqGLbGaaeOzaiaabshacaqGGaGaaeiDaiaab+gacaqGGaGaaeOCaiaabMgacaqGNbGaaeiAaiaabshacaqGUaaabaWaaeWaaeaacaqGHbaacaGLOaGaayzkaaGaaeiiaiaabMeacaqGZbGaaeiiaiaabshacaqGObGaaeyAaiaabohacaqGGaGaaeyyaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaae4BaiaabkhacaqGGaGaaeyyaiaabccacaqGZbGaaeiDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeyyaiaabkhacaqG5bGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqG=aaabaGaaeysaiaabAgacaqGGaGaaeyAaiaabshacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabkhacaqGHbGaaeODaiaabwgacaqGSbGaaeiBaiaabMgacaqGUbGaae4zaiaabYcacaqGGaGaae4DaiaabIgacaqGHbGaaeiDaiaabccacaqGHbGaaeOCaiaabwgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGKbGaaeyAaiaabkhacaqGLbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeyAaiaabshacaqGZbGaaeiiaiaabchacaqGYbGaae4BaiaabchacaqGHbGaae4zaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae4paaqaamaabmaabaGaaeOyaaGaayjkaiaawMcaaiaabccacaqGxbGaaeiAaiaabggacaqG0bGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqGPbGaaeiDaiaabohacaqGGaGaaeyyaiaab2gacaqGWbGaaeiBaiaabMgacaqG0bGaaeyDaiaabsgacaqGLbGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqG=aaabaWaaeWaaeaacaqGJbaacaGLOaGaayzkaaGaaeiiaiaabEfacaqGObGaaeyyaiaabshacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabMgacaqGUbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeiCaiaabIgacaqGHbGaae4CaiaabwgacaqGGaGaaeyyaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab+gacaqGYbGaaeyAaiaabEgacaqGPbGaaeOBaiaab+daaeaadaqadaqaaiaabsgaaiaawIcacaGLPaaacaqGGaGaae4vaiaabIgacaqGHbGaaeiDaiaabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiBaiaabwgacaqGHbGaae4CaiaabshacaqGGaGaaeizaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgacaqGGaGaaeOyaiaabwgacaqG0bGaae4DaiaabwgacaqGLbGaaeOBaiaabccacaqG0bGaae4Daiaab+gacaqGGaGaae4CaiaabwhacaqGJbGaae4yaiaabwgacaqGZbGaae4CaiaabMgacaqG2bGaaeyzaiaabccacaqGJbGaaeOCaiaabwgacaqGZbGaaeiDaiaabohacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqG=aaaaaa@CA58@

Ans.

( a )The equation of a progressive wave travellingfrom right to left is given as: y( x,t )=asin( ωt+kx+ϕ ) ( i ) The given equation is: y( x,t ) =3.0sin( 36t+0.018x+ π 4 ) ( ii ) On comparing equation( i )and( ii ), we observe that equation ( ii ) is a travellingwave, propagating from right to left. From equations ( i ) and ( ii ), we have: ω = 36 rads -1 andk= 0.0 18 m 1 Sincefrequency,ν= ω 2π andwavelength,λ= 2π k Since,v= νλ v=( ω 2π )×( 2π k )= ω k = 36 0.018 =2000cm s 1 =20m s 1 Speed of the given travelling wave=20 ms -1 ( b )Here,amplitude of the given wave,a= 3 cm Frequency of the given waveisgivenas: ν= ω 2π = 36 2×3.14 =5.73Hz ( c )From equations ( i ) and ( ii ), we observe that theinitial phase angle,ϕ= π 4 ( d )Leastdistance between two successive crestsor troughsofawave =Wavelength of the wave Wavelength is given as: λ= 2π k λ= 2×3.14 0.018 =348.89cm=3.49m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaabsfacaqGObGaaeyzaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiiaiaabchacaqGYbGaae4BaiaabEgacaqGYbGaaeyzaiaabohacaqGZbGaaeyAaiaabAhacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeiDaiaabkhacaqGHbGaaeODaiaabwgacaqGSbGaaeiBaiaabMgacaqGUbGaae4zaiaaysW7caqGMbGaaeOCaiaab+gacaqGTbGaaeiiaiaabkhacaqGPbGaae4zaiaabIgacaqG0bGaaeiiaiaabshacaqGVbGaaeiiaiaabYgacaqGLbGaaeOzaiaabshacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaaeyEamaabmaabaGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaGaaGjbVlabg2da9iaaysW7caqGHbGaae4CaiaabMgacaqGUbWaaeWaaeaacqaHjpWDcaqG0bGaey4kaSIaae4AaiaabIhacqGHRaWkcqaHvpGzaiaawIcacaGLPaaacqGHsgIRcaqGGaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqGZbGaaeOoaaqaaiaabMhadaqadaqaaiaabIhacaGGSaGaaeiDaaGaayjkaiaawMcaaiaabccacqGH9aqpcaaIZaGaaiOlaiaaicdacaqGZbGaaeyAaiaab6gadaqadaqaaiaabodacaqG2aGaaeiDaiabgUcaRiaaicdacaGGUaGaaGimaiaaigdacaaI4aGaaeiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaacqGHsgIRcaqGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaaqaaiaab+eacaqGUbGaaeiiaiaabogacaqGVbGaaeyBaiaabchacaqGHbGaaeOCaiaabMgacaqGUbGaae4zaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaaysW7daqadaqaaiaabMgaaiaawIcacaGLPaaacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVpaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaaMe8UaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGVbGaaeOyaiaabohacaqGLbGaaeOCaiaabAhacaqGLbGaaeiiaiaabshacaqGObGaaeyyaiaabshacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabshacaqGYbGaaeyyaiaabAhacaqGLbGaaeiBaiaabYgacaqGPbGaaeOBaiaabEgacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaabYcacaqGGaGaaeiCaiaabkhacaqGVbGaaeiCaiaabggacaqGNbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeOzaiaabkhacaqGVbGaaeyBaiaabccaaeaacaqGYbGaaeyAaiaabEgacaqGObGaaeiDaiaabccacaqG0bGaae4BaiaabccacaqGSbGaaeyzaiaabAgacaqG0bGaaeOlaaqaaiaabAeacaqGYbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabccacaqGHbGaaeOBaiaabsgacaqGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaiaabQdaaeaacqaHjpWDcaqGGaGaeyypa0JaaeiiaiaabodacaqG2aGaaeiiaiaabkhacaqGHbGaaeizaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaOGaaeiiaaqaaiaabggacaqGUbGaaeizaiaaysW7caqGRbGaeyypa0JaaeiiaiaaicdacaGGUaGaaGimaiaabgdacaqG4aGaaeiiaiaab2gadaahaaWcbeqaaiaacobicaqGXaaaaaGcbaGaae4uaiaabMgacaqGUbGaae4yaiaabwgacaaMe8UaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeilaiaaysW7cqaH9oGBcqGH9aqpdaWcaaqaaiabeM8a3bqaaiaaikdacqaHapaCaaGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqG3bGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeilaiaaysW7cqaH7oaBcqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacaWGRbaaaaqaaiaabofacaqGPbGaaeOBaiaabogacaqGLbGaaiilaiaaysW7caqG2bGaeyypa0Jaaeiiaiabe27aUjabeU7aSbqaaiabgsJiCjaaysW7caWG2bGaeyypa0ZaaeWaaeaadaWcaaqaaiabeM8a3bqaaiaaikdacqaHapaCaaaacaGLOaGaayzkaaGaey41aq7aaeWaaeaadaWcaaqaaiaaikdacqaHapaCaeaacaWGRbaaaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeqyYdChabaGaam4AaaaacqGH9aqpdaWcaaqaaiaaiodacaaI2aaabaGaaGimaiaac6cacaaIWaGaaeymaiaabIdaaaGaeyypa0JaaGOmaiaaicdacaaIWaGaaGimaiaaysW7caWGJbGaamyBaiaadohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaaIYaGaaGimaiaaysW7caWGTbGaam4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiabgsJiCjaabofacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaaMe8UaaeypaiaaysW7caqGYaGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaadaqadaqaaiaabkgaaiaawIcacaGLPaaacaaMe8UaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8Uaaeyyaiaab2gacaqGWbGaaeiBaiaabMgacaqG0bGaaeyDaiaabsgacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeilaiaaysW7caqGHbGaeyypa0JaaeiiaiaabodacaqGGaGaae4yaiaab2gaaeaacaqGgbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaqG6aGaaeiOaaqaaiabe27aUjabg2da9maalaaabaGaeqyYdChabaGaaGOmaiabec8aWbaacqGH9aqpdaWcaaqaaiaaiodacaaI2aaabaGaaGOmaiabgEna0kaaiodacaGGUaGaaGymaiaaisdaaaGaeyypa0JaaGynaiaac6cacaaI3aGaaG4maiaaysW7caWGibGaamOEaaqaamaabmaabaGaae4yaaGaayjkaiaawMcaaiaaysW7caqGgbGaaeOCaiaab+gacaqGTbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccadaqadaqaaiaabMgaaiaawIcacaGLPaaacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaab+gacaqGIbGaae4CaiaabwgacaqGYbGaaeODaiaabwgacaqGGaGaaeiDaiaabIgacaqGHbGaaeiDaiaabccacaqG0bGaaeiAaiaabwgacaaMe8UaaeyAaiaab6gacaqGPbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGWbGaaeiAaiaabggacaqGZbGaaeyzaiaabccacaqGHbGaaeOBaiaabEgacaqGSbGaaeyzaiaacYcacaaMe8Uaeqy1dyMaeyypa0ZaaSaaaeaacqaHapaCaeaacaaI0aaaaaqaamaabmaabaGaaeizaaGaayjkaiaawMcaaiaaysW7caqGmbGaaeyzaiaabggacaqGZbGaaeiDaiaaysW7caqGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaabccacaqGIbGaaeyzaiaabshacaqG3bGaaeyzaiaabwgacaqGUbGaaeiiaiaabshacaqG3bGaae4BaiaabccacaqGZbGaaeyDaiaabogacaqGJbGaaeyzaiaabohacaqGZbGaaeyAaiaabAhacaqGLbGaaeiiaiaabogacaqGYbGaaeyzaiaabohacaqG0bGaae4CaiaaysW7caqGVbGaaeOCaiaabccacaqG0bGaaeOCaiaab+gacaqG1bGaae4zaiaabIgacaqGZbGaaGjbVlaab+gacaqGMbGaaGjbVlaabggacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaabccacaqG9aGaaGjbVlaabEfacaqGHbGaaeODaiaabwgacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaaMe8UaaGjbVdqaaiaabEfacaqGHbGaaeODaiaabwgacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaeq4UdWMaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaam4AaaaaaeaacqGH0icxcqaH7oaBcqGH9aqpdaWcaaqaaiaaikdacqGHxdaTcaaIZaGaaiOlaiaaigdacaaI0aaabaGaaGimaiaac6cacaaIWaGaaGymaiaaiIdaaaGaeyypa0JaaG4maiaaisdacaaI4aGaaiOlaiaaiIdacaaI5aGaaGjbVlaabogacaqGTbGaeyypa0JaaG4maiaac6cacaaI0aGaaGyoaiaaysW7caqGTbGaaeiiaaaaaa@4365@

Q.9 For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs for x = 0, 2 and 4 cm. What are the shapes of these graphs?
In which aspects does the oscillatory motion in travelling wave differ from one point to another: amplitude, frequency or phase?

Ans.

H e r e , t h e g i v e n t r a n s v e r s e h a r m o n i c w a v e i s : y ( x , t ) = 3 .0 s i n ( 36 t + 0 .018 x + π 4 ) ( i ) F o r x = 0 , t h e a b o v e e q u a t i o n r e d u c e s t o : y ( 0 , t ) = 3 .0 s i n ( 36 t + π 4 ) A s , ω = 2 π T = 36 r a d s 1 T = π 8 s P l o t t i n g y v s . t g r a p h s u s i n g t h e d i f f e r e n t v a l u e s o f t , a s t a b u l a t e d i n t h e g i v e n t a b l e .

F o r x = 0 , x = 2 , a n d x = 4, the phases of the three waves will g e t c h a n g e d , because amplitude and frequency are invariant for any change in x . The y t g r a p h s o f the three waves are shown in the given figure .

Q.10 For the travelling harmonic wave
y (x, t) = 2.0 cos 2p (10t – 0.0080x + 0.35)
Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of
(a) 4 m,
(b) 0.5 m,

MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGqbaKqzagGaa8hkaiaa=ngacaWFPaGccaaMe8+aaSaaaeaajugGbiabeU7aSbGcbaqcLbyacaWFYaaaaOGaa8hlaaqaaiaa=HcacaWFKbGaa8xkaiaaysW7daWcaaqaaiaa=ndacqaH7oaBaeaacaWF0aaaaGqbbKqzagGaa4Nlaaaaaa@4 (c) λ 2 , (d) 3λ 4 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeaaakqaabeqaaKqzagGaaeikaiaabogacaqGPaGccaaMe8+aaSaaaeaajugGbiabeU7aSbGcbaqefqvATv2CG4uz3bIuV1wyUbacfaqcLbyacaWFYaaaaOGaa8hlaaqaaiaabIcacaqGKbGaaeykaiaaysW7daWcaaqaaiaa=ndacqaH7oaBaeaacaWF0aaaaGqbbKqzagGaa4Nlaaaaaa@4BA1@

Ans.

Theequation for a travelling harmonic wave is given as: y( x,t ) = 2.0 cos 2π ( 10t 0.0080x+ 0.35 ) = 2.0 cos ( 20πt 0.016πx+ 0.70 π ) Here,propagation constant,k=0.0160 π Amplitudeofwave,a=2 cm Angular frequencyofwave,ω=20 π rads -1 Thephase difference is given as: ϕ=kx= 2π λ ( a )Fordistance,x=4 m=400 cm Phasedifference,ϕ=0.016 π×400=6.4 π rad ( b )For distance,x=0.5 m=50 cm Phasedifference,ϕ=0.016 π×50=0.8 π rad ( c )For distance,x= λ 2 Phasedifference,ϕ= 2π λ × λ 2 =πrad ( d )Forx= 3λ 4 Phasedifference,ϕ= 2π λ × 3λ 4 =1.5πrad MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabsfacaqGObGaaeyzaiaaysW7caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaeiiaiaabIgacaqGHbGaaeOCaiaab2gacaqGVbGaaeOBaiaabMgacaqGJbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaaeyEamaabmaabaGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaGaaeiiaiabg2da9iaabccacaqGYaGaaiOlaiaaicdacaqGGaGaae4yaiaab+gacaqGZbGaaeiiaiaabkdacqaHapaCcaqGGaWaaeWaaeaacaqGXaGaaGimaiaabshacaGGtaIaaeiiaiaaicdacaGGUaGaaGimaiaaicdacaqG4aGaaGimaiaabIhacqGHRaWkcaqGGaGaaGimaiaac6cacaqGZaGaaeynaaGaayjkaiaawMcaaaqaaiabg2da9iaabccacaqGYaGaaiOlaiaaicdacaqGGaGaae4yaiaab+gacaqGZbGaaeiiamaabmaabaGaaeOmaiaaicdacqaHapaCcaqG0bGaai4eGiaabccacaaIWaGaaiOlaiaaicdacaqGXaGaaeOnaiabec8aWjaabIhacqGHRaWkcaqGGaGaaGimaiaac6cacaqG3aGaaGimaiaabccacqaHapaCaiaawIcacaGLPaaaaeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7caqGWbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaaeiDaiaabYcacaaMe8Uaae4AaiaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaIWaGaaeymaiaabAdacaaIWaGaaeiiaiabec8aWbqaaiaabgeacaqGTbGaaeiCaiaabYgacaqGPbGaaeiDaiaabwhacaqGKbGaaeyzaiaaysW7caqGVbGaaeOzaiaaysW7caqG3bGaaeyyaiaabAhacaqGLbGaaeilaiaaysW7caqGHbGaaGjbVlaab2dacaaMe8UaaeOmaiaabccacaqGJbGaaeyBaaqaaiaabgeacaqGUbGaae4zaiaabwhacaqGSbGaaeyyaiaabkhacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaGjbVlaab+gacaqGMbGaaGjbVlaabEhacaqGHbGaaeODaiaabwgacaqGSaGaaGjbVlabeM8a3jaaysW7cqGH9aqpcaaMe8UaaeOmaiaaicdacaqGGaGaeqiWdaNaaeiiaiaabkhacaqGHbGaaeizaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaaeivaiaabIgacaqGLbGaaGjbVlaabchacaqGObGaaeyyaiaabohacaqGLbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae4yaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaeqy1dyMaeyypa0Jaam4AaiaadIhacqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacqaH7oaBaaaabaWaaeWaaeaacaqGHbaacaGLOaGaayzkaaGaaGjbVlaabAeacaqGVbGaaeOCaiaaysW7caqGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaabYcacaaMe8UaaeiEaiaaysW7caqG9aGaaGjbVlaabsdacaqGGaGaaeyBaiaaysW7caqG9aGaaGjbVlaabsdacaqGWaGaaeimaiaabccacaqGJbGaaeyBaaqaaiaabcfacaqGObGaaeyyaiaabohacaqGLbGaaGjbVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae4yaiaabwgacaqGSaGaaGjbVlabew9aMjaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaIWaGaaeymaiaabAdacaqGGaGaeqiWdaNaaGjbVlabgEna0kaaysW7caqG0aGaaGimaiaaicdacaaMe8Uaeyypa0JaaGjbVlaabAdacaGGUaGaaeinaiaabccacqaHapaCcaqGGaGaaeOCaiaabggacaqGKbaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaGjbVlaabAeacaqGVbGaaeOCaiaabccacaqGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaabYcacaaMe8UaaeiEaiaaysW7caqG9aGaaGjbVlaaicdacaGGUaGaaeynaiaabccacaqGTbGaaGjbVlabg2da9iaaysW7caqG1aGaaGimaiaabccacaqGJbGaaeyBaaqaaiaabcfacaqGObGaaeyyaiaabohacaqGLbGaaGjbVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae4yaiaabwgacaGGSaGaaGjbVlabew9aMjaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaIWaGaaeymaiaabAdacaqGGaGaeqiWdaNaaGjbVlabgEna0kaaysW7caqG1aGaaGimaiaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaqG4aGaaeiiaiabec8aWjaabccacaqGYbGaaeyyaiaabsgaaeaacaqGGcWaaeWaaeaacaqGJbaacaGLOaGaayzkaaGaaGjbVlaabAeacaqGVbGaaeOCaiaabckacaaMe8UaaeizaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgacaqGSaGaaGjbVlaabIhacaaMe8UaaeypaiaaysW7daWcaaqaaiabeU7aSbqaaiaaikdaaaaabaGaaeiuaiaabIgacaqGHbGaae4CaiaabwgacaaMe8UaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqGJbGaaeyzaiaacYcacaaMe8Uaeqy1dyMaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaeq4UdWgaaiabgEna0oaalaaabaGaeq4UdWgabaGaaGOmaaaacqGH9aqpcqaHapaCcaaMe8UaaeOCaiaabggacaqGKbaabaWaaeWaaeaacaqGKbaacaGLOaGaayzkaaGaaGjbVlaabAeacaqGVbGaaeOCaiaaysW7caqG4bGaaGjbVlaab2dacaaMe8+aaSaaaeaacaaIZaGaeq4UdWgabaGaaGinaaaaaeaacaqGqbGaaeiAaiaabggacaqGZbGaaeyzaiaaysW7caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabogacaqGLbGaaiilaiaaysW7cqaHvpGzcqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacqaH7oaBaaGaey41aq7aaSaaaeaacaaIZaGaeq4UdWgabaGaaGinaaaacqGH9aqpcaaIXaGaaiOlaiaaiwdacaaMe8UaeqiWdaNaaGjbVlaabkhacaqGHbGaaeizaaaaaa@5080@

Q.11 The transverse displacement of a string (clamped at its both ends) is given by

y(x,t)=0.06sin 2π 3 xcos(120πt) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakeaaruavP1wzZbItLDhis9wBH5gaiuaacaWF5bacfeGaa4hkaiaa=HhacaWFSaGaa8hDaiaa+LcacaaMe8Uaeyypa0JaaGjbVlaa=bdacaWFUaGaa8hmaiaa=zdacaaMe8Uaa83Caiaa=LgacaWFUbGaaGjbVpaalaaabaGaa8NmaGGaaiab9b8aWbqaaiaa=ndaaaGaaGPaVlaa=HhacaaMe8Uaa83yaiaa=9gacaWFZbGaaGPaVlaa+HcacaWFXaGaa8Nmaiaa=bdacaaMe8Uae0hWdaNaa8hDaiacObOFPaaaaa@5F0C@

Where x and y are in m and t in s. The length of the string is 1.5 m and its mass is 3.0 ×10–2 kg.
Answer the following:
(a) Does the function represent a travelling wave or a stationary wave?
(b) Interpret the wave as a superposition of two waves travelling in opposite directions. What are the wavelength, frequency, and speed of each wave?
(c) Determine the tension in the string.

Ans.

( a )The general equation representing a stationary wave is given as: y( x,t ) = 2asinkxcos ωt(i) Itisgiventhat: y( x,t ) = 0.06sin( 2 3 x )cos( 120πt )(ii) Comparingequation(i)and(ii),weobservethat, thegiven function represents a stationary wave. ( b )A wave propagating along the positivedirectionofxaxisisgiven as: y 1 =asin( ωtkx ) The wave propagating along the negativedirection ofxaxisisgiven as: y 2 =asin( ωt+kx ) Superposition of these two waves gives: y= y 1 + y 2 =asin( ωtkx )asin( ωt+kx ) =asin( ωt )cos( kx )asin( kx )cos( ωt )asin( ωt )cos( kx ) asin( kx )cos( ωt ) =2asin( kx )cos( ωt ) =2asin( 2π λ x )cos( 2πνt )(iii) Transverse displacement of the string is given bytherelation: y( x,t )=0.06sin( 2 3 x )cos( 120πt )(ii) Comparing equations ( iii ) and(ii),weobtain: 2π λ = 2π 3 Wavelength,λ=3m Giventhat, 120π=2πν Frequency,ν=60Hz Wavespeedisgivenas: v=νλ v=60×3=180 ms 1 ( c )Velocity of a transverse wave travelling in a string isgiven as: v= T μ (i) Here, Velocity of transverse wave,v= 180 ms -1 Mass of string,m=3.0×1 0 2 kg Length of string,l= 1.5 m Mass per unit length of the stringisgivenas:μ= m l = 3.0×1 0 2 1.5 =2.0×1 0 2 kgm 1 Lettension in the string=T Usingequation ( i ), tensioncanbeobtained as: T= v 2 μ= ( 180 ) 2 ×2×1 0 2 = 648 N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyzaiaab6gacaqGLbGaaeOCaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabkhacaqGLbGaaeiCaiaabkhacaqGLbGaae4CaiaabwgacaqGUbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGHbGaaeiiaiaabohacaqG0bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGHbGaaeOCaiaabMhacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabQdaaeaacaqG5bWaaeWaaeaacaqG4bGaaiilaiaabshaaiaawIcacaGLPaaacaqGGaGaeyypa0JaaeiiaiaabkdacaqGHbGaaGjbVlaabohacaqGPbGaaeOBaiaaysW7caqGRbGaaeiEaiaaysW7caqGJbGaae4BaiaabohacaqGGaGaeqyYdCNaaeiDaiabgkziUkaabIcacaqGPbGaaeykaaqaaiaabMeacaqG0bGaaGjbVlaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaGjbVlaabshacaqGObGaaeyyaiaabshacaqG6aaabaGaaeyEamaabmaabaGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaGaaeiiaiabg2da9iaabccacaqGWaGaaeOlaiaabcdacaqG2aGaaGjbVlaabohacaqGPbGaaeOBamaabmaabaWaaSaaaeaacaaIYaaabaGaaG4maaaacaWG4baacaGLOaGaayzkaaGaae4yaiaab+gacaqGZbWaaeWaaeaacaaIXaGaaGOmaiaaicdacqaHapaCcaWG0baacaGLOaGaayzkaaGaeyOKH4QaaeikaiaabMgacaqGPbGaaeykaaqaaiaaboeacaqGVbGaaeyBaiaabchacaqGHbGaaeOCaiaabMgacaqGUbGaae4zaiaaysW7caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaaysW7caqGOaGaaeyAaiaabMcacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaabIcacaqGPbGaaeyAaiaabMcacaaMe8UaaeilaiaaysW7caqG3bGaaeyzaiaaysW7caqGVbGaaeOyaiaabohacaqGLbGaaeOCaiaabAhacaqGLbGaaGjbVlaabshacaqGObGaaeyyaiaabshacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBaiaabshacaqGZbGaaeiiaiaabggacaqGGaGaae4CaiaabshacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGYbGaaeyEaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeOlaaqaamaabmaabaGaaeOyaaGaayjkaiaawMcaaiaabgeacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabccacaqGWbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGHbGaaeiBaiaab+gacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab+gacaqGZbGaaeyAaiaabshacaqGPbGaaeODaiaabwgacaaMe8UaaeizaiaabMgacaqGYbGaaeyzaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaab+gacaqGMbGaaGjbVlaabIhacqGHsislcaqGHbGaaeiEaiaabMgacaqGZbGaaGjbVlaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGHbGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDcaWG0bGaeyOeI0Iaam4AaiaadIhaaiaawIcacaGLPaaaaeaacaqGubGaaeiAaiaabwgacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabccacaqGWbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGHbGaaeiBaiaab+gacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOBaiaabwgacaqGNbGaaeyyaiaabshacaqGPbGaaeODaiaabwgacaaMe8UaaeizaiaabMgacaqGYbGaaeyzaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaGjbVlaabIhacqGHsislcaaMe8UaaeyyaiaabIhacaqGPbGaae4CaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabQdaaeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdCNaamiDaiabgUcaRiaadUgacaWG4baacaGLOaGaayzkaaaabaGaae4uaiaabwhacaqGWbGaaeyzaiaabkhacaqGWbGaae4BaiaabohacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGZbGaaeyzaiaabccacaqG0bGaae4Daiaab+gacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaabohacaqG6aaabaGaamyEaiabg2da9iaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdCNaamiDaiabgkHiTiaadUgacaWG4baacaGLOaGaayzkaaGaeyOeI0IaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdCNaamiDaiabgUcaRiaadUgacaWG4baacaGLOaGaayzkaaaabaGaeyypa0JaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdCNaamiDaaGaayjkaiaawMcaaiGacogacaGGVbGaai4CamaabmaabaGaam4AaiaadIhaaiaawIcacaGLPaaacqGHsislcaWGHbGaci4CaiaacMgacaGGUbWaaeWaaeaacaWGRbGaamiEaaGaayjkaiaawMcaaiGacogacaGGVbGaai4CamaabmaabaGaeqyYdCNaamiDaaGaayjkaiaawMcaaiabgkHiTiaadggaciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaadshaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiaadUgacaWG4baacaGLOaGaayzkaaaabaGaeyOeI0IaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaam4AaiaadIhaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiabeM8a3jaadshaaiaawIcacaGLPaaaaeaacqGH9aqpcqGHsislcaaIYaGaamyyaiGacohacaGGPbGaaiOBamaabmaabaGaam4AaiaadIhaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiabeM8a3jaadshaaiaawIcacaGLPaaaaeaacqGH9aqpcqGHsislcaaIYaGaamyyaiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacaaIYaGaeqiWdahabaGaeq4UdWgaaiaadIhaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiaaikdacqaHapaCcqaH9oGBcaWG0baacaGLOaGaayzkaaGaeyOKH4QaaeikaiaabMgacaqGPbGaaeyAaiaabMcaaeaacaqGubGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabsgacaqGPbGaae4CaiaabchacaqGSbGaaeyyaiaabogacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaGjbVlaabshacaqGObGaaeyzaiaaysW7caqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabQdaaeaacaqG5bWaaeWaaeaacaqG4bGaaiilaiaabshaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaabcdacaqGUaGaaeimaiaabAdacaaMe8Uaae4CaiaabMgacaqGUbWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIZaaaaiaadIhaaiaawIcacaGLPaaacaqGJbGaae4BaiaabohadaqadaqaaiaaigdacaaIYaGaaGimaiabec8aWjaadshaaiaawIcacaGLPaaacqGHsgIRcaqGOaGaaeyAaiaabMgacaqGPaaabaGaae4qaiaab+gacaqGTbGaaeiCaiaabggacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccadaqadaqaaiaabMgacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabccacaqGHbGaaeOBaiaabsgacaaMe8UaaeikaiaabMgacaqGPbGaaeykaiaabYcacaaMe8Uaae4DaiaabwgacaaMe8Uaae4BaiaabkgacaqG0bGaaeyyaiaabMgacaqGUbGaaeOoaiaaysW7caaMe8UaaGjbVdqaamaalaaabaGaaGOmaiabec8aWbqaaiabeU7aSbaacqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacaaIZaaaaiaabccaaeaacqGH0icxcaqGxbGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeilaiaaysW7cqaH7oaBcqGH9aqpcaaIZaGaaGjbVlaad2gacaaMe8oabaGaae4raiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeiDaiaabIgacaqGHbGaaeiDaiaabYcacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7aeaacaaIXaGaaGOmaiaaicdacqaHapaCcqGH9aqpcaaIYaGaeqiWdaNaeqyVd4gabaGaeyinIWLaaeOraiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeilaiaaysW7cqaH9oGBcqGH9aqpcaaI2aGaaGimaiaaysW7caWGibGaamOEaaqaaiaabEfacaqGHbGaaeODaiaabwgacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaGG6aaabaGaamODaiabg2da9iabe27aUjabeU7aSbqaaiabgsJiCjaadAhacqGH9aqpcaaI2aGaaGimaiabgEna0kaaiodacqGH9aqpcaaIXaGaaGioaiaaicdacaaMe8UaaeyBaiaabohadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaadaqadaqaaiaabogaaiaawIcacaGLPaaacaaMe8UaaeOvaiaabwgacaqGSbGaae4BaiaabogacaqGPbGaaeiDaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeyyaiaabccacaqG0bGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeiDaiaabkhacaqGHbGaaeODaiaabwgacaqGSbGaaeiBaiaabMgacaqGUbGaae4zaiaabccacaqGPbGaaeOBaiaabccacaqGHbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaabccacaqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabQdaaeaacaWG2bGaeyypa0ZaaOaaaeaadaWcaaqaaiaadsfaaeaacqaH8oqBaaaaleqaaOGaeyOKH4QaaeikaiaabMgacaqGPaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcaaeaacaqGwbGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGSaGaaGjbVlaabAhacqGH9aqpcaqGGaGaaeymaiaabIdacaaIWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaab2eacaqGHbGaae4CaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeilaiaaysW7caqGTbGaaGjbVlabg2da9iaaysW7caqGZaGaaiOlaiaaicdacqGHxdaTcaqGXaGaaGimamaaCaaaleqabaGaai4eGiaabkdaaaGccaqGGaGaae4AaiaabEgaaeaacaqGmbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaiilaiaaysW7caqGSbGaeyypa0JaaeiiaiaabgdacaGGUaGaaeynaiaabccacaqGTbaabaGaaeytaiaabggacaqGZbGaae4CaiaabccacaqGWbGaaeyzaiaabkhacaqGGaGaaeyDaiaab6gacaqGPbGaaeiDaiaabccacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdacqaH8oqBcqGH9aqpdaWcaaqaaiaad2gaaeaacaWGSbaaaaqaaiabg2da9maalaaabaGaae4maiaac6cacaaIWaGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaacobicaqGYaaaaaGcbaGaaeymaiaac6cacaqG1aaaaiabg2da9iaaikdacaGGUaGaaGimaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaGGtaIaaeOmaaaakiaaysW7caqGRbGaae4zaiaab2gadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaqGmbGaaeyzaiaabshacaaMe8UaaeiDaiaabwgacaqGUbGaae4CaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaGjbVlaab2dacaaMe8UaaeivaaqaaiaabwfacaqGZbGaaeyAaiaab6gacaqGNbGaaGjbVlaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaaeiDaiaabwgacaqGUbGaae4CaiaabMgacaqGVbGaaeOBaiaaysW7caqGJbGaaeyyaiaab6gacaaMe8UaaeOyaiaabwgacaaMe8Uaae4BaiaabkgacaqG0bGaaeyyaiaabMgacaqGUbGaaeyzaiaabsgacaqGGaGaaeyyaiaabohacaqG6aaabaGaaeivaiabg2da9iaabAhadaahaaWcbeqaaiaabkdaaaGccqaH8oqBcqGH9aqpcaqGGaWaaeWaaeaacaqGXaGaaeioaiaaicdaaiaawIcacaGLPaaadaahaaWcbeqaaiaabkdaaaGccqGHxdaTcaqGYaGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaacobicaqGYaaaaOGaeyypa0JaaeiiaiaabAdacaqG0aGaaeioaiaabccacaqGobaaaaa@C1BB@

Q.12 (i) For the wave on a string described in Exercise 15.11, do all the points on the string oscillate with the same
(a) frequency,
(b) phase,
(c) amplitude? Explain your answers.
(ii) What is the amplitude of a point 0.375 m away from one end?

Ans.

( i )( a ) All the points on the string vibrate with the samefrequency, except at the nodes where frequency is zero. ( b ) All the points on the oscillating string have the same phase, except at the nodes. ( c ) All the points on the oscillating string have different amplitudes of vibration. (ii)Itisgiventhat y( x,t ) = 0.06sin( 2π 3 x )cos( 120πt ) Atx=0.375mandt=0,theamplitudeisgivenas: Amplitude= 0.06sin( 2π 3 x )cos( 120π×0 ) =0.06sin( 2π 3 ×0.375 )cos0 =0.06sin( 2π 3 ×0.375 )×1 =0.06sin( 0.25π )=0.06sin( π 4 ) =0.06× 1 2 =0.042m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyAaaGaayjkaiaawMcaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaabccacaqGbbGaaeiBaiaabYgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabchacaqGVbGaaeyAaiaab6gacaqG0bGaae4CaiaabccacaqGVbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabAhacaqGPbGaaeOyaiaabkhacaqGHbGaaeiDaiaabwgacaqGGaGaae4DaiaabMgacaqG0bGaaeiAaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabggacaqGTbGaaeyzaiaaysW7caqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGSaGaaeiiaiaabwgacaqG4bGaae4yaiaabwgacaqGWbGaaeiDaiaabccacaqGHbGaaeiDaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOBaiaab+gacaqGKbGaaeyzaiaabohacaqGGaGaae4DaiaabIgacaqGLbGaaeOCaiaabwgacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaabMgacaqGZbGaaeiiaiaabQhacaqGLbGaaeOCaiaab+gacaqGUaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqadaqaaiaabkgaaiaawIcacaGLPaaacaqGGaGaaeyqaiaabYgacaqGSbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGWbGaae4BaiaabMgacaqGUbGaaeiDaiaabohacaqGGaGaae4Baiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab+gacaqGZbGaae4yaiaabMgacaqGSbGaaeiBaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabohacaqG0bGaaeOCaiaabMgacaqGUbGaae4zaiaabccacaqGObGaaeyyaiaabAhacaqGLbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeyyaiaab2gacaqGLbGaaeiiaiaabchacaqGObGaaeyyaiaabohacaqGLbGaaeilaiaabccacaqGLbGaaeiEaiaabogacaqGLbGaaeiCaiaabshacaqGGaGaaeyyaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab6gacaqGVbGaaeizaiaabwgacaqGZbGaaeOlaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaqGJbaacaGLOaGaayzkaaGaaeiiaiaabgeacaqGSbGaaeiBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab+gacaqGPbGaaeOBaiaabshacaqGZbGaaeiiaiaab+gacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGVbGaae4CaiaabogacaqGPbGaaeiBaiaabYgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGGaGaaeyyaiaab2gacaqGWbGaaeiBaiaabMgacaqG0bGaaeyDaiaabsgacaqGLbGaae4CaiaabccacaqGVbGaaeOzaiaabccacaqG2bGaaeyAaiaabkgacaqGYbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaabaGaaeikaiaabMgacaqGPbGaaeykaiaaysW7caqGjbGaaeiDaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqG0bGaaeiAaiaabggacaqG0baabaGaaeyEamaabmaabaGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaGaaeiiaiabg2da9iaabccacaqGWaGaaeOlaiaabcdacaqG2aGaaGjbVlaabohacaqGPbGaaeOBamaabmaabaWaaSaaaeaacaaIYaGaeqiWdahabaGaaG4maaaacaWG4baacaGLOaGaayzkaaGaae4yaiaab+gacaqGZbWaaeWaaeaacaaIXaGaaGOmaiaaicdacqaHapaCcaWG0baacaGLOaGaayzkaaaabaGaamyqaiaadshacaaMe8UaamiEaiabg2da9iaaicdacaGGUaGaaG4maiaaiEdacaaI1aGaaGjbVlaad2gacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaadshacqGH9aqpcaaIWaGaaiilaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaaeyyaiaab2gacaqGWbGaaeiBaiaabMgacaqG0bGaaeyDaiaabsgacaqGLbGaaGjbVlaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaGjbVlaabggacaqGZbGaaeOoaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8oabaGaaeyqaiaab2gacaqGWbGaaeiBaiaabMgacaqG0bGaaeyDaiaabsgacaqGLbGaeyypa0JaaeiiaiaabcdacaqGUaGaaeimaiaabAdacaaMe8Uaae4CaiaabMgacaqGUbWaaeWaaeaadaWcaaqaaiaaikdacqaHapaCaeaacaaIZaaaaiaadIhaaiaawIcacaGLPaaacaqGJbGaae4BaiaabohadaqadaqaaiaaigdacaaIYaGaaGimaiabec8aWjabgEna0kaaicdaaiaawIcacaGLPaaaaeaacqGH9aqpcaqGWaGaaeOlaiaabcdacaqG2aGaaGjbVlaabohacaqGPbGaaeOBamaabmaabaWaaSaaaeaacaaIYaGaeqiWdahabaGaaG4maaaacqGHxdaTcaaIWaGaaiOlaiaaiodacaaI3aGaaGynaaGaayjkaiaawMcaaiaabogacaqGVbGaae4CaiaabcdaaeaacaqG9aGaaeimaiaab6cacaqGWaGaaeOnaiaaysW7caqGZbGaaeyAaiaab6gadaqadaqaamaalaaabaGaaGOmaiabec8aWbqaaiaaiodaaaGaey41aqRaaGimaiaac6cacaaIZaGaaG4naiaaiwdaaiaawIcacaGLPaaacqGHxdaTcaaIXaaabaGaaeypaiaabcdacaqGUaGaaeimaiaabAdacaaMe8Uaae4CaiaabMgacaqGUbWaaeWaaeaacaaIWaGaaiOlaiaaikdacaaI1aGaeqiWdahacaGLOaGaayzkaaGaeyypa0Jaaeimaiaab6cacaqGWaGaaeOnaiaaysW7caqGZbGaaeyAaiaab6gadaqadaqaamaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaaaeaacqGH9aqpcaqGWaGaaeOlaiaabcdacaqG2aGaey41aq7aaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaaaleqaaaaakiabg2da9iaaicdacaGGUaGaaGimaiaaisdacaaIYaGaaGjbVlaad2gaaaaa@225F@

Q.13 Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:
(a) y = 2 cos (3x) sin (10t)

(b)y=2 xvt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakeaajugGbiaabIcacaqGIbGaaeykaiaaysW7ruavP1wzZbItLDhis9wBH5gaiuaacaWF5bGaaGjbVlaa=1dacaaMe8Uaa8NmamaakaaakeaajugGbiaa=HhacqGHsislcaWF2bGaa8hDaaWcbeaaaaa@4842@

(c) y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)
(d) y = cos x sin t + cos 2x sin 2t

Ans.

(a) The given relation represents a stationary wave. This is due to the fact that the harmonic terms kx and ωt appear separately in the equation.
(b) Since the given equation does not contain any harmonic term, therefore, it cannot represent travelling or stationary wave.
(c) The given equation represents a travelling wave. This is because the harmonic terms kx and ωt are in the form of of kx – ωt in the equation.
(d) The given equation represents the sum of two functions each of which represents a stationary wave. This is because the harmonic terms kx and ωt appear separately in the equation. Therefore, the given equation represents the superposition of two stationary waves.

Q.14 A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2 kg and its linear mass density is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and (b) the tension in the string?

Ans.

( a )Here,mass of wire,m= 3.5×1 0 2 kg Linear mass densityisgivenas: μ= m l =4.0×1 0 2 kgm -1 Frequency, ν = 45 Hz Length of the wireisgivenas: l= m μ = 3.5×1 0 2 4.0×1 0 2 =0.875m Wavelength of the stationary wave ( λ ) is relatedto the length of the wire as: λ= 2l n Here,n=Numberofnodesinwire Incaseof thefundamental node,n=1 λ = 2l λ = 2 × 0.875=1.75 m Speed of the transverse wave in the string is given bytherelation: v= νλ= 45 × 1.75 = 78. 75 ms -1 ( b )Thetension developed in the string is given as: T= v 2 μ= ( 78.75 ) 2 ×4.0×1 0 2 =248.06 N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaaysW7caqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7caqGTbGaaeyyaiaabohacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabEhacaqGPbGaaeOCaiaabwgacaqGSaGaaGjbVlaab2gacqGH9aqpcaqGGaGaae4maiaac6cacaqG1aGaey41aqRaaeymaiaaicdadaahaaWcbeqaaiaacobicaqGYaaaaOGaaeiiaiaabUgacaqGNbaabaGaaeitaiaabMgacaqGUbGaaeyzaiaabggacaqGYbGaaeiiaiaab2gacaqGHbGaae4CaiaabohacaqGGaGaaeizaiaabwgacaqGUbGaae4CaiaabMgacaqG0bGaaeyEaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacqaH8oqBcqGH9aqpdaWcaaqaaiaad2gaaeaacaWGSbaaaiabg2da9iaaisdacaGGUaGaaGimaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaGGtaIaaeOmaaaakiaabccacaqGRbGaae4zaiaab2gadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaaeOraiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeilaiaabccacqaH9oGBcaqGGaGaeyypa0JaaeiiaiaabsdacaqG1aGaaeiiaiaabIeacaqG6baabaGaeyinIWLaaeitaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG3bGaaeyAaiaabkhacaqGLbGaaGjbVlaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaGjbVlaabggacaqGZbGaaeOoaaqaaiaadYgacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaamyBaaqaaiabeY7aTbaacqGH9aqpdaWcaaqaaiaabodacaGGUaGaaeynaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaGGtaIaaeOmaaaaaOqaaiaaisdacaGGUaGaaGimaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaGGtaIaaeOmaaaaaaGccqGH9aqpcaaIWaGaaiOlaiaaiIdacaaI3aGaaGynaiaaysW7caqGTbaabaGaae4vaiaabggacaqG2bGaaeyzaiaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGYbGaaeyEaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiamaabmaabaGaae4UdaGaayjkaiaawMcaaiaabccacaqGPbGaae4CaiaabccacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabwgacaqGKbGaaGjbVlaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGPbGaaeOCaiaabwgacaqGGaGaaeyyaiaabohacaqG6aaabaGaeq4UdWMaeyypa0ZaaSaaaeaacaaIYaGaamiBaaqaaiaad6gaaaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8UaaeOBaiaaysW7caqG9aGaaGjbVlaab6eacaqG1bGaaeyBaiaabkgacaqGLbGaaeOCaiaaysW7caqGVbGaaeOzaiaaysW7caqGUbGaae4BaiaabsgacaqGLbGaae4CaiaaysW7caqGPbGaaeOBaiaaysW7caqG3bGaaeyAaiaabkhacaqGLbaabaGaaeysaiaab6gacaaMe8Uaae4yaiaabggacaqGZbGaaeyzaiaaysW7caqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaaMe8UaaeOzaiaabwhacaqGUbGaaeizaiaabggacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaiaabYgacaqGGaGaaeOBaiaab+gacaqGKbGaaeyzaiaabYcacaaMe8UaaeOBaiaaysW7cqGH9aqpcaaMe8UaaeymaaqaaiabgsJiCjabeU7aSjaabccacqGH9aqpcaqGGaGaaeOmaiaabYgaaeaacqaH7oaBcaqGGaGaeyypa0JaaeiiaiaabkdacaqGGaGaey41aqRaaeiiaiaaicdacaGGUaGaaeioaiaabEdacaqG1aGaaGjbVlabg2da9iaaysW7caqGXaGaaiOlaiaabEdacaqG1aGaaeiiaiaab2gaaeaacaqGtbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaabkhacaqGHbGaaeOBaiaabohacaqG2bGaaeyzaiaabkhacaqGZbGaaeyzaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOoaaqaaiaabAhacqGH9aqpcaqGGaGaeqyVd4Maeq4UdWMaeyypa0JaaeiiaiaabsdacaqG1aGaaeiiaiabgEna0kaabccacaqGXaGaaiOlaiaabEdacaqG1aGaaeiiaiabg2da9iaabccacaqG3aGaaeioaiaac6cacaqG3aGaaeynaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaadaqadaqaaiaabkgaaiaawIcacaGLPaaacaaMe8UaaeivaiaabIgacaqGLbGaaGjbVlaabshacaqGLbGaaeOBaiaabohacaqGPbGaae4Baiaab6gacaqGGaGaaeizaiaabwgacaqG2bGaaeyzaiaabYgacaqGVbGaaeiCaiaabwgacaqGKbGaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aGaaGjbVdqaaiaabsfacqGH9aqpcaqG2bWaaWbaaSqabeaacaqGYaaaaOGaeqiVd0Maeyypa0ZaaeWaaeaacaqG3aGaaeioaiaac6cacaqG3aGaaeynaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaakiabgEna0kaabsdacaGGUaGaaGimaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaGGtaIaaeOmaaaakiabg2da9iaabkdacaqG0aGaaeioaiaac6cacaaIWaGaaeOnaiaabccacaqGobaaaaa@2899@

Q.15 A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.

Ans.

Here,frequency of turning fork, ν=340 Hz As the given tube is joined with a piston at one end, itwill behave as a pipewith one end closed and the other end open.Thistypeofsystemsproduceoddharmonicsonly. Here,lengthofpipe, l 1 =25.5cm=0.255m Thefundamental note in a closed pipe isgiven as: l 1 = λ 4 λ=4 l 1 =4×0.255=1.02m The speed of sound inairis given as: v=νλ=340×1.02=346. 8 ms -1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeyDaiaabkhacaqGUbGaaeyAaiaab6gacaqGNbGaaeiiaiaabAgacaqGVbGaaeOCaiaabUgacaGGSaGaaeiiaiabe27aUjaaysW7cqGH9aqpcaaMe8Uaae4maiaabsdacaaIWaGaaeiiaiaabIeacaqG6baabaGaaeyqaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabshacaqG1bGaaeOyaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaaeOAaiaab+gacaqGPbGaaeOBaiaabwgacaqGKbGaaeiiaiaabEhacaqGPbGaaeiDaiaabIgacaqGGaGaaeyyaiaabccacaqGWbGaaeyAaiaabohacaqG0bGaae4Baiaab6gacaqGGaGaaeyyaiaabshacaqGGaGaae4Baiaab6gacaqGLbGaaeiiaiaabwgacaqGUbGaaeizaiaabYcacaqGGaGaaeyAaiaabshacaaMe8Uaae4DaiaabMgacaqGSbGaaeiBaiaabccacaqGIbGaaeyzaiaabIgacaqGHbGaaeODaiaabwgacaqGGaGaaeyyaiaabohacaqGGaGaaeyyaiaabccacaqGWbGaaeyAaiaabchacaqGLbGaaGjbVlaabEhacaqGPbGaaeiDaiaabIgacaqGGaGaae4Baiaab6gacaqGLbGaaeiiaiaabwgacaqGUbGaaeizaiaabccacaqGJbGaaeiBaiaab+gacaqGZbGaaeyzaiaabsgacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGVbGaaeiDaiaabIgacaqGLbGaaeOCaaqaaiaabwgacaqGUbGaaeizaiaabccacaqGVbGaaeiCaiaabwgacaqGUbGaaeOlaiaaysW7caqGubGaaeiAaiaabMgacaqGZbGaaGjbVlaabshacaqG5bGaaeiCaiaabwgacaaMe8Uaae4BaiaabAgacaaMe8Uaae4CaiaabMhacaqGZbGaaeiDaiaabwgacaqGTbGaae4CaiaaysW7caqGWbGaaeOCaiaab+gacaqGKbGaaeyDaiaabogacaqGLbGaaGjbVlaab+gacaqGKbGaaeizaiaaysW7caqGObGaaeyyaiaabkhacaqGTbGaae4Baiaab6gacaqGPbGaae4yaiaabohacaaMe8Uaae4Baiaab6gacaqGSbGaaeyEaiaab6caaeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7caqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaaMe8Uaae4BaiaabAgacaaMe8UaaeiCaiaabMgacaqGWbGaaeyzaiaabYcacaaMe8UaamiBamaaBaaaleaacaaIXaaabeaakiaaysW7cqGH9aqpcaaMe8UaaGOmaiaaiwdacaGGUaGaaGynaiaaysW7caWGJbGaamyBaiabg2da9iaaicdacaGGUaGaaGOmaiaaiwdacaaI1aGaaGjbVlaad2gaaeaacaqGubGaaeiAaiaabwgacaaMe8UaaeOzaiaabwhacaqGUbGaaeizaiaabggacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaiaabYgacaqGGaGaaeOBaiaab+gacaqG0bGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqGHbGaaeiiaiaabogacaqGSbGaae4BaiaabohacaqGLbGaaeizaiaabccacaqGWbGaaeyAaiaabchacaqGLbGaaeiiaiaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaiaaysW7aeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacqaH7oaBaeaacaaI0aaaaaqaaiabgsJiCjabeU7aSjabg2da9iaaisdacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGinaiabgEna0kaaicdacaGGUaGaaGOmaiaaiwdacaaI1aGaeyypa0JaaGymaiaac6cacaaIWaGaaGOmaiaaysW7caWGTbaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGUbGaaGjbVlaabggacaqGPbGaaeOCaiaaysW7caqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabQdaaeaacaWG2bGaaGjbVlabg2da9iaaysW7cqaH9oGBcqaH7oaBcaaMe8Uaeyypa0JaaGjbVlaabodacaqG0aGaaGimaiaaysW7cqGHxdaTcaaMe8Uaaeymaiaac6cacaaIWaGaaeOmaiaaysW7cqGH9aqpcaaMe8Uaae4maiaabsdacaqG2aGaaiOlaiaabIdacaqGGaGaaeyBaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaaaaaa@B05C@

Q.16 A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod is given to be 2.53 kHz. What is the speed of sound in steel?

Ans.

Here,distance between two successive nodes= λ 2 l= λ 2 λ=2l=2×1=2m The speed of sound in steel is given as: v= νλ = 2.53×1 0 3 ×2 = 5.06×1 0 3 ms -1 =5.0 6 kms -1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabsgacaqGPbGaae4CaiaabshacaqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabkgacaqGLbGaaeiDaiaabEhacaqGLbGaaeyzaiaab6gacaqGGaGaaeiDaiaabEhacaqGVbGaaeiiaiaabohacaqG1bGaae4yaiaabogacaqGLbGaae4CaiaabohacaqGPbGaaeODaiaabwgacaqGGaGaaeOBaiaab+gacaqGKbGaaeyzaiaabohacaaMe8UaaeypaiaaysW7daWcaaqaaiabeU7aSbqaaiaaikdaaaaabaGaeyinIWLaamiBaiabg2da9maalaaabaGaeq4UdWgabaGaaGOmaaaaaeaacqGH0icxcqaH7oaBcqGH9aqpcaaIYaGaamiBaiabg2da9iaaikdacqGHxdaTcaaIXaGaeyypa0JaaGOmaiaaysW7caWGTbaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabMgacaqGUbGaaeiiaiaabohacaqG0bGaaeyzaiaabwgacaqGSbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiaabAhacqGH9aqpcaqGGaGaeqyVd4Maeq4UdWgabaGaeyypa0JaaeiiaiaabkdacaGGUaGaaeynaiaabodacqGHxdaTcaqGXaGaaGimamaaCaaaleqabaGaae4maaaakiabgEna0kaabkdaaeaacqGH9aqpcaqGGaGaaeynaiaac6cacaaIWaGaaeOnaiabgEna0kaabgdacaaIWaWaaWbaaSqabeaacaqGZaaaaOGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiabg2da9iaaysW7caqG1aGaaiOlaiaaicdacaqG2aGaaeiiaiaabUgacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaaaaa@C13D@

Q.17 A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz source? Will the same source be in resonance with the pipe if both ends are open? (Speed of sound in air is 340 m s–1).

Ans.

Here,length of pipe,l=20 cm = 0.2 m Source frequency=Frequencyof n th normal mode, ν n =430 Hz Speed of soundinair,v= 340 ms -1 Frequencyof n th normal modein a closed pipe is given by the relation: ν n =( 2n1 ) v 4l Here,nisaninteger. 430=( 2n1 ) 340 4×0.2 2n1= 430×4×0.2 340 =1.01 2n=2.01 n1 The frequencyoffirst mode of vibration isresonantlyexcited by the givensource. In caseofa pipe open at both ends, thefrequencyof n th mode of vibration is given by therelation: ν n = nv 2l n= 2l ν n v = 2×0.2×430 340 =0.5 As the number of the mode of vibration ( n ) should bean integer, the open pipecannotbeinresonance withthesource. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccacaqGWbGaaeyAaiaabchacaqGLbGaaeilaiaaysW7caqGSbGaaGjbVlaab2dacaaMe8UaaeOmaiaabcdacaqGGaGaae4yaiaab2gacaqGGaGaaeypaiaabccacaqGWaGaaeOlaiaabkdacaqGGaGaaeyBaaqaaiaabofacaqGVbGaaeyDaiaabkhacaqGJbGaaeyzaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaaMe8UaaeypaiaaysW7caqGgbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaaMe8Uaae4BaiaabAgacaaMe8UaaeOBamaaCaaaleqabaGaaeiDaiaabIgaaaGccaqGGaGaaeOBaiaab+gacaqGYbGaaeyBaiaabggacaqGSbGaaeiiaaqaaiaab2gacaqGVbGaaeizaiaabwgacaqGSaGaaeiiaiabe27aUnaaBaaaleaacaqGUbaabeaakiaaysW7cqGH9aqpcaaMe8UaaeinaiaabodacaaIWaGaaeiiaiaabIeacaqG6baabaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaaMe8UaaeyAaiaab6gacaaMe8UaaeyyaiaabMgacaqGYbGaaeilaiaaysW7caqG2bGaaGjbVlaab2dacaaMe8Uaae4maiaabsdacaqGWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabAeacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaaysW7caqGVbGaaeOzaiaaysW7caqGUbWaaWbaaSqabeaacaqG0bGaaeiAaaaakiaabccacaqGUbGaae4BaiaabkhacaqGTbGaaeyyaiaabYgacaqGGaGaaeyBaiaab+gacaqGKbGaaeyzaiaaysW7caqGPbGaaeOBaiaabccacaqGHbGaaeiiaiaabogacaqGSbGaae4BaiaabohacaqGLbGaaeizaiaabccacaqGWbGaaeyAaiaabchacaqGLbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabQdaaeaacqaH9oGBdaWgaaWcbaGaaeOBaaqabaGccqGH9aqpdaqadaqaaiaaikdacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaalaaabaGaamODaaqaaiaaisdacaWGSbaaaaqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaab6gacaaMe8UaaeyAaiaabohacaaMe8Uaaeyyaiaab6gacaaMe8UaaeyAaiaab6gacaqG0bGaaeyzaiaabEgacaqGLbGaaeOCaiaab6caaeaacqGH0icxcaqG0aGaae4maiaaicdacqGH9aqpdaqadaqaaiaaikdacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaalaaabaGaaG4maiaaisdacaaIWaaabaGaaGinaiabgEna0kaaicdacaGGUaGaaGOmaaaaaeaacaaIYaGaamOBaiabgkHiTiaaigdacqGH9aqpdaWcaaqaaiaabsdacaqGZaGaaGimaiabgEna0kaaisdacqGHxdaTcaaIWaGaaiOlaiaaikdaaeaacaaIZaGaaGinaiaaicdaaaGaeyypa0JaaGymaiaac6cacaaIWaGaaGymaaqaaiaaikdacaWGUbGaeyypa0JaaGOmaiaac6cacaaIWaGaaGymaaqaaiabgsJiCjaad6gacqWI8iIocaaIXaaabaGaeyinIWLaaeivaiaabIgacaqGLbGaaeiiaiaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaaysW7caqGVbGaaeOzaiaaysW7caqGMbGaaeyAaiaabkhacaqGZbGaaeiDaiaabccacaqGTbGaae4BaiaabsgacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabAhacaqGPbGaaeOyaiaabkhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaae4CaiaaysW7caqGYbGaaeyzaiaabohacaqGVbGaaeOBaiaabggacaqGUbGaaeiDaiaabYgacaqG5bGaaGjbVlaabwgacaqG4bGaae4yaiaabMgacaqG0bGaaeyzaiaabsgacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaGjbVlaabohacaqGVbGaaeyDaiaabkhacaqGJbGaaeyzaiaab6caaeaacaqGjbGaaeOBaiaabccacaqGJbGaaeyyaiaabohacaqGLbGaaGjbVlaab+gacaqGMbGaaGjbVlaabggacaqGGaGaaeiCaiaabMgacaqGWbGaaeyzaiaabccacaqGVbGaaeiCaiaabwgacaqGUbGaaeiiaiaabggacaqG0bGaaeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaaeyzaiaab6gacaqGKbGaae4CaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaaysW7caqGVbGaaeOzaiaaysW7caqGUbWaaWbaaSqabeaacaqG0bGaaeiAaaaakiaaysW7caqGTbGaae4BaiaabsgacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabAhacaqGPbGaaeOyaiaabkhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOoaaqaaiabe27aUnaaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaGaamOBaiaadAhaaeaacaaIYaGaamiBaaaaaeaacqGH0icxcaWGUbGaeyypa0ZaaSaaaeaacaaIYaGaamiBaiabe27aUnaaBaaaleaacaWGUbaabeaaaOqaaiaadAhaaaGaeyypa0ZaaSaaaeaacaaIYaGaey41aqRaaGimaiaac6cacaaIYaGaey41aqRaaGinaiaaiodacaaIWaaabaGaaG4maiaaisdacaaIWaaaaiabg2da9iaaicdacaGGUaGaaGynaaqaaiaabgeacaqGZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGUbGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab2gacaqGVbGaaeizaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeODaiaabMgacaqGIbGaaeOCaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiamaabmaabaGaaeOBaaGaayjkaiaawMcaaiaabccacaqGZbGaaeiAaiaab+gacaqG1bGaaeiBaiaabsgacaqGGaGaaeOyaiaabwgacaaMe8Uaaeyyaiaab6gacaqGGaGaaeyAaiaab6gacaqG0bGaaeyzaiaabEgacaqGLbGaaeOCaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab+gacaqGWbGaaeyzaiaab6gacaqGGaGaaeiCaiaabMgacaqGWbGaaeyzaiaaysW7caqGJbGaaeyyaiaab6gacaqGUbGaae4BaiaabshacaaMe8UaaeOyaiaabwgacaaMe8UaaeyAaiaab6gacaaMe8UaaeOCaiaabwgacaqGZbGaae4Baiaab6gacaqGHbGaaeOBaiaabogacaqGLbGaaGjbVdqaaiaabEhacaqGPbGaaeiDaiaabIgacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaabohacaqGVbGaaeyDaiaabkhacaqGJbGaaeyzaiaab6caaaaa@7EA1@

Q.18 Two sitar strings A and B playing the note ‘Ga’ are slightly out of tune and produce beats of frequency 6 Hz. The tension in the string A is slightly reduced and the beat frequency is found to reduce to 3 Hz. If the original frequency of A is 324 Hz, what is the frequency of B?

Ans.

Here,frequency of string A, f A =324 Hz Letfrequency of string B= f B Beatfrequency,n=6 Hz Beatfrequencyisgivenbytherelation: n=| f A ± f B | 6=324± f B f B =330Hzor318Hz When tension in the stringdecreasesitsfrequencydecreases,becausefrequency is directly proportional to the square root of tension( ν T ). Beatfrequencycannotbe330Hz. Beatfrequency, f B =318Hz MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaqGGaGaaeyqaiaabYcacaaMe8UaaeOzamaaBaaaleaacaqGbbaabeaakiaaysW7cqGH9aqpcaaMe8Uaae4maiaabkdacaqG0aGaaeiiaiaabIeacaqG6baabaGaaeitaiaabwgacaqG0bGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaqGGaGaaeOqaiaaysW7caqG9aGaaGjbVlaabAgadaWgaaWcbaGaaeOqaaqabaaakeaacaqGcbGaaeyzaiaabggacaqG0bGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabYcacaaMe8UaaeOBaiaaysW7caqG9aGaaGjbVlaabAdacaqGGaGaaeisaiaabQhaaeaacaqGcbGaaeyzaiaabggacaqG0bGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGIbGaaeyEaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8UaaeOCaiaabwgacaqGSbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqG6aaabaGaaeOBaiaaysW7caqG9aGaaGjbVpaaemaabaGaaeOzamaaBaaaleaacaqGbbaabeaakiabgglaXkaabAgadaWgaaWcbaGaaeOqaaqabaaakiaawEa7caGLiWoaaeaacqGH0icxcaaI2aGaaGjbVlabg2da9iaaysW7caqGZaGaaeOmaiaabsdacaaMe8UaeyySaeRaaGjbVlaabAgadaWgaaWcbaGaaeOqaaqabaaakeaacqGH0icxcaqGMbWaaSbaaSqaaiaabkeaaeqaaOGaeyypa0JaaG4maiaaiodacaaIWaGaaGjbVlaabIeacaqG6bGaaGjbVlaab+gacaqGYbGaaGjbVlaabodacaqGXaGaaeioaiaaysW7caqGibGaaeOEaaqaaiaabEfacaqGObGaaeyzaiaab6gacaqGGaGaaeiDaiaabwgacaqGUbGaae4CaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaGjbVlaabsgacaqGLbGaae4yaiaabkhacaqGLbGaaeyyaiaabohacaqGLbGaae4CaiaaysW7caqGPbGaaeiDaiaabohacaaMe8UaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaGjbVlaabsgacaqGLbGaae4yaiaabkhacaqGLbGaaeyyaiaabohacaqGLbGaae4CaiaabYcacaaMe8UaaeOyaiaabwgacaqGJbGaaeyyaiaabwhacaqGZbGaaeyzaiaaysW7caqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaaeyAaiaabohacaqGGaGaaeizaiaabMgacaqGYbGaaeyzaiaabogacaqG0bGaaeiBaiaabMhacaqGGaGaaeiCaiaabkhacaqGVbGaaeiCaiaab+gacaqGYbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGSbGaaeiiaiaabshacaqGVbaabaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGXbGaaeyDaiaabggacaqGYbGaaeyzaiaabccacaqGYbGaae4Baiaab+gacaqG0bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGLbGaaeOBaiaabohacaqGPbGaae4Baiaab6gadaqadaqaaiabe27aUjabg2Hi1oaakaaabaGaamivaaWcbeaaaOGaayjkaiaawMcaaiaac6cacaqGGaaabaGaeyinIWLaaeOqaiaabwgacaqGHbGaaeiDaiaaysW7caqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaaMe8Uaae4yaiaabggacaqGUbGaaeOBaiaab+gacaqG0bGaaGjbVlaabkgacaqGLbGaaGjbVlaabodacaqGZaGaaeimaiaaysW7caqGibGaaeOEaiaab6caaeaacqGH0icxcaqGcbGaaeyzaiaabggacaqG0bGaaGjbVlaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabYcacaaMe8UaaeOzamaaBaaaleaacaqGcbaabeaakiaaysW7caqG9aGaaGjbVlaabodacaqGXaGaaeioaiaaysW7caqGibGaaeOEaaaaaa@A706@

Q.19 Explain why (or how):
(a) In a sound wave, a displacement node is a pressure antinode and vice versa,
(b) Bats can ascertain distances, directions, nature, and sizes of the obstacles without any “eyes”,
(c) A violin note and sitar note may have the same frequency, yet we can distinguish between the two notes,
(d) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases, and
(e) The shape of a pulse gets distorted during propagation in a dispersive medium.

Ans.

(a) Node is a point where the amplitude of oscillation is the minimum and pressure is the maximum. On the contrary, antinode is a point where the amplitude of oscillation is the maximum and pressure is the minimum.
Therefore, in a sound wave, a displacement node is a pressure antinode and vice versa.
(b) Bats emit ultrasonic sound waves of very high-frequency. When these waves are reflected by obstacles in their path, the bat receives a reflected wave and estimates the nature, direction, distance and size of an obstacle.
(c) Although a violin note and a sitar note have the same frequency, but the overtones and their strengthsare different. Thus, we can differentiate the notes produced by a sitar and a violin even if they have the same frequency of vibration.
(d) Solids have both elasticity of shape and elasticity of volume (shear modulus) . Longitudinal waves require the elasticity of shape in the medium for their propagation. Transverse waves propagate in the medium with elasticity of volume. Thus, the solids can support both longitudinal and transverse wave whereas, gases have only the volume elasticity, therefore, the transverse waves cannot propagate through gases.
(e) A sound pulse is a combination of waves having different wavelengths. The shape of wave pulse gets distorted due to propogation of waves in a dispersive medium with different velocities.

Q.20 A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air.
(i) What is the frequency of the whistle for a platform observer when the train
(a) approaches the platform with a speed of 10 ms–1,
(b) recedes from the platform with a speed of 10 ms–1?
(ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s–1.

Ans.

Here,Frequency of the whistle, ν=400 Hz Speed of soundinstillair,v=340 ms -1 ( i )( a )Here,speed of train, v T =10 ms -1 The apparent frequency of the whistle as the trainapproaches the platform isgiven as: ν=( v v v T )ν=( 340 34010 )×400=412.12Hz ( b ) Here,speed of train, v T = 10 ms -1 The apparent frequency of the whistle as the trainrecedes from the platformis given as: ν=( v v+ v T )ν=( 340 340+10 )×400=388.6Hz ( ii )The apparent change in the frequency of soundis dueto the relative motionsof the source and the observer. These relative motions donotaffectthespeed of sound. The speed of sound in each case remains thesame, i.e ., 340 ms -1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAeacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4DaiaabIgacaqGPbGaae4CaiaabshacaqGSbGaaeyzaiaabYcacaqGGaGaeqyVd4MaaGjbVlabg2da9iaaysW7caqG0aGaaGimaiaaicdacaqGGaGaaeisaiaabQhaaeaacaqGtbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaaysW7caqGPbGaaeOBaiaaysW7caqGZbGaaeiDaiaabMgacaqGSbGaaeiBaiaaysW7caqGHbGaaeyAaiaabkhacaqGSaGaaGjbVlaabAhacaaMe8Uaeyypa0JaaGjbVlaabodacaqG0aGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaadaqadaqaaiaabMgaaiaawIcacaGLPaaadaqadaqaaiaabggaaiaawIcacaGLPaaacaaMe8UaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabkhacaqGHbGaaeyAaiaab6gacaGGSaGaaGjbVlaabAhadaWgaaWcbaGaaeivaaqabaGccaaMe8Uaeyypa0JaaGjbVlaabgdacaaIWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabsfacaqGObGaaeyzaiaabccacaqGHbGaaeiCaiaabchacaqGHbGaaeOCaiaabwgacaqGUbGaaeiDaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGObGaaeyAaiaabohacaqG0bGaaeiBaiaabwgacaqGGaGaaeyyaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabshacaqGYbGaaeyyaiaabMgacaqGUbGaaGjbVlaabggacaqGWbGaaeiCaiaabkhacaqGVbGaaeyyaiaabogacaqGObGaaeyzaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabchacaqGSbGaaeyyaiaabshacaqGMbGaae4BaiaabkhacaqGTbGaaeiiaiaabMgacaqGZbGaaGjbVlaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiabe27aUjaacEcacqGH9aqpdaqadaqaamaalaaabaGaamODaaqaaiaadAhacqGHsislcaqG2bWaaSbaaSqaaiaabsfaaeqaaaaaaOGaayjkaiaawMcaaiabe27aUjabg2da9maabmaabaWaaSaaaeaacaaIZaGaaGinaiaaicdaaeaacaaIZaGaaGinaiaaicdacqGHsislcaaIXaGaaGimaaaaaiaawIcacaGLPaaacqGHxdaTcaaI0aGaaGimaiaaicdacqGH9aqpcaaI0aGaaGymaiaaikdacaGGUaGaaGymaiaaikdacaaMe8UaaeisaiaabQhaaeaadaqadaqaaiaabkgaaiaawIcacaGLPaaacaqGGaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabkhacaqGHbGaaeyAaiaab6gacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaaeivaaqabaGccaaMe8UaaeypaiaaysW7caqGXaGaaeimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGubGaaeiAaiaabwgacaqGGaGaaeyyaiaabchacaqGWbGaaeyyaiaabkhacaqGLbGaaeOBaiaabshacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG3bGaaeiAaiaabMgacaqGZbGaaeiDaiaabYgacaqGLbGaaeiiaiaabggacaqGZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaaysW7caqGYbGaaeyzaiaabogacaqGLbGaaeizaiaabwgacaqGZbGaaeiiaiaabAgacaqGYbGaae4Baiaab2gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabchacaqGSbGaaeyyaiaabshacaqGMbGaae4BaiaabkhacaqGTbGaaGjbVlaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiabe27aUjaacEcacqGH9aqpdaqadaqaamaalaaabaGaamODaaqaaiaadAhacqGHRaWkcaqG2bWaaSbaaSqaaiaabsfaaeqaaaaaaOGaayjkaiaawMcaaiabe27aUjabg2da9maabmaabaWaaSaaaeaacaaIZaGaaGinaiaaicdaaeaacaaIZaGaaGinaiaaicdacqGHRaWkcaaIXaGaaGimaaaaaiaawIcacaGLPaaacqGHxdaTcaaI0aGaaGimaiaaicdacqGH9aqpcaaIZaGaaGioaiaaiIdacaGGUaGaaGOnaiaaysW7caqGibGaaeOEaaqaamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaaMe8UaaeivaiaabIgacaqGLbGaaeiiaiaabggacaqGWbGaaeiCaiaabggacaqGYbGaaeyzaiaab6gacaqG0bGaaeiiaiaabogacaqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaGjbVlaabMgacaqGZbGaaeiiaiaabsgacaqG1bGaaeyzaiaaysW7caqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGSbGaaeyyaiaabshacaqGPbGaaeODaiaabwgacaqGGaGaaeyBaiaab+gacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaaysW7caqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOCaiaabogacaqGLbGaaeiiaiaabggacaqGUbGaaeizaiaabccaaeaacaqG0bGaaeiAaiaabwgacaqGGaGaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabkhacaqGUaGaaeiiaiaabsfacaqGObGaaeyzaiaabohacaqGLbGaaeiiaiaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaab2gacaqGVbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohacaqGGaGaaeizaiaab+gacaaMe8UaaeOBaiaab+gacaqG0bGaaGjbVlaabggacaqGMbGaaeOzaiaabwgacaqGJbGaaeiDaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGUaGaaeiiaaqaaiabgsJiCjaabsfacaqGObGaaeyzaiaabccacaqGZbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabccacaqGLbGaaeyyaiaabogacaqGObGaaeiiaiaabogacaqGHbGaae4CaiaabwgacaqGGaGaaeOCaiaabwgacaqGTbGaaeyyaiaabMgacaqGUbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabggacaqGTbGaaeyzaiaabYcacaqGGaGaaeyAaiaab6cacaqGLbGaaeOlaiaabYcacaqGGaGaae4maiaabsdacaqGWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiaab6caaaaa@834A@

Q.21 A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with at a speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an observer standing on the station’s platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 ms–1? The speed of sound in still air can be taken as 340 m s–1.

Ans.

Here,Frequency of the sound produced by the whistle, ν=400 Hz Velocity of wind, v w =10 ms -1 Speed of sound instillair,v= 340 ms -1 For the stationary observer: Asthe wind is blowing toward the observer, Effective speed of the sound, v e =v+ v w =340+10= 350 ms -1 Since there is no relative motion between the source andtheobserver, the frequency ofthe sound heard by the observer will remainunchanged,i.e., 400 Hz. Wavelength ( λ ) of the sound heard by the observer isgiven as: λ= v+ v w ν = v+ v w ν = 350 400 =0.875m For the running observer: Here,velocity of observer, v o =10 ms -1 Here,the observer is travelling toward the source,Duetotherelative motions of thesource and the observer,change in frequencytakesplace. Change in frequency( ν ) is given by the relation: ν=( v+ v o v )ν=( 340+10 340 )×400=411.76Hz As the air is still, Effective speed of sound=v+ v w =340+0=340 ms -1 Asthe source is at rest,the wavelength of the sound ( λ )remains 0.875 m. Above two situations are not exactlysame. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAeacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeiCaiaabkhacaqGVbGaaeizaiaabwhacaqGJbGaaeyzaiaabsgacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGObGaaeyAaiaabohacaqG0bGaaeiBaiaabwgacaGGSaGaaeiiaiabe27aUjaaysW7cqGH9aqpcaaMe8UaaeinaiaaicdacaaIWaGaaeiiaiaabIeacaqG6baabaGaaeOvaiaabwgacaqGSbGaae4BaiaabogacaqGPbGaaeiDaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaae4DaiaabMgacaqGUbGaaeizaiaabYcacaaMe8UaaeODamaaBaaaleaacaqG3baabeaakiaaysW7cqGH9aqpcaaMe8UaaeymaiaaicdacaqGGaGaaeyBaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4BaiaabAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyAaiaab6gacaaMe8Uaae4CaiaabshacaqGPbGaaeiBaiaabYgacaaMe8UaaeyyaiaabMgacaqGYbGaaeilaiaaysW7caqG2bGaaGjbVlaab2dacaaMe8Uaae4maiaabsdacaqGWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabAeacaqGVbGaaeOCaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGYbGaaeyEaiaabccacaqGVbGaaeOyaiaabohacaqGLbGaaeOCaiaabAhacaqGLbGaaeOCaiaabQdaaeaacaqGbbGaae4CaiaaysW7caqG0bGaaeiAaiaabwgacaqGGaGaae4DaiaabMgacaqGUbGaaeizaiaabccacaqGPbGaae4CaiaabccacaqGIbGaaeiBaiaab+gacaqG3bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGVbGaae4DaiaabggacaqGYbGaaeizaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabkhacaqGSaaabaGaeyinIWLaaeyraiaabAgacaqGMbGaaeyzaiaabogacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabYcacaaMe8UaaeODamaaBaaaleaacaqGLbaabeaakiabg2da9iaaysW7caWG2bGaaGjbVlabgUcaRiaaysW7caqG2bWaaSbaaSqaaiaabEhaaeqaaOGaaGjbVlaab2dacaaMe8Uaae4maiaabsdacaaIWaGaey4kaSIaaeymaiaaicdacaaMe8Uaeyypa0JaaeiiaiaabodacaqG1aGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGtbGaaeyAaiaab6gacaqGJbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGYbGaaeyzaiaabccacaqGPbGaae4CaiaabccacaqGUbGaae4BaiaabccacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqG2bGaaeyzaiaabccacaqGTbGaae4BaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeOyaiaabwgacaqG0bGaae4DaiaabwgacaqGLbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOCaiaabogacaqGLbGaaeiiaiaabggacaqGUbGaaeizaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabkhacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaae4BaiaabAgacaaMe8UaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabIgacaqGLbGaaeyyaiaabkhacaqGKbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccaaeaacaqGVbGaaeOyaiaabohacaqGLbGaaeOCaiaabAhacaqGLbGaaeOCaiaabccacaqG3bGaaeyAaiaabYgacaqGSbGaaeiiaiaabkhacaqGLbGaaeyBaiaabggacaqGPbGaaeOBaiaaysW7caqG1bGaaeOBaiaabogacaqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabsgacaqGSaGaaGjbVlaabMgacaqGUaGaaeyzaiaab6cacaqGSaGaaeiiaiaabsdacaqGWaGaaeimaiaabccacaqGibGaaeOEaiaab6caaeaacaqGxbGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeiiamaabmaabaGaeq4UdWgacaGLOaGaayzkaaGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGObGaaeyzaiaabggacaqGYbGaaeizaiaabccacaqGIbGaaeyEaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabkhacaqGGaGaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaeq4UdWMaeyypa0ZaaSaaaeaacaWG2bGaaGjbVlabgUcaRiaaysW7caqG2bWaaSbaaSqaaiaabEhaaeqaaaGcbaGaeqyVd4gaaiabg2da9maalaaabaGaamODaiaaysW7cqGHRaWkcaaMe8UaaeODamaaBaaaleaacaqG3baabeaaaOqaaiabe27aUbaacqGH9aqpdaWcaaqaaiaaiodacaaI1aGaaGimaaqaaiaaisdacaaIWaGaaGimaaaacqGH9aqpcaaIWaGaaiOlaiaaiIdacaaI3aGaaGynaiaaysW7caqGTbaabaGaaeOraiaab+gacaqGYbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyDaiaab6gacaqGUbGaaeyAaiaab6gacaqGNbGaaeiiaiaab+gacaqGIbGaae4CaiaabwgacaqGYbGaaeODaiaabwgacaqGYbGaaeOoaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8oabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8UaaeODaiaabwgacaqGSbGaae4BaiaabogacaqGPbGaaeiDaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaabkhacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaae4BaaqabaGccaaMe8Uaeyypa0JaaGjbVlaabgdacaaIWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqGVbGaaeOyaiaabohacaqGLbGaaeOCaiaabAhacaqGLbGaaeOCaiaabccacaqGPbGaae4CaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGVbGaae4DaiaabggacaqGYbGaaeizaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOCaiaabogacaqGLbGaaeilaiaaysW7caqGebGaaeyDaiaabwgacaaMe8UaaeiDaiaab+gacaaMe8UaaeiDaiaabIgacaqGLbGaaGjbVlaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaab2gacaqGVbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabohacaqGVbGaaeyDaiaabkhacaqGJbGaaeyzaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaaqaaiaab+gacaqGIbGaae4CaiaabwgacaqGYbGaaeODaiaabwgacaqGYbGaaeilaiaaysW7caqGJbGaaeiAaiaabggacaqGUbGaae4zaiaabwgacaqGGaGaaeyAaiaab6gacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaGjbVlaabshacaqGHbGaae4AaiaabwgacaqGZbGaaGjbVlaabchacaqGSbGaaeyyaiaabogacaqGLbGaaeOlaaqaaiaaboeacaqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaaMe8+aaeWaaeaacqaH9oGBcaqGNaaacaGLOaGaayzkaaGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabQdaaeaacqaH9oGBcaGGNaGaeyypa0ZaaeWaaeaadaWcaaqaaiaadAhacqGHRaWkcaWG2bWaaSbaaSqaaiaad+gaaeqaaaGcbaGaamODaaaaaiaawIcacaGLPaaacqaH9oGBcqGH9aqpdaqadaqaamaalaaabaGaaG4maiaaisdacaaIWaGaey4kaSIaaGymaiaaicdaaeaacaaIZaGaaGinaiaaicdaaaaacaGLOaGaayzkaaGaaGjbVlabgEna0kaaysW7caaI0aGaaGimaiaaicdacqGH9aqpcaaI0aGaaGymaiaaigdacaGGUaGaaG4naiaaiAdacaaMe8UaamisaiaadQhaaeaacaqGbbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyyaiaabMgacaqGYbGaaeiiaiaabMgacaqGZbGaaeiiaiaabohacaqG0bGaaeyAaiaabYgacaqGSbGaaeilaiaabccacaqGGaaabaGaeyinIWLaaeyraiaabAgacaqGMbGaaeyzaiaabogacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaabohacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaeyypa0JaamODaiabgUcaRiaadAhadaWgaaWcbaGaam4DaaqabaGccaqG9aGaae4maiaabsdacaaIWaGaey4kaSIaaGimaiabg2da9iaabodacaqG0aGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGbbGaae4CaiaaysW7caqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOCaiaabogacaqGLbGaaeiiaiaabMgacaqGZbGaaeiiaiaabggacaqG0bGaaeiiaiaabkhacaqGLbGaae4CaiaabshacaqGSaGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGUbGaae4zaiaabshacaqGObGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccadaqadaqaaiabeU7aSbGaayjkaiaawMcaaiaaysW7caqGYbGaaeyzaiaab2gacaqGHbGaaeyAaiaab6gacaqGZbGaaeiiaiaabcdacaqGUaGaaeioaiaabEdacaqG1aGaaeiiaiaab2gacaqGUaGaaeiOaiaabckacaqGGcGaaeiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaqaaiabgsJiCjaabgeacaqGIbGaae4BaiaabAhacaqGLbGaaeiiaiaabshacaqG3bGaae4BaiaabccacaqGZbGaaeyAaiaabshacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqGUbGaae4BaiaabshacaqGGaGaaeyzaiaabIhacaqGHbGaae4yaiaabshacaqGSbGaaeyEaiaaysW7caqGZbGaaeyyaiaab2gacaqGLbGaaeOlaaaaaa@203B@

Q.22

A travelling harmonic wave on a string is described byy( x,t )=7.5sin( 0.0050x+12t+ π 4 ) ( a ) What are the displacement and velocity ofoscillation of a point atx=1 cm, andt=1 s? Is this velocity equal to the velocity of wave propagation? ( b ) Locate the points of the string which have thesame transverse displacements and velocity as thex =1 cm point att =2 s, 5 s and 11 s. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqabiqaceGabeqabeWabeqaeeaakqaabeqaaiaabgeacaqGGaGaaeiDaiaabkhacaqGHbGaaeODaiaabwgacaqGSbGaaeiBaiaabMgacaqGUbGaae4zaiaabccacaqGObGaaeyyaiaabkhacaqGTbGaae4Baiaab6gacaqGPbGaae4yaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaab+gacaqGUbGaaeiiaiaabggacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabMgacaqGZbGaaeiiaiaabsgacaqGLbGaae4CaiaabogacaqGYbGaaeyAaiaabkgacaqGLbGaaeizaiaaysW7aeaacaqGIbGaaeyEaiaaysW7caqG5bWaaeWaaeaacaqG4bGaaeilaiaaykW7caqG0baacaGLOaGaayzkaaGaeyypa0Jaae4naiaab6cacaqG1aGaaGjbVlaabohacaqGPbGaaeOBamaabmaabaGaaeimaiaab6cacaqGWaGaaeimaiaabwdacaqGWaGaaeiEaiaaysW7caqGRaGaaGjbVlaabgdacaqGYaGaaeiDaiaaysW7cqGHRaWkcaaMe8+aaSaaaeaacqaHapaCaeaacaqG0aaaaaGaayjkaiaawMcaaaqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaabccacaqGxbGaaeiAaiaabggacaqG0bGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeizaiaabMgacaqGZbGaaeiCaiaabYgacaqGHbGaae4yaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGVbGaaeOzaiaaysW7caqGVbGaae4CaiaabogacaqGPbGaaeiBaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiiaiaabchacaqGVbGaaeyAaiaab6gacaqG0bGaaeiiaiaabggacaqG0bGaaGjbVlaabIhacaaMe8UaaeypaiaaysW7caqGXaGaaeiiaiaabogacaqGTbGaaeilaiaabccacaqGHbGaaeOBaiaabsgacaaMe8UaaeiDaiaaysW7caqG9aGaaGjbVlaabgdacaqGGaGaae4Caiaab+dacaqGGaGaaeysaiaabohacaqGGaGaaeiDaiaabIgacaqGPbGaae4CaaqaaiaabAhacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqGSbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaabchacaqGYbGaae4BaiaabchacaqGHbGaae4zaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae4paaqaamaabmaabaGaaeOyaaGaayjkaiaawMcaaiaabccacaqGmbGaae4BaiaabogacaqGHbGaaeiDaiaabwgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabchacaqGVbGaaeyAaiaab6gacaqG0bGaae4CaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGYbGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhacaqGObGaaeyAaiaabogacaqGObGaaeiiaiaabIgacaqGHbGaaeODaiaabwgacaqGGaGaaeiDaiaabIgacaqGLbGaaGjbVlaabohacaqGHbGaaeyBaiaabwgacaqGGaGaaeiDaiaabkhacaqGHbGaaeOBaiaabohacaqG2bGaaeyzaiaabkhacaqGZbGaaeyzaiaabccacaqGKbGaaeyAaiaabohacaqGWbGaaeiBaiaabggacaqGJbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGZbGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGHbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaaMc8UaaeiEaaqaaiaab2dacaaMe8UaaeymaiaabccacaqGJbGaaeyBaiaabccacaqGWbGaae4BaiaabMgacaqGUbGaaeiDaiaabccacaqGHbGaaeiDaiaabshacaqGGaGaaeypaiaabkdacaqGGaGaae4CaiaabYcacaqGGaGaaeynaiaabccacaqGZbGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGXaGaaeymaiaabccacaqGZbGaaeOlaaaaaa@8A2F@

Ans.

( a )The given travellingharmonic wave is: y( x,t )=7.5sin( 0.0050x+12t+ π 4 ) Atx= 1 cm andt= 1s, y( 1,1 )=7.5sin( 0.0050+12+ π 4 ) =7.5sin( 12.0050+ π 4 )=7.5sinθ Here,θ=12.0050+ 3.14 4 =12.79rad = 180 3.14 ×12.79= 732.81 o y( 1,1 )=7.5sin( 732.81 o )=7.5sin( 90×8+ 12.81 o ) =7.5sin( 12.81 o )=7.5×0.2217=1.66291.663cm Velocity of the vibrationatagivenpointandtimeisgivenas: v= d dt y( x,t )= d dt [ 7.5sin( 0.0050x+12t+ π 4 ) ] =7.5×12cos( 0.0050x+12t+ π 4 ) =90cos( 0.0050x+12t+ π 4 ) Forx=1cmandt=1s Velocity,v=y( 1,1 )=90cos( 0.005+12+ π 4 ) =90cos( 12.005+ π 4 )=90cos( 732.81 o ) =90cos( 720 o + 12.81 o )=90cos( 12.81 o ) =90×0.975=87.75 cms 1 The standardequation of a propagating wave is given as: y( x,t )=asin( kx+ωt+ϕ ) Here,k= 2π λ λ= 2π k Also,ω=2πν ν= ω 2π Velocityofwavepropagation,v=νλ= ω k Here,ω=12 rads 1 k=0.0050 m 1 v= 12 0.0050 =2400 cms 1 Weobservethat,thevelocity of wave oscillation atx=1 cm andt=1 s is not equal to velocity of the wavepropagation. ( b )Therelationconnectingpropagation constant towavelength isgivenas: k= 2π λ λ= 2π k = 2×3.14 0.0050 =1256cm=12.56m All the points at distancesnλ( n=±1,±2,…. ), i.e.±12.56m,±25.12m,….andsoonforx=1cm,willbehavingthesamedisplacementsasthex=1cmpointsat t=2s,5sand11s. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaabsfacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqG0bGaaeOCaiaabggacaqG2bGaaeyzaiaabYgacaqGSbGaaeyAaiaab6gacaqGNbGaaGjbVlaabIgacaqGHbGaaeOCaiaab2gacaqGVbGaaeOBaiaabMgacaqGJbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaqGGaGaaeyAaiaabohacaqG6aaabaGaamyEamaabmaabaGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaaG4naiaac6cacaaI1aGaaGPaVlaabohacaqGPbGaaeOBaiaaykW7daqadaqaaiaaicdacaGGUaGaaGimaiaaicdacaaI1aGaaGimaiaadIhacqGHRaWkcaaIXaGaaGOmaiaadshacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaisdaaaaacaGLOaGaayzkaaaabaGaamyqaiaadshacaaMe8UaaeiEaiabg2da9iaabccacaqGXaGaaeiiaiaabogacaqGTbGaaeiiaiaabggacaqGUbGaaeizaiaaysW7caqG0bGaeyypa0JaaeiiaiaabgdacaqGZbGaaiilaaqaaiaadMhadaqadaqaaiaaigdacaGGSaGaaGymaaGaayjkaiaawMcaaiabg2da9iaaiEdacaGGUaGaaGynaiGacohacaGGPbGaaiOBamaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaey4kaSIaaGymaiaaikdacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaisdaaaaacaGLOaGaayzkaaaabaGaeyypa0JaaG4naiaac6cacaaI1aGaci4CaiaacMgacaGGUbWaaeWaaeaacaaIXaGaaGOmaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaey4kaSYaaSaaaeaacqaHapaCaeaacaaI0aaaaaGaayjkaiaawMcaaiabg2da9iaaiEdacaGGUaGaaGynaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaabIeacaqGLbGaaeOCaiaabwgacaGGSaGaaGjbVlabeI7aXjabg2da9iaaigdacaaIYaGaaiOlaiaaicdacaaIWaGaaGynaiaaicdacqGHRaWkdaWcaaqaaiaaiodacaGGUaGaaGymaiaaisdaaeaacaaI0aaaaiabg2da9iaaigdacaaIYaGaaiOlaiaaiEdacaaI5aGaaGjbVlaabkhacaqGHbGaaeizaaqaaiabg2da9maalaaabaGaaGymaiaaiIdacaaIWaaabaGaaG4maiaac6cacaaIXaGaaGinaaaacqGHxdaTcaaIXaGaaGOmaiaac6cacaaI3aGaaGyoaiabg2da9iaaiEdacaaIZaGaaGOmaiaac6cacaaI4aGaaGymamaaCaaaleqabaGaam4BaaaaaOqaaiabgsJiCjaadMhadaqadaqaaiaaigdacaGGSaGaaGymaaGaayjkaiaawMcaaiabg2da9iaaiEdacaGGUaGaaGynaiGacohacaGGPbGaaiOBamaabmaabaGaaG4naiaaiodacaaIYaGaaiOlaiaaiIdacaaIXaWaaWbaaSqabeaacaWGVbaaaaGccaGLOaGaayzkaaGaeyypa0JaaG4naiaac6cacaaI1aGaci4CaiaacMgacaGGUbWaaeWaaeaacaaI5aGaaGimaiabgEna0kaaiIdacqGHRaWkcaaIXaGaaGOmaiaac6cacaaI4aGaaGymamaaCaaaleqabaGaam4BaaaaaOGaayjkaiaawMcaaaqaaiabg2da9iaaiEdacaGGUaGaaGynaiGacohacaGGPbGaaiOBamaabmaabaGaaGymaiaaikdacaGGUaGaaGioaiaaigdadaahaaWcbeqaaiaad+gaaaaakiaawIcacaGLPaaacqGH9aqpcaaI3aGaaiOlaiaaiwdacqGHxdaTcaaIWaGaaiOlaiaaikdacaaIYaGaaGymaiaaiEdacqGH9aqpcaaIXaGaaiOlaiaaiAdacaaI2aGaaGOmaiaaiMdacqGHijYUcaaIXaGaaiOlaiaaiAdacaaI2aGaaG4maiaaysW7caqGJbGaaeyBaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG2bGaaeyAaiaabkgacaqGYbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaaMe8UaaeyyaiaabshacaaMe8UaaeyyaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGWbGaae4BaiaabMgacaqGUbGaaeiDaiaaysW7caqGHbGaaeOBaiaabsgacaaMe8UaaeiDaiaabMgacaqGTbGaaeyzaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaaMe8UaaeODaiaab2dadaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaacaWG5bWaaeWaaeaacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaadaWadaqaaiaaiEdacaGGUaGaaGynaiGacohacaGGPbGaaiOBamaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaamiEaiabgUcaRiaaigdacaaIYaGaamiDaiabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacqGH9aqpcaaI3aGaaiOlaiaaiwdacqGHxdaTcaaIXaGaaGOmaiGacogacaGGVbGaai4CamaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaamiEaiabgUcaRiaaigdacaaIYaGaamiDaiabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaaaeaacqGH9aqpcaaI5aGaaGimaiGacogacaGGVbGaai4CamaabmaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaamiEaiabgUcaRiaaigdacaaIYaGaamiDaiabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaaaiaawIcacaGLPaaaaeaacaqGgbGaae4BaiaabkhacaaMe8UaamiEaiabg2da9iaaigdacaaMe8Uaae4yaiaab2gacaaMe8Uaamyyaiaad6gacaWGKbGaaGjbVlaadshacqGH9aqpcaaIXaGaaGjbVlaadohaaeaacaqGwbGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaacYcacaaMe8UaamODaiabg2da9iaadMhadaqadaqaaiaaigdacaGGSaGaaGymaaGaayjkaiaawMcaaiabg2da9iaaiMdacaaIWaGaci4yaiaac+gacaGGZbWaaeWaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGynaiabgUcaRiaaigdacaaIYaGaey4kaSYaaSaaaeaacqaHapaCaeaacaaI0aaaaaGaayjkaiaawMcaaaqaaiabg2da9iaaiMdacaaIWaGaci4yaiaac+gacaGGZbWaaeWaaeaacaaIXaGaaGOmaiaac6cacaaIWaGaaGimaiaaiwdacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaisdaaaaacaGLOaGaayzkaaGaeyypa0JaaGyoaiaaicdaciGGJbGaai4BaiaacohadaqadaqaaiaaiEdacaaIZaGaaGOmaiaac6cacaaI4aGaaGymamaaCaaaleqabaGaam4BaaaaaOGaayjkaiaawMcaaaqaaiabg2da9iaaiMdacaaIWaGaci4yaiaac+gacaGGZbWaaeWaaeaacaaI3aGaaGOmaiaaicdadaahaaWcbeqaaiaad+gaaaGccqGHRaWkcaaIXaGaaGOmaiaac6cacaaI4aGaaGymamaaCaaaleqabaGaam4BaaaaaOGaayjkaiaawMcaaiabg2da9iaaiMdacaaIWaGaci4yaiaac+gacaGGZbWaaeWaaeaacaaIXaGaaGOmaiaac6cacaaI4aGaaGymamaaCaaaleqabaGaam4BaaaaaOGaayjkaiaawMcaaaqaaiabg2da9iaaiMdacaaIWaGaey41aqRaaGimaiaac6cacaaI5aGaaG4naiaaiwdacqGH9aqpcaaI4aGaaG4naiaac6cacaaI3aGaaGynaiaaysW7caqGJbGaaeyBaiaabohadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaqGubGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGHbGaaeOBaiaabsgacaqGHbGaaeOCaiaabsgacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeyyaiaabccacaqGWbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiaadMhadaqadaqaaiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadggaciGGZbGaaiyAaiaac6gadaqadaqaaiaadUgacaWG4bGaey4kaSIaeqyYdCNaamiDaiabgUcaRiabew9aMbGaayjkaiaawMcaaaqaaiaabIeacaqGLbGaaeOCaiaabwgacaGGSaGaaGjbVlaadUgacqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacqaH7oaBaaaabaGaeyinIWLaeq4UdWMaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaam4AaaaaaeaacaqGbbGaaeiBaiaabohacaqGVbGaaiilaiaaysW7cqaHjpWDcqGH9aqpcaaIYaGaeqiWdaNaeqyVd4gabaGaeyinIWLaeqyVd4Maeyypa0ZaaSaaaeaacqaHjpWDaeaacaaIYaGaeqiWdahaaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaGjbVlaab+gacaqGMbGaaGjbVlaabEhacaqGHbGaaeODaiaabwgacaaMe8UaaeiCaiaabkhacaqGVbGaaeiCaiaabggacaqGNbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGSaGaaGjbVlaadAhacqGH9aqpcqaH9oGBcqaH7oaBcqGH9aqpdaWcaaqaaiabeM8a3bqaaiaadUgaaaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaacYcacaaMe8UaeqyYdCNaeyypa0JaaGymaiaaikdacaaMe8UaaeOCaiaabggacaqGKbGaae4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaadUgacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaGynaiaaicdacaaMe8UaaeyBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiabgsJiCjaadAhacqGH9aqpdaWcaaqaaiaaigdacaaIYaaabaGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaaaaiabg2da9iaaikdacaaI0aGaaGimaiaaicdacaaMe8Uaae4yaiaab2gacaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaeyinIWLaae4vaiaabwgacaaMe8Uaae4BaiaabkgacaqGZbGaaeyzaiaabkhacaqG2bGaaeyzaiaaysW7caqG0bGaaeiAaiaabggacaqG0bGaaeilaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8UaaeODaiaabwgacaqGSbGaae4BaiaabogacaqGPbGaaeiDaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabccacaqGVbGaae4CaiaabogacaqGPbGaaeiBaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGHbGaaeiDaiaaysW7caqG4bGaaGjbVlaab2dacaaMe8UaaeymaiaabccacaqGJbGaaeyBaiaabccacaqGHbGaaeOBaiaabsgacaaMe8UaaeiDaiaaysW7caqG9aGaaGjbVlaabgdacaqGGaGaae4CaiaabccacaqGPbGaae4CaiaabccacaqGUbGaae4BaiaabshacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabYgacaqGGaGaaeiDaiaab+gacaqGGaGaaeODaiaabwgacaqGSbGaae4BaiaabogacaqGPbGaaeiDaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaaMe8UaaeiCaiaabkhacaqGVbGaaeiCaiaabggacaqGNbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaeivaiaabIgacaqGLbGaaGjbVlaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaabogacaqGVbGaaeOBaiaab6gacaqGLbGaae4yaiaabshacaqGPbGaaeOBaiaabEgacaaMe8UaaeiCaiaabkhacaqGVbGaaeiCaiaabggacaqGNbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4yaiaab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGGaGaaeiDaiaab+gacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaabccacaqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaWGRbGaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaeq4UdWgaaaqaaiabgsJiCjabeU7aSjabg2da9maalaaabaGaaGOmaiabec8aWbqaaiaadUgaaaGaeyypa0ZaaSaaaeaacaaIYaGaey41aqRaaG4maiaac6cacaaIXaGaaGinaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaI1aGaaGimaaaacqGH9aqpcaaIXaGaaGOmaiaaiwdacaaI2aGaaGjbVlaabogacaqGTbGaeyypa0JaaGymaiaaikdacaGGUaGaaGynaiaaiAdacaaMe8UaaeyBaaqaaiabgsJiCjaabgeacaqGSbGaaeiBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab+gacaqGPbGaaeOBaiaabshacaqGZbGaaeiiaiaabggacaqG0bGaaeiiaiaabsgacaqGPbGaae4CaiaabshacaqGHbGaaeOBaiaabogacaqGLbGaae4CaiaaysW7caqGUbGaeq4UdW2aaeWaaeaacaWGUbGaeyypa0JaeyySaeRaaGymaiaacYcacaaMe8UaeyySaeRaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaGjbVdGaayjkaiaawMcaaiaacYcacaqGGaaabaGaaeyAaiaac6cacaqGLbGaaiOlaiaaysW7cqGHXcqScaaIXaGaaGOmaiaac6cacaaI1aGaaGOnaiaaysW7caWGTbGaaiilaiaaysW7cqGHXcqScaaIYaGaaGynaiaac6cacaaIXaGaaGOmaiaaysW7caWGTbGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaqGHbGaaeOBaiaabsgacaaMe8Uaae4Caiaab+gacaaMe8Uaae4Baiaab6gacaaMe8UaaeOzaiaab+gacaqGYbGaaGjbVlaadIhacqGH9aqpcaaIXaGaaGjbVlaabogacaqGTbGaaeilaiaaysW7caqG3bGaaeyAaiaabYgacaqGSbGaaGjbVlaabkgacaqGLbGaaGjbVlaabIgacaqGHbGaaeODaiaabMgacaqGUbGaae4zaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8Uaae4CaiaabggacaqGTbGaaeyzaiaaysW7caqGKbGaaeyAaiaabohacaqGWbGaaeiBaiaabggacaqGJbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGZbGaaGjbVlaabggacaqGZbGaaGjbVlaabshacaqGObGaaeyzaiaaysW7caqG4bGaaGjbVlaab2dacaaMe8UaaeymaiaaysW7caqGJbGaaeyBaiaaysW7caqGWbGaae4BaiaabMgacaqGUbGaaeiDaiaabohacaaMe8UaaeyyaiaabshacaaMe8oabaGaamiDaiabg2da9iaaikdacaaMe8Uaam4CaiaacYcacaaMe8UaaGynaiaaysW7caWGZbGaaGjbVlaadggacaWGUbGaamizaiaaysW7caaIXaGaaGymaiaaysW7caWGZbGaaiOlaiaabccaaaaa@9E69@

Q.23 A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium.
(a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation?
(b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz?

Ans.

(a) A narrow sound pulse has neither a definite wavelength nor a definite frequency. However, its speed remains the same, which is equal to the speed of sound in that medium.
(b) If the pulse rate is 1 after every 20 seconds, it does not mean that the frequency of note produced by the whistle is 0.05 Hz. Rather, it implies that, 0.05 Hz is the frequency of the repetition of the short pip of the whistle.

Q.24 One end of a long string of linear mass density 8.0 × 10–3 kg m–1 is connected to an electrically driven tuning fork of frequency 256 Hz. The other end passes over a pulley and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At t =0, the left end (fork end) of the string x = 0 has zero transverse displacement (y =0) and is moving along positive y-direction. The amplitude of the wave is 5.0 cm.
Write down the transverse displacement y as function of x and t that describes the wave on the string.

Ans.

The equation of a travelling wave propagating along the positivey-direction is given as: y( x,t ) =asin ( wtkx ) ( i ) Here,linear mass density,μ=8.0× 10 3 kgm 1 Frequency of tuning fork, ν = 256 Hz Amplitude of wave,a= 5.0 cm = 0.05 m ( ii ) Mass of pan,m= 90 kg Tension producedin the stringisgivenas: T=mg = 90 × 9.8 = 882 N Velocity of the transverse wave( v ), is given as: v= T μ = 882 8.0× 10 3 =332 ms 1 Angularfrequencyisgivenas: ω=2πν=2×3.14×256=1608.5=1.6× 10 3 rad s 1 (iii) wavelengthisgivenas: λ= v ν = 332 256 m Propagationconstantisgivenas: k= 2π λ = 2×3.14 332 256 =4.84 m 1 (iv) Substituting the values from equations ( ii ), ( iii ), and ( iv ) in equation ( i ), we get: y( x,t ) = 0.05 sin ( 1.6 × 1 0 3 t 4.84x ) m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqGHbGaaeiiaiaabshacaqGYbGaaeyyaiaabAhacaqGLbGaaeiBaiaabYgacaqGPbGaaeOBaiaabEgacaqGGaGaae4DaiaabggacaqG2bGaaeyzaiaabccacaqGWbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGHbGaaeiBaiaab+gacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab+gacaqGZbGaaeyAaiaabshacaqGPbGaaeODaiaabwgacaaMe8UaaeyEaiaab2cacaqGKbGaaeyAaiaabkhacaqGLbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaaeyEamaabmaabaGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaGaaeiiaiabg2da9iaabggacaqGZbGaaeyAaiaab6gacaqGGaWaaeWaaeaacaqG3bGaaeiDaiaacobicaqGRbGaaeiEaaGaayjkaiaawMcaaiaabccacqGHsgIRcaqGGaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaaabaGaaeisaiaabwgacaqGYbGaaeyzaiaabYcacaaMe8UaaeiBaiaabMgacaqGUbGaaeyzaiaabggacaqGYbGaaeiiaiaab2gacaqGHbGaae4CaiaabohacaqGGaGaaeizaiaabwgacaqGUbGaae4CaiaabMgacaqG0bGaaeyEaiaacYcacaaMe8UaeqiVd0Maeyypa0JaaGioaiaac6cacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaaMe8Uaae4AaiaabEgacaqGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaeOraiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG1bGaaeOBaiaabMgacaqGUbGaae4zaiaabccacaqGMbGaae4BaiaabkhacaqGRbGaaiilaiaabccacqaH9oGBcaqGGaGaeyypa0JaaeiiaiaabkdacaqG1aGaaeOnaiaabccacaqGibGaaeOEaaqaaiaabgeacaqGTbGaaeiCaiaabYgacaqGPbGaaeiDaiaabwhacaqGKbGaaeyzaiaabccacaqGVbGaaeOzaiaabccacaqG3bGaaeyyaiaabAhacaqGLbGaaiilaiaaysW7caqGHbGaeyypa0JaaeiiaiaabwdacaGGUaGaaGimaiaabccacaqGJbGaaeyBaiaabccacqGH9aqpcaqGGaGaaGimaiaac6cacaaIWaGaaeynaiaabccacaqGTbGaaGjbVlabgkziUkaabccadaqadaqaaiaabMgacaqGPbaacaGLOaGaayzkaaaabaGaaeytaiaabggacaqGZbGaae4CaiaabccacaqGVbGaaeOzaiaabccacaqGWbGaaeyyaiaab6gacaGGSaGaaGjbVlaab2gacqGH9aqpcaqGGaGaaeyoaiaaicdacaqGGaGaae4AaiaabEgaaeaacaqGubGaaeyzaiaab6gacaqGZbGaaeyAaiaab+gacaqGUbGaaeiiaiaabchacaqGYbGaae4BaiaabsgacaqG1bGaae4yaiaabwgacaqGKbGaaGjbVlaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaaeOBaiaabEgacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaqG6aaabaGaaeivaiabg2da9iaab2gacaqGNbGaaeiiaiabg2da9iaabccacaqG5aGaaGimaiaabccacqGHxdaTcaqGGaGaaeyoaiaac6cacaqG4aGaaeiiaiabg2da9iaabccacaqG4aGaaeioaiaabkdacaqGGaGaaeOtaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG0bGaaeOCaiaabggacaqGUbGaae4CaiaabAhacaqGLbGaaeOCaiaabohacaqGLbGaaeiiaiaabEhacaqGHbGaaeODaiaabwgacaaMe8+aaeWaaeaacaqG2baacaGLOaGaayzkaaGaaeilaiaabccacaqGPbGaae4CaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabQdaaeaacaWG2bGaeyypa0ZaaOaaaeaadaWcaaqaaiaadsfaaeaacqaH8oqBaaaaleqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiIdacaaI4aGaaGOmaaqaaiaaiIdacaGGUaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaaaaaeqaaOGaeyypa0JaaG4maiaaiodacaaIYaGaaGjbVlaab2gacaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaeyqaiaab6gacaqGNbGaaeyDaiaabYgacaqGHbGaaeOCaiaaysW7caqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaaMe8UaaeyAaiaabohacaaMe8Uaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaqG6aaabaGaeqyYdCNaeyypa0JaaGOmaiabec8aWjabe27aUjabg2da9iaaikdacqGHxdaTcaaIZaGaaiOlaiaaigdacaaI0aGaey41aqRaaGOmaiaaiwdacaaI2aGaeyypa0JaaGymaiaaiAdacaaIWaGaaGioaiaac6cacaaI1aGaeyypa0JaaGymaiaac6cacaaI2aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaGccaaMe8UaamOCaiaadggacaWGKbGaam4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgkziUkaabIcacaqGPbGaaeyAaiaabMgacaqGPaGaaGjbVlaaysW7caaMe8oabaGaae4DaiaabggacaqG2bGaaeyzaiaabYgacaqGLbGaaeOBaiaabEgacaqG0bGaaeiAaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacqaH7oaBcqGH9aqpdaWcaaqaaiaadAhaaeaacqaH9oGBaaGaeyypa0ZaaSaaaeaacaaIZaGaaG4maiaaikdaaeaacaaIYaGaaGynaiaaiAdaaaGaaGjbVlaad2gaaeaacqGH0icxcaqGqbGaaeOCaiaab+gacaqGWbGaaeyyaiaabEgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaaysW7caqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaaeiDaiaaysW7caqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqGHbGaae4CaiaabQdaaeaacaWGRbGaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaeq4UdWgaaiabg2da9maalaaabaGaaGOmaiabgEna0kaaiodacaGGUaGaaGymaiaaisdaaeaadaWcaaqaaiaaiodacaaIZaGaaGOmaaqaaiaaikdacaaI1aGaaGOnaaaaaaGaeyypa0JaaGinaiaac6cacaaI4aGaaGinaiaaysW7caWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyOKH4QaaeikaiaabMgacaqG2bGaaeykaaqaaiaabofacaqG1bGaaeOyaiaabohacaqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGZbGaaeiiaiaabAgacaqGYbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaaeiiamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaqGSaGaaeiiamaabmaabaGaaeyAaiaabMgacaqGPbaacaGLOaGaayzkaaGaaeilaiaabccacaqGHbGaaeOBaiaabsgacaqGGaWaaeWaaeaacaqGPbGaaeODaaGaayjkaiaawMcaaiaabccacaqGPbGaaeOBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccadaqadaqaaiaabMgaaiaawIcacaGLPaaacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaiaabQdaaeaacaqG5bWaaeWaaeaacaqG4bGaaiilaiaabshaaiaawIcacaGLPaaacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaGimaiaabwdacaqGGaGaae4CaiaabMgacaqGUbGaaeiiamaabmaabaGaaeymaiaac6cacaqG2aGaaeiiaiabgEna0kaabccacaqGXaGaaGimamaaCaaaleqabaGaae4maaaakiaabshacaGGtaIaaeiiaiaabsdacaGGUaGaaeioaiaabsdacaqG4baacaGLOaGaayzkaaGaaeiiaiaab2gaaaaa@BA48@

Q.25 A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.

Ans.

Here,operating frequency of the SONAR, ν=40 kHz Speed of theenemy submarine, v e =360 kmh -1 = 100 ms -1 Speed of sound in thewater,v= 1450 ms -1 Asthe source is at rest and the observer(enemysubmarine) is moving toward it, Apparent frequency ( ν ) received and reflected bythe submarine is givenas: ν=( v+ v e v )ν=( 1450+100 1450 )×40=42.76kHz The frequency ( ν ) received by the enemy submarineis given as: ν=( v v+ v s )ν Here, v s =100 ms 1 ν=( 1450 1450+100 )×42.76=45.93kHz MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaab+gacaqGWbGaaeyzaiaabkhacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae4yaiaabMhacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabofacaqGpbGaaeOtaiaabgeacaqGsbGaaiilaiaabccacqaH9oGBcaaMe8Uaeyypa0JaaGjbVlaabsdacaaIWaGaaeiiaiaabUgacaqGibGaaeOEaaqaaiaabofacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaaysW7caqGLbGaaeOBaiaabwgacaqGTbGaaeyEaiaabccacaqGZbGaaeyDaiaabkgacaqGTbGaaeyyaiaabkhacaqGPbGaaeOBaiaabwgacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaaeyzaaqabaGccaaMe8Uaeyypa0JaaGjbVlaabodacaqG2aGaaGimaiaabccacaqGRbGaaeyBaiaabIgadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaeyypa0JaaeiiaiaabgdacaaIWaGaaGimaiaabccacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGtbGaaeiCaiaabwgacaqGLbGaaeizaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaaMe8Uaae4DaiaabggacaqG0bGaaeyzaiaabkhacaqGSaGaaGjbVlaabAhacaaMe8UaaeypaiaaysW7caqGXaGaaeinaiaabwdacaqGWaGaaeiiaiaab2gacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaOqaaiaabgeacaqGZbGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabwhacaqGYbGaae4yaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabshacaqGGaGaaeOCaiaabwgacaqGZbGaaeiDaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab+gacaqGIbGaae4CaiaabwgacaqGYbGaaeODaiaabwgacaqGYbGaaGjbVlaabIcacaqGLbGaaeOBaiaabwgacaqGTbGaaeyEaiaaysW7caqGZbGaaeyDaiaabkgacaqGTbGaaeyyaiaabkhacaqGPbGaaeOBaiaabwgacaqGPaGaaeiiaiaabMgacaqGZbGaaeiiaiaab2gacaqGVbGaaeODaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaae4BaiaabEhacaqGHbGaaeOCaiaabsgacaqGGaGaaeyAaiaabshacaqGSaaabaGaeyinIWLaaeyqaiaabchacaqGWbGaaeyyaiaabkhacaqGLbGaaeOBaiaabshacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiamaabmaabaGaeqyVd4Maae4jaaGaayjkaiaawMcaaiaabccacaqGYbGaaeyzaiaabogacaqGLbGaaeyAaiaabAhacaqGLbGaaeizaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOCaiaabwgacaqGMbGaaeiBaiaabwgacaqGJbGaaeiDaiaabwgacaqGKbGaaeiiaiaabkgacaqG5bGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqGZbGaaeyDaiaabkgacaqGTbGaaeyyaiaabkhacaqGPbGaaeOBaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaaMe8UaaeyyaiaabohacaqG6aaabaGaeqyVd4Maai4jaiabg2da9maabmaabaWaaSaaaeaacaWG2bGaey4kaSIaaeODamaaBaaaleaacaqGLbaabeaaaOqaaiaadAhaaaaacaGLOaGaayzkaaGaeqyVd4Maeyypa0ZaaeWaaeaadaWcaaqaaiaaigdacaaI0aGaaGynaiaaicdacqGHRaWkcaaIXaGaaGimaiaaicdaaeaacaaIXaGaaGinaiaaiwdacaaIWaaaaaGaayjkaiaawMcaaiabgEna0kaaisdacaaIWaGaeyypa0JaaGinaiaaikdacaGGUaGaaG4naiaaiAdacaaMe8Uaam4AaiaadIeacaWG6baabaGaaeivaiaabIgacaqGLbGaaeiiaiaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccadaqadaqaaiabe27aUjaacEcacaGGNaaacaGLOaGaayzkaaGaaeiiaiaabkhacaqGLbGaae4yaiaabwgacaqGPbGaaeODaiaabwgacaqGKbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGLbGaaeOBaiaabwgacaqGTbGaaeyEaiaabccacaqGZbGaaeyDaiaabkgacaqGTbGaaeyyaiaabkhacaqGPbGaaeOBaiaabwgacaaMe8UaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqG6aaabaGaeqyVd4Maai4jaiaacEcacqGH9aqpdaqadaqaamaalaaabaGaamODaaqaaiaadAhacqGHRaWkcaqG2bWaaSbaaSqaaiaadohaaeqaaaaaaOGaayjkaiaawMcaaiabe27aUjaacEcaaeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaaysW7caqG2bWaaSbaaSqaaiaabohaaeqaaOGaeyypa0JaaGymaiaaicdacaaIWaGaaGjbVlaab2gacaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaeyinIWLaeqyVd4Maai4jaiaacEcacqGH9aqpdaqadaqaamaalaaabaGaaGymaiaaisdacaaI1aGaaGimaaqaaiaaigdacaaI0aGaaGynaiaaicdacqGHRaWkcaaIXaGaaGimaiaaicdaaaaacaGLOaGaayzkaaGaey41aqRaaGinaiaaikdacaGGUaGaaG4naiaaiAdacqGH9aqpcaaI0aGaaGynaiaac6cacaaI5aGaaG4maiaaysW7caqGRbGaaeisaiaabQhaaaaa@E122@

Q.26 Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of S wave is about 4.0 km s–1, and that of P wave is 8.0 km s–1. A seismograph records P and S waves from an earthquake. The first P wave arrives 4 min before the first S wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?

Ans.

Let v S and v P be the velocities ofSwavesandPwaves respectively. Let distance between the epicentre and seismograph=L Let t 1 and t 2 be the respective times taken by theS wavesandPwaves to travelto thepositionofseismograph. Then,wehave: L= v S t 1 ( i ) L= v P t 2 ( ii ) Given, v P = 8 kms -1 v S = 4 kms -1 From equations ( i ) and ( ii ), we obtain: v S t 1 = v P t 2 4t 1 = 8t 2 t 1 = 2t 2 ( iii ) Giventhat, t 1 t 2 = 4 min=240 s 2t 2 t 2 = 240 t 2 = 240(iv) Fromequations(iii)and(iv),wehave: t 1 = 2 × 240 = 480 s From equation ( ii ), we obtain: L= 8×240= 1920 km The earthquake occurs at a distance of 1920 kmfromthe seismograph. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabYeacaqGLbGaaeiDaiaaysW7caqG2bWaaSbaaSqaaiaabofaaeqaaOGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqG2bWaaSbaaSqaaiaabcfaaeqaaOGaaGjbVlaabkgacaqGLbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyAaiaabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaGjbVlaabofacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaabohacaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVlaabcfacaaMe8Uaae4DaiaabggacaqG2bGaaeyzaiaabohacaqGGaGaaeOCaiaabwgacaqGZbGaaeiCaiaabwgacaqGJbGaaeiDaiaabMgacaqG2bGaaeyzaiaabYgacaqG5bGaaeOlaaqaaiaabYeacaqGLbGaaeiDaiaabccacaqGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaabccacaqGIbGaaeyzaiaabshacaqG3bGaaeyzaiaabwgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGLbGaaeiCaiaabMgacaqGJbGaaeyzaiaab6gacaqG0bGaaeOCaiaabwgacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabohacaqGLbGaaeyAaiaabohacaqGTbGaae4BaiaabEgacaqGYbGaaeyyaiaabchacaqGObGaaGjbVlaab2dacaaMe8UaaeitaaqaaiaabYeacaqGLbGaaeiDaiaaysW7caqG0bWaaSbaaSqaaiaabgdaaeqaaOGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqG0bWaaSbaaSqaaiaabkdaaeqaaOGaaGjbVlaabkgacaqGLbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabohacaqGWbGaaeyzaiaabogacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaabshacaqGPbGaaeyBaiaabwgacaqGZbGaaeiiaiaabshacaqGHbGaae4AaiaabwgacaqGUbGaaeiiaiaabkgacaqG5bGaaeiiaiaabshacaqGObGaaeyzaiaaysW7caqGtbGaaGjbVdqaaiaabEhacaqGHbGaaeODaiaabwgacaqGZbGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqGqbGaaGjbVlaabEhacaqGHbGaaeODaiaabwgacaqGZbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGYbGaaeyyaiaabAhacaqGLbGaaeiBaiaaysW7caqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaaMe8UaaeiCaiaab+gacaqGZbGaaeyAaiaabshacaqGPbGaae4Baiaab6gacaaMe8Uaae4BaiaabAgacaaMe8Uaae4CaiaabwgacaqGPbGaae4Caiaab2gacaqGVbGaae4zaiaabkhacaqGHbGaaeiCaiaabIgacaqGUaaabaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcacaaMe8Uaae4DaiaabwgacaaMe8UaaeiAaiaabggacaqG2bGaaeyzaiaabQdaaeaacaqGmbGaeyypa0JaaeODamaaBaaaleaacaqGtbaabeaakiaabshadaWgaaWcbaGaaGymaaqabaGccqGHsgIRdaqadaqaaiaabMgaaiaawIcacaGLPaaaaeaacaqGmbGaeyypa0JaaeODamaaBaaaleaacaqGqbaabeaakiaabshadaWgaaWcbaGaaGOmaaqabaGccqGHsgIRdaqadaqaaiaabMgacaqGPbaacaGLOaGaayzkaaaabaGaae4raiaabMgacaqG2bGaaeyzaiaab6gacaqGSaGaaGjbVlaabAhadaWgaaWcbaGaaeiuaaqabaGccqGH9aqpcaqGGaGaaeioaiaabccacaqGRbGaaeyBaiaabohadaahaaWcbeqaaiaab2cacaqGXaaaaaGcbaGaaeODamaaBaaaleaacaqGtbaabeaakiabg2da9iaabccacaqG0aGaaeiiaiaabUgacaqGTbGaae4CamaaCaaaleqabaGaaeylaiaabgdaaaaakeaacaqGgbGaaeOCaiaab+gacaqGTbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccadaqadaqaaiaabMgaaiaawIcacaGLPaaacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaab+gacaqGIbGaaeiDaiaabggacaqGPbGaaeOBaiaabQdaaeaacaqG2bWaaSbaaSqaaiaabofaaeqaaOGaaeiDamaaBaaaleaacaaIXaaabeaakiabg2da9iaabAhadaWgaaWcbaGaaeiuaaqabaGccaqG0bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaeinaiaabshadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaqGGaGaaeioaiaabshadaWgaaWcbaGaaGOmaaqabaaakeaacqGH0icxcaqG0bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaeiiaiaabkdacaqG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOKH46aaeWaaeaacaqGPbGaaeyAaiaabMgaaiaawIcacaGLPaaaaeaacaqGhbGaaeyAaiaabAhacaqGLbGaaeOBaiaaysW7caqG0bGaaeiAaiaabggacaqG0bGaaeilaaqaaiaabshadaWgaaWcbaGaaGymaaqabaGccaGGtaIaaeiDamaaBaaaleaacaaIYaaabeaakiabg2da9iaabccacaqG0aGaaeiiaiaab2gacaqGPbGaaeOBaiaaysW7cqGH9aqpcaaMe8UaaeOmaiaabsdacaaIWaGaaeiiaiaabohaaeaacaqGYaGaaeiDamaaBaaaleaacaaIYaaabeaakiaacobicaqG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaeiiaiaabkdacaqG0aGaaGimaaqaaiabgsJiCjaabshadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaqGGaGaaeOmaiaabsdacaaIWaGaeyOKH4QaaeikaiaabMgacaqG2bGaaeykaaqaaiaabAeacaqGYbGaae4Baiaab2gacaaMe8UaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaaGjbVlaabIcacaqGPbGaaeyAaiaabMgacaqGPaGaaGjbVlaabggacaqGUbGaaeizaiaaysW7caqGOaGaaeyAaiaabAhacaqGPaGaaeilaiaaysW7caqG3bGaaeyzaiaaysW7caqGObGaaeyyaiaabAhacaqGLbGaaeOoaaqaaiaabshadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaqGGaGaaeOmaiaabccacqGHxdaTcaqGGaGaaeOmaiaabsdacaaIWaGaaeiiaiabg2da9iaabccacaqG0aGaaeioaiaaicdacaqGGaGaae4CaaqaaiaabAeacaqGYbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4BaiaabkgacaqG0bGaaeyyaiaabMgacaqGUbGaaeOoaaqaaiaabYeacqGH9aqpcaqGGaGaaeioaiabgEna0kaabkdacaqG0aGaaGimaiabg2da9iaabccacaqGXaGaaeyoaiaabkdacaaIWaGaaeiiaiaabUgacaqGTbaabaGaeyinIWLaaeivaiaabIgacaqGLbGaaeiiaiaabwgacaqGHbGaaeOCaiaabshacaqGObGaaeyCaiaabwhacaqGHbGaae4AaiaabwgacaqGGaGaae4BaiaabogacaqGJbGaaeyDaiaabkhacaqGZbGaaeiiaiaabggacaqG0bGaaeiiaiaabggacaqGGaGaaeizaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeymaiaabMdacaqGYaGaaeimaiaabccacaqGRbGaaeyBaiaaysW7caqGMbGaaeOCaiaab+gacaqGTbGaaGjbVlaabshacaqGObGaaeyzaiaabccacaqGZbGaaeyzaiaabMgacaqGZbGaaeyBaiaab+gacaqGNbGaaeOCaiaabggacaqGWbGaaeiAaiaab6caaaaa@5F7D@

Q.27 A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the sound emission frequency of the bat is 40 kHz. During one fast swoop directly toward a flat wall surface, the bat is moving at 0.03 times the speed of sound in air. What frequency does the bat hear reflected off the wall?

Ans.

Here, frequency of the sound emitted by the bat, ν=40 kHz Velocity of bat,v b =0.03v Here,v=Velocity of sound in air The apparent frequency of the sound striking the wall isgiven bytherelation: ν=( v v v b )ν=( v v0.03v )×40= 40 0.97 kHz This frequency is reflected by the stationarywall andisreceivedbythebatmovingtowardsthewall. v s =0 The frequency( ν ) of the sound receivedis given as: ν=( v+ v b v )ν=( v+0.03v v )× 40 0.97 = 1.03×40 0.97 =42.47kHzMathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWabeqaeaaakqaabeqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaeiiaiaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaaeyzaiaab2gacaqGPbGaaeiDaiaabshacaqGLbGaaeizaiaabccacaqGIbGaaeyEaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOyaiaabggacaqG0bGaaiilaiaabccacqaH9oGBcaaMe8Uaeyypa0JaaGjbVlaabsdacaaIWaGaaeiiaiaabUgacaqGibGaaeOEaaqaaiaabAfacaqGLbGaaeiBaiaab+gacaqGJbGaaeyAaiaabshacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabkgacaqGHbGaaeiDaiaabYcacaqG2bWaaSbaaSqaaiaabkgaaeqaaOGaaGjbVlabg2da9iaaysW7caaIWaGaaiOlaiaaicdacaqGZaGaaeODaaqaaiaabIeacaqGLbGaaeOCaiaabwgacaqGSaGaaGjbVlaabAhacaaMe8UaaeypaiaaysW7caqGwbGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGaaeyEaiaabccacaqGVbGaaeOzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabccacaqGHbGaaeyAaiaabkhaaeaacaqGubGaaeiAaiaabwgacaqGGaGaaeyyaiaabchacaqGWbGaaeyyaiaabkhacaqGLbGaaeOBaiaabshacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabwhacaqGUbGaaeizaiaabccacaqGZbGaaeiDaiaabkhacaqGPbGaae4AaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4DaiaabggacaqGSbGaaeiBaiaabccacaqGPbGaae4CaiaaysW7caqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8UaaeOCaiaabwgacaqGSbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqG6aaabaGaeqyVd4Maai4jaiabg2da9maabmaabaWaaSaaaeaacaWG2baabaGaamODaiabgkHiTiaadAhadaWgaaWcbaGaamOyaaqabaaaaaGccaGLOaGaayzkaaGaeqyVd4Maeyypa0ZaaeWaaeaadaWcaaqaaiaadAhaaeaacaWG2bGaeyOeI0IaaGimaiaac6cacaaIWaGaaG4maiaadAhaaaaacaGLOaGaayzkaaGaaGjbVlabgEna0kaaysW7caaI0aGaaGimaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaaI0aGaaGimaaqaaiaaicdacaGGUaGaaGyoaiaaiEdaaaGaaGjbVlaabUgacaqGibGaaeOEaaqaaiaabsfacaqGObGaaeyAaiaabohacaqGGaGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGaaeOBaiaabogacaqG5bGaaeiiaiaabMgacaqGZbGaaeiiaiaabkhacaqGLbGaaeOzaiaabYgacaqGLbGaae4yaiaabshacaqGLbGaaeizaiaabccacaqGIbGaaeyEaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4CaiaabshacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabggacaqGYbGaaeyEaiaaysW7caqG3bGaaeyyaiaabYgacaqGSbGaaeiiaiaabggacaqGUbGaaeizaiaaysW7caqGPbGaae4CaiaaysW7caqGYbGaaeyzaiaabogacaqGLbGaaeyAaiaabAhacaqGLbGaaeizaiaaysW7caqGIbGaaeyEaiaaysW7caqG0bGaaeiAaiaabwgacaaMe8UaaeOyaiaabggacaqG0bGaaGjbVlaab2gacaqGVbGaaeODaiaabMgacaqGUbGaae4zaiaaysW7caqG0bGaae4BaiaabEhacaqGHbGaaeOCaiaabsgacaqGZbGaaGjbVlaabshacaqGObGaaeyzaiaaysW7caqG3bGaaeyyaiaabYgacaqGSbGaaeOlaaqaaiabgsJiCjaabAhadaWgaaWcbaGaae4CaaqabaGccqGH9aqpcaaIWaaabaGaaeivaiaabIgacaqGLbGaaeiiaiaabAgacaqGYbGaaeyzaiaabghacaqG1bGaaeyzaiaab6gacaqGJbGaaeyEamaabmaabaGaeqyVd4Maai4jaiaacEcaaiaawIcacaGLPaaacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGVbGaaeyDaiaab6gacaqGKbGaaeiiaiaabkhacaqGLbGaae4yaiaabwgacaqGPbGaaeODaiaabwgacaqGKbGaaGjbVlaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabggacaqGZbGaaeOoaaqaaiabe27aUjaacEcacaGGNaGaeyypa0ZaaeWaaeaadaWcaaqaaiaadAhacqGHRaWkcaWG2bWaaSbaaSqaaiaadkgaaeqaaaGcbaGaamODaaaaaiaawIcacaGLPaaacqaH9oGBcaGGNaGaeyypa0ZaaeWaaeaadaWcaaqaaiaadAhacqGHRaWkcaaIWaGaaiOlaiaaicdacaaIZaGaamODaaqaaiaadAhaaaaacaGLOaGaayzkaaGaey41aq7aaSaaaeaacaaI0aGaaGimaaqaaiaaicdacaGGUaGaaGyoaiaaiEdaaaGaeyypa0ZaaSaaaeaacaaIXaGaaiOlaiaaicdacaaIZaGaey41aqRaaGinaiaaicdaaeaacaaIWaGaaiOlaiaaiMdacaaI3aaaaiaaysW7cqGH9aqpcaaMe8UaaGinaiaaikdacaGGUaGaaGinaiaaiEdacaaMe8Uaam4AaiaadIeacaWG6baaaaa@DC59@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Why should I refer to the NCERT Solutions for Class 11 Physics Chapter 15 Waves?

The new topics addressed in this chapter are tough for students of  Class 11. During class hours, students can clarify their doubts from teachers or by accessing reference material available online. . As a result, selecting the appropriate study material necessitates a thorough comprehension of the present CBSE Syllabus 2022-23. All of the chapters in the prescribed textbook are covered in the NCERT Solutions for Class 11 Physics Chapter 15 Waves.

2. How to score more marks in Chapter 15 of NCERT Solutions for Class 11 Physics?

The NCERT Solutions for Class 11 Physics Chapter 15 equip students with a solid foundation of fundamental ideas. The experts at Extramarks provide accurate solutions based on the latest term – II CBSE marks weightage. Students will obtain a better understanding of the concepts that are crucial for the term – II exams by consulting and preparing thoroughly with solutions. Students can retain concepts more successfully with the help of quality answers,  a structured approach and guided practice and doubt-clearing sessions.

 

3. How to differentiate the transverse and longitudinal waves in Chapter 15 of NCERT Solutions for Class 11 Physics?

The main concept presented in Chapter 15 is waves and their qualities. Students can discern longitudinal and transverse as a result of this, based on the problems in the NCERT textbook. Students can also gain a good knowledge and understanding of the concepts that are necessary for the second term exam by regularly using the NCERT Solutions by Extramarks.

4. What are the necessary tips to follow while studying NCERT Class 11 Physics Chapter 15?

Students can follow the  tips given below:

  • The NCERT Solutions by Extramarks can be used by students for reference when answering textbook questions.
  • The answers will assist you in comprehending the logic behind the questions and how to answer them correctly..
  • These can be used by students when they get stuck on a question.
  • These solutions will also be useful to students studying for competitive exams as well.
  • NCERT solutions would be an excellent tailor-made study resource for students to improve their scores and boost their confidence levels as well.

5. What are the factors that influence the velocity of sound?

Some of the factors affecting the velocity of sound are:

  • The square root of the density of the particular gas is always inversely proportional to the velocity of the gas.
  • In a gas, the square of the absolute temperature of sound is always directly proportional to its velocity.
  •  Changes in gas pressure have no effect as long as the temperature remains constant.
  • When comparing dry and moist air, the speed of sound velocity is greater in moist air because the density of moist air is less than that of dry air.

6. What are the fundamental properties of waves?

There are  different  fundamental properties  in every wave. Reflection, refraction, diffraction, and interference are the four basic properties of waves. Wavelength, frequency, amplitude, and speed are all components of waves. A wave is defined by its amplitude, length, and frequency.

7. Is Class 11 Physics Chapter 15 difficult?

No, Chapter 15 of Physics for Class 11 is not difficult. However, good preparation is essential to perform well on the exam. To take advantage of this, the student must thoroughly study all the chapters and highlight all of the key points so that they may be referred to quickly when needed. They should also develop the practice of taking their own notes so that they can remember the concepts and ideas presented in the chapter. Finally, it goes without saying that students should obtain NCERT solutions and practise sample papers, and model question papers shared with students on a regular basis. Undoubtedly students will be able to get good marks now and perform well in other competitive exams later.