NCERT Solutions for Class 11 chemistry chapter 2 – Structure of Atom
If you are looking for NCERT Solutions for Class 11 Chapter 2, we’ve got you covered. Our subject-matter experts have prepared the NCERT Solutions for Chapter 2 Chemistry Class 11 with accuracy to ensure that you ace your exams. You can go ahead and access Class 11 Chemistry Chapter 2 Solutions and refer to the questions and answers for free.
Access NCERT Solutions for Class 11 Chemistry Chapter – 2 Structure of Atom
Chapter 2 – Structure of Atom
Chapter 2 Chemistry Class 11 Covers the Below Topics:
- Discovery of Subatomic Particles
- Discovery of Electron
- Charge to Mass Ratio of Electron
- Charge on the Electron
- Discovery of Protons and Neutrons
- Atomic Models
- Thomson Model of Atom
- Rutherford’s Nuclear Model of Atom
- Atomic Number and Mass Number
- Isobars and Isotopes
- Drawbacks of the Rutherford Model
- Developments Leading to the Bohr’s Model of Atom
- Wave Nature of Electromagnetic Radiation
- Particle Nature of Electromagnetic Radiation: Planck’s Quantum Theory
- Photoelectric Effect
- Dual Behaviour of Electromagnetic Radiation
- Evidence for the quantized* Electronic Energy Levels: Atomic spectra
- Emission and Absorption Spectra
- Line Spectrum of Hydrogen
- The Spectral Lines for Atomic Hydrogen
- Bohr’s Model for Hydrogen Atom
- Explanation of Line Spectrum of Hydrogen
- Limitations of Bohr’s Model
- Towards Quantum Mechanical Model Of the Atom
- Dual Behaviour of Matter
- Heisenberg’s Uncertainty Principle
- Significance of the Uncertainty Principle
- Reasons for the Failure of the Bohr Model
- Quantum Mechanical Model Of Atom
- Hydrogen Atom and the Schrödinger Equation
- Orbitals and Quantum Numbers
- Shapes of Atomic Orbitals
- Energies of Orbital
- Filling of Orbitals in Atom
- Aufbau’s Principle
- Pauli Exclusion Principle
- Hund’s Rule of Maximum Multiplicity
- Electronic Configuration of Atoms
- Stability of Completely Filled and Half-Filled Subshells
Introduction
Chapter 2 Chemistry Class 11 will give students an in-depth explanation of the structure of atoms. The chapter will focus on making the students learn about the existence, fundamentals, and characteristics of atoms, along with theorems related to atoms, features of the quantum mechanical model of atoms, Planck’s quantum theory, nature of electromagnetic radiation, the de Broglie relations and Heisenberg’s uncertainty principle, etc.
Discovery of Subatomic Particles
In this first segment of Chemistry Class 11 Chapter 2 – Structure of Atom, students will learn about the structure of atoms obtained after doing the experiments on electrical discharge through gases. NCERT Solutions for Class 11 Chemistry Chapter 2 by Extramarks has all the answers related to the Discovery of Subatomic particles.
Discovery of Electron
This segment will inform students about the discovery of electrons. Questions regarding the same may appear in the exams and you can refer to NCERT Solutions by Extramarks to prepare yourself.
Charge to Mass Ratio of Electron
The chapter covers details about the ratio of the charge of an electron to the mass of an electron. The entire concept is explained to the students with the help of experiments.
Charge on the Electron
This segment involves the interpretation of the value of the charge on an electron.
Discovery of Protons and Neutrons
This part of the chapter informs students about how protons and neutrons were discovered. To understand this better, students can refer to Extramarks NCERT Solutions Class 11.
Atomic Models
This section of the chapter discusses the structure of two different atomic models. The purpose behind proposing these is to explain the distribution of charged particles inside an atom.
Thomson Model of Atom
The Plum Pudding Model by scientist J.J Thomson is explained in this section of the chapter. To understand this model deeper, you can refer to NCERT Solutions by Extramarks.
Rutherford’s Nuclear Model of Atom
Scientist Rutherford proposed another model for the structure of a model of an atom. He suggested this after conducting experiments with his students. This section covers this model in detail.
Atomic Number and Mass Number
This section introduces students to the concept of atomic number and mass number of each element, and also shows how to calculate them. Atomic number and mass number are explained well by Extramarks experts. Extramarks solutions can be very useful for understanding these concepts from Class 11 Chemistry Chapter 2.
Isobars and Isotopes
This chapter discusses Isobars and Isotopes. NCERT Solutions for Class 11 Chapter 2 by Extramarks are ideal to refer to for this part of the chapter. Isobars and Isotopes are different but the two are often confused with each other.
Drawbacks of the Rutherford Model
Rutherford did propose the structure of the model of an atom after running experiments with his students, however, there were many drawbacks to his model. Extramarks helps in understanding these drawbacks in depth.
Developments Leading to the Bohr’s Model of Atom
Did you know that Bohr’s Model was built upon Rutherford’s Model? The chapter covers all the aspects that led to the development of Bohr’s Model of Atom.
Wave Nature of Electromagnetic Radiation
This segment involves information about the discovery of the wave nature of electromagnetic radiation.
Particle Nature of Electromagnetic Radiation: Planck’s Quantum Theory
Planck’s Quantum Theory led him to win a Nobel Prize. The complex details of this theory can be difficult to understand but Class 11 Chemistry Chapter 2 NCERT Solutions by Extramarks can aid in reducing the burden to a great extent.
Photoelectric Effect
The photoelectric effect and the experiments that led to its discovery are discussed in this section.
Dual Behaviour of Electromagnetic Radiation
Electromagnetic Radiation has a dual nature. This problem of the dual nature of electromagnetic radiation and its concepts are discussed in the chapter.
Evidence for the quantised* Electronic Energy Levels: Atomic spectra
Atomic Spectra is explained in this segment of the chapter. In case of any doubts, it is advisable to refer to NCERT Solutions for Class 11 Chapter 2 by Extramarks for guidance.
Emission and Absorption Spectra
The emission spectrum, which is a radiation effect, is explained in this section.
Line Spectrum of Hydrogen
The Line Spectrum of Hydrogen is also called the Emission Spectrum of Hydrogen. The reaction when light is passed through hydrogen is explained in detail in this section.
The Spectral Lines for Atomic Hydrogen
Different spectral lines named after scientists who discovered them are discussed in this part.
Bohr’s Model for Hydrogen Atom
The first explanation of the general feature of a hydrogen atom is discussed in this segment.
Explanation of Line Spectrum of Hydrogen
Bohr’s model is used here to explain the varied lines of the spectrum of hydrogen.
Limitations of the Bohr’s Model
Bohr’s Model has limitations and the same are discussed in this section.
Towards Quantum Mechanical Model Of the Atom
This part of the chapter talks about the different theories that tried to solve the limitations faced by Bohr’s Model.
Dual Behaviour of Matter
The dual behaviour of matter being discovered caused a huge leap in academics. The chapter discusses the concept in detail.
Heisenberg’s Uncertainty Principle
Heisenberg had put forward a theory that said it was uncertain to truly know the position or speed of an electron in an atom. The chapter discusses the uncertainty principle.
Significance of the Uncertainty Principle
This part explains the importance of Heisenberg’s Uncertainty Principle.
Reasons for the Failure of the Bohr’s Model
Bohr’s Model failed due to certain reasons and the same is expanded upon in this segment.
Quantum Mechanical Model Of Atom
A new structure of an atom is covered in this section of the chapter. This new structure of the model of an atom is called the Quantum Mechanical Model of Atom. Class 11 Chemistry Chapter 2 NCERT Solutions by Extramarks have explained all complex concepts easily.
Hydrogen Atom and the Schrödinger Equation
This segment has a clear explanation of hydrogen and the Schrödinger Equation.
Orbitals and Quantum Numbers
Quantum numbers help in distinguishing atomic orbitals. The chapter has an in-depth description of orbitals and quantum numbers.
Shapes of Atomic Orbitals
This section covers the factors that influence the shape of atomic orbitals. Students with doubts can refer to Class 11 Chemistry Chapter 2 Solutions provided by Extramarks.
Energies of Orbital
This part teaches students about how an electron’s energy in a hydrogen atom can be measured and discusses the factors it is dependent on.
Filling of Orbitals in Atom
This section of Chapter 2 of Chemistry Class 12 discusses how electrons fill atomic orbitals.
Aufbau’s Principle
Aufbau’s Principle states that electrons fill low-energy atomic orbitals first and then the high-energy atomic orbitals. Students will read more about the principle in the chapter.
Pauli Exclusion Principle
The Pauli Exclusion Principle says that no two electrons in an atom or a molecule have the same four electronic quantum numbers. This principle influences how the orbital space is filled by electrons.
Hund’s Rule of Maximum Multiplicity
This chapter talks about Hund’s Rule of Maximum Multiplicity. Hund’s Rule explains how the same subshell orbitals are filled by electrons.
Electronic Configuration of Atoms
The electronic configuration is the process of how electrons are distributed in the orbitals. This part of the chapter talks about the same.
Stability of Completely Filled and Half-Filled Subshells
The process of stability of electrons that have filled and half-filled subshells and causes of the same are a part of this chapter. The topic is a bit complex, so students must refer to NCERT Solutions Class 11 by Extramarks to get a better understanding of the concept.
About Extramarks
Extramarks is your go-to platform for past years’ question papers, sample papers, and other learning material. We provide study solutions for all the subjects for Class 1 – 12 so that students get a better understanding of the concepts.
Class 11 Chemistry Chapter – 2 NCERT Solutions
If you are looking for NCERT Solutions for Class 11 Chapter 2, we’ve got you covered. Our subject-matter experts have prepared the NCERT Solutions for Chapter 2 Chemistry Class 11 with accuracy to ensure that you ace your exams. You can go ahead and access Class 11 Chemistry Chapter 2 Solutions and refer to the questions and answers for free.
Access NCERT Solutions for Class 11 Chemistry Chapter – 2 Structure of Atom
Chapter 2 – Structure of Atom
Chapter 2 Chemistry Class 11 Covers the Below Topics:
- Discovery of Subatomic Particles
- Discovery of Electron
- Charge to Mass Ratio of Electron
- Charge on the Electron
- Discovery of Protons and Neutrons
- Atomic Models
- Thomson Model of Atom
- Rutherford’s Nuclear Model of Atom
- Atomic Number and Mass Number
- Isobars and Isotopes
- Drawbacks of the Rutherford Model
- Developments Leading to the Bohr’s Model of Atom
- Wave Nature of Electromagnetic Radiation
- Particle Nature of Electromagnetic Radiation: Planck’s Quantum Theory
- Photoelectric Effect
- Dual Behaviour of Electromagnetic Radiation
- Evidence for the quantized* Electronic Energy Levels: Atomic spectra
- Emission and Absorption Spectra
- Line Spectrum of Hydrogen
- The Spectral Lines for Atomic Hydrogen
- Bohr’s Model for Hydrogen Atom
- Explanation of Line Spectrum of Hydrogen
- Limitations of Bohr’s Model
- Towards Quantum Mechanical Model Of the Atom
- Dual Behaviour of Matter
- Heisenberg’s Uncertainty Principle
- Significance of the Uncertainty Principle
- Reasons for the Failure of the Bohr Model
- Quantum Mechanical Model Of Atom
- Hydrogen Atom and the Schrödinger Equation
- Orbitals and Quantum Numbers
- Shapes of Atomic Orbitals
- Energies of Orbital
- Filling of Orbitals in Atom
- Aufbau’s Principle
- Pauli Exclusion Principle
- Hund’s Rule of Maximum Multiplicity
- Electronic Configuration of Atoms
- Stability of Completely Filled and Half-Filled Subshells
Introduction
Chapter 2 Chemistry Class 11 will give students an in-depth explanation of the structure of atoms. The chapter will focus on making the students learn about the existence, fundamentals, and characteristics of atoms, along with theorems related to atoms, features of the quantum mechanical model of atoms, Planck’s quantum theory, nature of electromagnetic radiation, the de Broglie relations and Heisenberg’s uncertainty principle, etc.
Discovery of Subatomic Particles
In this first segment of Chemistry Class 11 Chapter 2 – Structure of Atom, students will learn about the structure of atoms obtained after doing the experiments on electrical discharge through gases. NCERT Solutions for Class 11 Chemistry Chapter 2 by Extramarks has all the answers related to the Discovery of Subatomic particles.
Discovery of Electron
This segment will inform students about the discovery of electrons. Questions regarding the same may appear in the exams and you can refer to NCERT Solutions by Extramarks to prepare yourself.
Charge to Mass Ratio of Electron
The chapter covers details about the ratio of the charge of an electron to the mass of an electron. The entire concept is explained to the students with the help of experiments.
Charge on the Electron
This segment involves the interpretation of the value of the charge on an electron.
Discovery of Protons and Neutrons
This part of the chapter informs students about how protons and neutrons were discovered. To understand this better, students can refer to Extramarks NCERT Solutions Class 11.
Atomic Models
This section of the chapter discusses the structure of two different atomic models. The purpose behind proposing these is to explain the distribution of charged particles inside an atom.
Thomson Model of Atom
The Plum Pudding Model by scientist J.J Thomson is explained in this section of the chapter. To understand this model deeper, you can refer to NCERT Solutions by Extramarks.
Rutherford’s Nuclear Model of Atom
Scientist Rutherford proposed another model for the structure of a model of an atom. He suggested this after conducting experiments with his students. This section covers this model in detail.
Atomic Number and Mass Number
This section introduces students to the concept of atomic number and mass number of each element, and also shows how to calculate them. Atomic number and mass number are explained well by Extramarks experts. Extramarks solutions can be very useful for understanding these concepts from Class 11 Chemistry Chapter 2.
Isobars and Isotopes
This chapter discusses Isobars and Isotopes. NCERT Solutions for Class 11 Chapter 2 by Extramarks are ideal to refer to for this part of the chapter. Isobars and Isotopes are different but the two are often confused with each other.
Drawbacks of the Rutherford Model
Rutherford did propose the structure of the model of an atom after running experiments with his students, however, there were many drawbacks to his model. Extramarks helps in understanding these drawbacks in depth.
Developments Leading to the Bohr’s Model of Atom
Did you know that Bohr’s Model was built upon Rutherford’s Model? The chapter covers all the aspects that led to the development of Bohr’s Model of Atom.
Wave Nature of Electromagnetic Radiation
This segment involves information about the discovery of the wave nature of electromagnetic radiation.
Particle Nature of Electromagnetic Radiation: Planck’s Quantum Theory
Planck’s Quantum Theory led him to win a Nobel Prize. The complex details of this theory can be difficult to understand but Class 11 Chemistry Chapter 2 NCERT Solutions by Extramarks can aid in reducing the burden to a great extent.
Photoelectric Effect
The photoelectric effect and the experiments that led to its discovery are discussed in this section.
Dual Behaviour of Electromagnetic Radiation
Electromagnetic Radiation has a dual nature. This problem of the dual nature of electromagnetic radiation and its concepts are discussed in the chapter.
Evidence for the quantised* Electronic Energy Levels: Atomic spectra
Atomic Spectra is explained in this segment of the chapter. In case of any doubts, it is advisable to refer to NCERT Solutions for Class 11 Chapter 2 by Extramarks for guidance.
Emission and Absorption Spectra
The emission spectrum, which is a radiation effect, is explained in this section.
Line Spectrum of Hydrogen
The Line Spectrum of Hydrogen is also called the Emission Spectrum of Hydrogen. The reaction when light is passed through hydrogen is explained in detail in this section.
The Spectral Lines for Atomic Hydrogen
Different spectral lines named after scientists who discovered them are discussed in this part.
Bohr’s Model for Hydrogen Atom
The first explanation of the general feature of a hydrogen atom is discussed in this segment.
Explanation of Line Spectrum of Hydrogen
Bohr’s model is used here to explain the varied lines of the spectrum of hydrogen.
Limitations of the Bohr’s Model
Bohr’s Model has limitations and the same are discussed in this section.
Towards Quantum Mechanical Model Of the Atom
This part of the chapter talks about the different theories that tried to solve the limitations faced by Bohr’s Model.
Dual Behaviour of Matter
The dual behaviour of matter being discovered caused a huge leap in academics. The chapter discusses the concept in detail.
Heisenberg’s Uncertainty Principle
Heisenberg had put forward a theory that said it was uncertain to truly know the position or speed of an electron in an atom. The chapter discusses the uncertainty principle.
Significance of the Uncertainty Principle
This part explains the importance of Heisenberg’s Uncertainty Principle.
Reasons for the Failure of the Bohr’s Model
Bohr’s Model failed due to certain reasons and the same is expanded upon in this segment.
Quantum Mechanical Model Of Atom
A new structure of an atom is covered in this section of the chapter. This new structure of the model of an atom is called the Quantum Mechanical Model of Atom. Class 11 Chemistry Chapter 2 NCERT Solutions by Extramarks have explained all complex concepts easily.
Hydrogen Atom and the Schrödinger Equation
This segment has a clear explanation of hydrogen and the Schrödinger Equation.
Orbitals and Quantum Numbers
Quantum numbers help in distinguishing atomic orbitals. The chapter has an in-depth description of orbitals and quantum numbers.
Shapes of Atomic Orbitals
This section covers the factors that influence the shape of atomic orbitals. Students with doubts can refer to Class 11 Chemistry Chapter 2 Solutions provided by Extramarks.
Energies of Orbital
This part teaches students about how an electron’s energy in a hydrogen atom can be measured and discusses the factors it is dependent on.
Filling of Orbitals in Atom
This section of Chapter 2 of Chemistry Class 12 discusses how electrons fill atomic orbitals.
Aufbau’s Principle
Aufbau’s Principle states that electrons fill low-energy atomic orbitals first and then the high-energy atomic orbitals. Students will read more about the principle in the chapter.
Pauli Exclusion Principle
The Pauli Exclusion Principle says that no two electrons in an atom or a molecule have the same four electronic quantum numbers. This principle influences how the orbital space is filled by electrons.
Hund’s Rule of Maximum Multiplicity
This chapter talks about Hund’s Rule of Maximum Multiplicity. Hund’s Rule explains how the same subshell orbitals are filled by electrons.
Electronic Configuration of Atoms
The electronic configuration is the process of how electrons are distributed in the orbitals. This part of the chapter talks about the same.
Stability of Completely Filled and Half-Filled Subshells
The process of stability of electrons that have filled and half-filled subshells and causes of the same are a part of this chapter. The topic is a bit complex, so students must refer to NCERT Solutions Class 11 by Extramarks to get a better understanding of the concept.
About Extramarks
Extramarks is your go-to platform for past years’ question papers, sample papers, and other learning material. We provide study solutions for all the subjects for Class 1 – 12 so that students get a better understanding of the concepts.
Q.1 (i) Calculate the number of electrons which will together weigh one gram.
(ii) Calculate the mass and charge of one mole of electrons.
Ans.
(i) Mass of one electron = 9.10939 × 10–31kg
Number of electrons that weigh 9.10939 × 10–31kg = 1
Number of electrons that will weigh 1 g or 1 × 10–3 kg
= 0.1098 × 1028
= 1.098 x 1027
(ii) Mass of one electron = 9.10939 × 10–31kg
Mass of one mole of electron =
(6.022 × 1023) ×(9.10939 ×10–31kg)
= 5.48 × 10–7kg
Charge on one electron = 1.6022 × 10–19coulomb
Charge on one mole of electron
= (1.6022 × 10–19C) (6.022 × 1023)
= 9.65 × 104C
Q.2 (i) Calculate the total number of electrons present in one mole of methane.
(ii) Find
(a) the total number and
(b) the total mass of neutrons in 7 mg of 14C. (Assume that mass of a neutron =
1.675 × 10-27kg).
(iii) Find
(a) the total number and
(b) the total mass of protons in 34 mg of NH3 at STP. Will the answer change if the temperature and pressure are changed?
Ans.
(i) Number of electrons present in 1 molecule of methane (CH4) = {1(6) + 4(1)} = 10
Number of electrons present in 1 mole i.e., 6.023 ×1023 molecules of methane = 6.022 × 1023× 10
= 6.022 × 1024
(ii) (a) Number of atoms of 14C in 1 mole= 6.023 × 1023
Since, 1 atom of 14C contains (14 – 6) i.e., 8 neutrons, the total number of neutrons in 14 g (or 1 mole) of 14C is (6.023 × 1023) × 8.
Therefore, 14 g of 14C contains (6.023 × 1023× 8) neutrons.
Therefore, number of neutrons in 7 mg of 14C is
= 2.4092 × 1021
(b) Mass of one neutron = 1.67493 × 10–27kg
Mass of total neutrons in 7 mg of 14C =
= (2.4092 × 1021) (1.67493× 10–27kg)
= 4.0352 × 10–6kg
(iii) (a) 1 mole of N of NH3 = {1(14) + 3(1)} g of NH3
= 17 g of NH3 = 6.022× 1023 molecules of NH3
Total number of protons present in 1 molecule of NH3
= {1(7) + 3(1)} =10
Number of protons in 6.023 × 1023 molecules of NH3
= (6.023 × 1023) (10)
= 6.023 × 1024
=17 g of NH3 contains (6.023 × 1024) protons
Number of protons in 34 mg of NH3
= 1.2046 × 1022
(b) Mass of one proton = 1.67493 × 10–27kg
Total mass of protons in 34 mg of NH3
= (1.67493 × 10–27kg) (1.2046 × 1022)
= 2.0176 × 10–5kg
The number of sub-atomic particles (protons, electrons, and neutrons) in an atom is independent of temperature and pressure conditions. Hence, the obtained values will remain unchanged if the temperature and pressure is changed.
Q.3 How many neutrons and protons are there in the following nuclei?
Ans.
Atomic mass of
= 13
Atomic number = Number of protons = 6
Number of neutrons = (Atomic mass – Atomic number)
= 13 – 6 = 7
Atomic mass of
=16
Atomic number = 8 and Number of protons = 8
Number of neutrons = (Atomic mass – Atomic number)
= 16 – 8 = 8
Atomic mass of
=24
Atomic number = Number of protons = 12
Number of neutrons = (Atomic mass – Atomic number)
= 24 – 12 = 12
Atomic mass of
=56
Atomic number = Number of protons = 26
Number of neutrons = (Atomic mass – Atomic number)
= 56 – 26 = 30
Atomic mass of
=88
Atomic number = Number of protons = 38
Number of neutrons = (Atomic mass – Atomic number)
= 88 – 38 = 50
Q.4 Write the complete symbol for the atom with the given atomic number (Z) and Atomic mass (A)
(i) Z = 17, A = 35
(ii) Z = 92, A = 233
(iii) Z = 4, A = 9
Ans.
Q.5 Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number
of the yellow light.
Ans.
λ= c/ν
or, ν = c/ λ ——— (1)
Here,
ν = frequency of yellow light
c = velocity of light in vacuum = 3 × 108 m/s
λ= wavelength of yellow light = 580 nm = 580 × 10–9m
Substituting the values in expression (1):
Thus, frequency of yellow light emitted from the sodium lamp is = 5.17 × 1014s–1.
Wave number of yellow light, ν = 1/λ.
Q.6 Find energy of each of the photons which
(i) correspond to light of frequency 3× 1015 Hz
(ii) have wavelength of 0.50 Å.
Ans.
(i) Energy (E) of a photon is given by the expression,
E = hν
Where,
h = Planck’s constant = 6.626 × 10–34Js
ν= frequency of light = 3 × 1015Hz
Substituting the values in the given expression of E:
E= (6.626 x 10-34) (3 x 1015)
=1.988 × 10–18J
(ii) Energy (E) of a photon having wavelength (λ) is given by the expression,
E = h(c/λ)
h = Planck’s constant = 6.626 × 10–34Js
c = velocity of light in vacuum = 3 × 108m/s
λ =0.50 Å = 0.50 x 10–10 m
Substituting the values in the given expression of E:
Q.7 Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
Ans.
Frequency (ν) of light = 1/period
Wavelength (λ) of light = c/ν
Where, c = velocity of light in vacuum = 3×108 m/s
Substituting the value in the given expression of λ:
Wave number
of light = 1/λ
Q.8 What is the number of photons of light with a wavelength of 4000 pm that provide 1 J of energy?
Ans.
Energy (E) of a photon = hν
Energy (En) of ‘n’ photons = nhν
Where,
λ = wavelength of light = 4000 pm = 4000 ×10–12m
c = velocity of light in vacuum = 3 × 108 m/s
h = Planck’s constant = 6.626 × 10–34 Js
Substituting the values in the given expression of n, i.e.,
We get,
Hence, the number of photons with a wavelength of 4000 pm and energy of 1 J are 2.012 × 1016.
Q.9 A photon of wavelength 4 × 10–7m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate (i) the energy of the photon (eV), (ii) the kinetic energy of the emission, and (iii) the velocity of the photo electron (1 eV= 1.6020 × 10–19 J)
Ans.
(i) Energy (E) of a photon= hν= hc/λ
Where, h = Planck’s constant = 6.626 × 10–34 Js
c = velocity of light in vacuum = 3 × 108 m/s
λ = wavelength of photon = 4 × 10–7 m
Substituting the values in the given expression of E:
Hence, the energy of the photon is 4.97 × 10–19 J.
(ii) The kinetic energy of emission Ek is given by
= hν – hν0 = (E–W) eV
Where W is the work function. Let us place value of E and W in electron volt in the above equation, we get
= (3.1020 – 2.13) eV
= 0.9720 eV
Hence, the kinetic energy of emission is 0.97 eV.
(iii) The velocity of a photoelectron (v) can be calculated by the following expression:
Where, (hν – hν0) is kinetic energy of emission in Joules and ‘m’ is the mass of the photoelectron. Multiply kinetic energy with 1.6020 × 10–19 to convert into joules. Substitute these values in the given expression of v:
v = 5.84 × 105 ms–1
Hence, the velocity of the photo electron is 5.84 × 105 ms-1.
Q.10 Electromagnetic radiation of wavelength 242 nm is just sufficient to ionise the sodium atom. Calculate the ionisation energy of sodium in kJ mol–1
Ans.
Energy of sodium (E) = NAhcλ
= 4.947 × 105 J mol–1
= 494 kJ mol-1
Q.11 A 25 watt bulb emits monochromatic yellow light of wavelength of 0.57 mm. Calculate the rate of emission of quanta per second.
Ans.
Power of bulb, P = 25 Watt = 25 Js–1
Energy of one photon, E = hν = hc/λ
Substituting the values in the given expression of E:
E = 34.87 × 10–20 J
Rate of emission of quanta per second, R
Q.12 Electrons are emitted with zero velocity from a metal surface when it is exposed to radiation of wavelength 6800 Å. Calculate threshold frequency (ν0) and work function (W0) of the metal.
Ans.
Threshold wavelength of radian (λ0) =6800 Å
= 6800 × 10–10 m
Threshold frequency (ν0) of the metal= c/λ0
= 4.41 × 1014 s-1
Thus, the threshold frequency (ν0) of the metal is 4.41 × 1014 s–1
Hence, work function (W0) of the metal = hν0
Q.13 What is the wavelength of light emitted when the electron in a hydrogen atom undergoes transition from an energy level with n = 4 to an energy level with n = 2?
Ans.
Transition of hydrogen atom from an energy level with ni = 4 to nf = 2 will give rise to a spectral line of the Balmer series. The energy involved in the transition is given by the relation,
Substituting the values in the given expression of E:
E = – (4.0875 × 10–19J)
The negative sign indicates the energy of emission.
Wavelength of light emitted, λ = hc/E
Substitute these values in the given expression of λ:
Q.14 How much energy is required to ionise a H atom if the electron occupies n = 5 orbit? Compare your answer with the ionization enthalpy of H atom (energy required to remove the electron from n = 1 orbit).
Ans.
The expression of energy is given by,
Z = atomic number of the atom
n = principal quantum number
For ionisation from n1= 5 to n2 = ∞
= 0.0872 x 10-18 J
ΔE = 8.72 x 10-20 J
Hence, the energy required for ionization from n = 5 to n = ∞ is 8.72 × 10–20J.
Energy required for n1 = 1 to n = ∞,
ΔE’ = E ∞ – E1
= 2.18 x 10-18 J
On comparing the ionisation energies,
ΔE/ΔE’ =2.18 x 10-18 J / 8.72 x 10-20 J = 25
Thus, the energy required to remove an electron from n=1 orbit in a hydrogen atom is 25 times the energy required to remove an electron from n = 5 orbit.
Q.15 What is the maximum number of emission lines when the excited electron of an H atom in n = 6 drops to the ground state?
Ans.
When the excited electron of an H atom in n = 6 drops to the ground state, the following transitions are possible
Thus, a total number of (5 + 4 + 3 + 2 + 1) 15 lines will be obtained in the emission spectrum.
The numbers of spectral lines produced when an electron in the nth level drops down to the ground state is given by n (n – 1)/2.
When n = 6, the Number of spectral lines = 6 (6 – 1)/2 = 15
Q.16
(i) The energy associated with the first orbit in the hydrogen atom is –2.18 ×10–18 J atom–1. What is the energy associated with the fifth orbit?
(ii) Calculate the radius of Bohr’s fifth orbit for hydrogen atom.
Ans.
(i) Energy associated with the fifth orbit of hydrogen atom is calculated as:
E5 = – 8.72 × 10–20 J
(ii) Radius of Bohr’s nth orbit for hydrogen atom is given by,
rn = (0.0529 nm) n2
For n = 5, let us calculate radius for hydrogen atom for fifth orbit
r5 = (0.0529 nm) (5)2
r5 = 1.3225 nm
Q.17 Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
Ans.
For the Balmer series, ni = 2. Thus, the expression of wave number
is given by
Wave number is inversely proportional to wavelength of transition. Hence, the longest wavelength transition, wave number has to be the smallest.
For wave number to be minimum, nf should be minimum. For the Balmer series, a transition from ni = 2 to nf = 3 is allowed. Hence, by taking nf = 3, we get:
ν = 1.5236 × 106 m–1
Q.18 What is the energy in Joules, required to shift the electron of the hydrogen atom from the first Bohr orbit to the fifth Bohr orbit and what is the wavelength of the light emitted when the electron returns to the ground state? The ground state electron energy is –2.18 × 10–11 ergs.
Ans.
Let us convert ground state electron energy into joules.
Ground state electron energy = – 2.18 × 10–11 ergs
= – 2.18 × 10–11 × 10–7 J
= – 2.18 × 10–18 J
Energy (E) of the nth Bohr orbit of an atom is given by,
Where, Z = atomic number of the atom
Energy required for shifting the electron from n = 1 to n = 5 is given as:
ΔE = E5 -E1
= 2.0928 x 10-18 J
Wave length of emitted light = hc/E
= 9.498 x 10-8 m
Q.19 The electron energy in hydrogen atom is given by En = (–2.18 × 10–18)/n2 J. Calculate the energy required to remove an electron completely from the n= 2 orbit. What is the longest wavelength of light in cm that can be used to cause this transition?
Ans.
Given,
Energy required for ionization from n = 2 is given by,
= 0.545 x 10-18 J
ΔE = 5.45 x 10-19 J
λ = hc/ΔE
Here, λ is the longest wavelength causing the transition.
= 3647 x 10-10 m
= 3647 Å
Q.20 Calculate the wavelength of an electron moving with a velocity of 2.05 ×107 ms–1.
Ans.
According to de Broglie’s equation,
λ = h/mv
Where,
λ = wavelength of moving particle
m = mass of particle
v= velocity of particle
h = Planck’s constant
Substituting the values in the expression of λ:
Hence, the wavelength of the electron moving with a velocity of 2.05 × 107 ms–1 is 3.548 × 10–11 m.
Q.21 The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Ans.
From de Broglie’s equation,
λ = h/mv
Given,
Kinetic energy (K.E.) of the electron = 3.0 × 10–25 J.
K.E = ½ mv2
v = 812 ms-1
Substituting the value in the expression of λ:
λ= 8.9627 x 10-7 m
Hence, the wavelength of the electron is 8.9627 × 10–7 m.
Q.22 Which of the following are isoelectronic species, i.e., those having the same number of electrons? Na+, K+, Mg2+, Ca2+, S2–, Ar
Ans.
Number of electrons in Na+ = 11–1 = 10
K+ = 19–1 = 18
Mg2+= 12–2 = 10
Ca2+ = 20–2 = 18
S2– = 16+2 = 18
Ar = 18
Hence Na+ and Mg2+ are isoelectronic species and
K+, Ca2+, S2–, Ar are isoelectronic species.
Q.23 (i)Write the electronic configurations of the following ions: (a) H– (b) Na+(c) O2–(d) F–
(ii) What are the atomic numbers of elements whose outermost electrons are represented by
(a) 3s1 (b) 2p3 and (c) 3p5?
(iii)Which atoms are indicated by the following configurations?
(a) [He] 2s1
(b) [Ne] 3s23p3
(c) [Ar] 4s23d1.
Ans.
(i) (a) H– ion:
The electronic configuration of H atom is 1s1.
A negative charge on hydrogen indicates the gain of electron by it.
Electronic configuration of H– = 1s2
(b) Na+ ion:
The electronic configuration of Na atom is 1s22s22p63s1.
A positive charge on the species indicates the loss of an electron by it.
Electronic configuration of Na+ =1s2 2s2 2p6 3s0
=1s2 2s2 2p6
(c)O2– ion:
The electronic configuration of O atom is 1s2 2s2 2p4
A dinegative charge on the species indicates that two electrons are gained by it.
Electronic configuration of O2–ion = 1s2 2s2 2p6
(d)F–ion:
The electronic configuration of F atom is 1s2 2s2 2p5.
A negative charge on the species indicates the gain of an electron by it.
Electron configuration of F– ion = 1s2 2s2 2p6
(ii) (a) 3s1:
Completing the electron configuration of the element as = 1s2 2s2 2p6 3s1
Number of electrons present in the atom of the element = 2 + 2 + 6 + 1 = 11
Atomic number of the element = 11
(b)2p3:
Completing the electron configuration of the element as
= 1s22s22p3
Number of electrons present in the atom of the element = 2 + 2 + 3 = 7
Atomic number of the element = 7
(c) 3p5:
Completing the electron configuration of the element as
= 1s22s22p5
Number of electrons present in the atom of the element = 2 + 2 + 5 = 9
Atomic number of the element = 9
(iii) (a)[He] 2s1:
The electronic configuration of the element is
[He] 2s1= 1s22s1.
Atomic number of the element = 3
The element is lithium (Li).
b)[Ne] 3s23p3 :
The electronic configuration of the element is
[Ne]3s23p3 = 1s22s22p63s23p3
Atomic number of the element = 15
Hence, the element with the electronic configuration
[Ne] 3s23p3 is phosphorus (P).
(c)[Ar] 4s23d1:
The electronic configuration of the element is [Ar]4s23d1= 1s22s22p63s23p64s23d1.
Atomic number of the element = 21
Hence, the element with the electronic configuration
[Ar] 4s23d1 is scandium (Sc).
Q.24 What is the lowest value of n that allows g- orbitals to exist?
Ans.
For g-orbital, l (Azimuthal quantum number) = 4,
As for any value of principal quantum number(n), the Azimuthal quantum number (l) can have a value from zero to (n–1).
∴ For l= 4, minimum value of n= 5
Q.25 An electron is in one of the 3d orbitals. Give the possible values of n, l and ml for this electron.
Ans.
For the 3d orbital:
Principal quantum number (n) = 3
Azimuthal quantum number (l) = 2
Magnetic quantum number (ml) = –2,–1, 0, 1, 2
Q.26 An atom of an element contains 29 electrons and 35 neutrons. Deduce
(i) the number of protons and (ii) the electronic configuration of the element.
Ans.
(i) For a neutral atom, number of protons is equal to the number of electrons. Thus the number of protons in the atom of given element = 29.
(ii)The electronic configuration of the atom is
= 1s22s22p63s23p64s13d10.
Q.27 Give the number of electrons in the species H2+, H2, and O2+.
Ans.
Number of electrons present in hydrogen molecule (H2)
=1+1 = 2
Number of electrons in H2+ = 2-1= 1
Number of electrons in H2= 1 + 1 = 2
Number of electrons present in oxygen molecule (O2) = 8 + 8 = 16
Number of electrons in O2+ = 16 – 1 = 15
Q.28 (i) An atomic orbital has n = 3. What are the possible values of l and ml?
(ii) List the quantum numbers (ml and l) of electrons for 3d orbital.
(iii) Which of the following orbitals are possible? 1p, 2s, 2p and 3f
Ans.
(i) n = 3 (Given)
For a given value of n, l can have values from 0 to
(n– 1).
For n= 3, l= 0, 1, 2
For a given value of l, ml can have (2l+ 1) values
For l= 0, m= 0
l= 1, m= – 1, 0, 1
l= 2, m= – 2, – 1, 0, 1, 2
Thus, for n= 3 l= 0, 1, 2 m0= 0
m1= – 1, 0, 1 m2= – 2, – 1, 0, 1, 2
(ii) For 3d orbital, l= 2. For a given value of l, ml can have (2l+ 1) values i.e., 5 values.
∴ For l = 2, ml = – 2, – 1, 0, 1, 2
(iii) Among the given orbitals only 2s and 2p are possible. 1p and 3f cannot exist.
For p-orbital, l= 1.
For a given value of n, l can have values from zero to (n– 1).
∴ For l =1, the minimum value of n is 2.
Similarly, for f-orbital, l = 3.
For l= 3, the minimum value of n is 4.
Hence, 1p and 3f do not exist.
Q.29 Using s, p, d notations, describe the orbital with the following quantum numbers. (a) n= 1, l = 0; (b)n= 3; l=1 (c)n = 4; l= 2; (d)n= 4; l=3
Ans.
(a) For n= 1, l= 0 (Given), the orbital is 1s.
(b)For n= 3 and l= 1, the orbital is 3p.
(c) For n= 4 and l= 2, the orbital is 4d.
(d) For n= 4 and l= 3, the orbital is 4f.
Q.30 Explain, giving reasons, which of the following sets of quantum numbers are not possible.
Ans.
(a) The given set of quantum numbers is not possible because the value of the principal quantum number (n) cannot be zero.
(b) The given set of quantum numbers is possible.
(c)The given set of quantum numbers is not possible.
For a given value of n, ‘l’ can have values from zero to (n– 1). For n= 1, l= 0 and not 1.
(d)The given set of quantum numbers is possible.
(e) The given set of quantum numbers is not possible.
For n= 3, l= 0 to (3 – 1),i.e., l= 0 to 2 or 0, 1, 2
(f)The given set of quantum numbers is possible.
Q.31 How many electrons in an atom may have the following quantum numbers?
(a) n= 4, ms=–1/2 and (b) n=3, l=0
Ans.
(a) Total number of electrons in an atom for a value of n= 2n2
For n=4, total number of electrons= 2(4)2 =32.
The given element has a fully filled orbital as
1s2 2s2 2p6 3s2 3p6 4s2 3d10
Hence, all the electrons are paired.
Number of electrons (having n= 4 and ms=–1/2) = 16
(b) n = 3, l= 0 indicates that the electrons are present in the 3s orbital. Therefore, the number of electrons having n= 3 and l= 0 is 2.
Q.32 Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.
Ans.
Since a hydrogen atom has only one electron, according to Bohr’s postulate, the angular momentum of electron is given by:
Where,
n = 1, 2, 3…
According to de Broglie’s equation:
Substituting the value of ‘mv’ from equation (2) in equation (1):
Since ‘2πr’ represents the circumference of the Bohr orbit (r), it is proved by equation (3) that the circumference of the Bohr orbit of the hydrogen atom is an integral multiple of de Broglie’s wavelength associated with the electron revolving around the orbit.
Q.33 What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition n= 4 to n= 2 of He+ spectrum?
Ans.
For He+ ion, expression of the wave number
associated with the Balmer transition, n=4 to n=2
Where, n1= 2, and n2=4
Z = atomic number of helium
Comparing above two equations the desired transition for hydrogen will have the same wavelength as that of He+.
By hit and trail method, the equality given by equation (1) is true only when
n1= 1 and n2= 2.
The transition for n2= 2 to n1= 1 in hydrogen spectrum would have the same wavelength as Balmer transition n= 4 to n = 2 of He+ spectrum.
Q.34 Calculate the energy required for the process
The ionization energy for the H atom in the ground state is 2.18 × 10–18 J atom–1.
Ans.
Energy associated with hydrogen-like species is given by,
For ground state of hydrogen atom,
ΔE = E ∞–E1
ΔE= 2.18x 10-18 J
For the given process,
An electron is removed from n= 1 to n= ∞.
ΔE = E ∞-E1
ΔE= 8.72 x 10-18 J
The energy required for the process= 8.72 x 10-18 J.
Q.35 If the diameter of a carbon atom is 0.15 nm, calculate the number of carbon atoms which can be placed side by side in a straight line across length of scale of length 20 cm long.
Ans.
1 m= 100 cm, or 1cm= 10-2 m
Length of the scale = 20 cm= 20 × 10–2m
Diameter of a carbon atom = 0.15 nm= 0.15 × 10–9m
One carbon atom occupies 0.15 × 10–9m
Number of carbon atoms that can be placed in a straight line
= 1.33 x 109
Q.36 2 × 108atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is 2.4 cm.
Ans.
Number of carbon atoms present = 2 × 108
Length of the given arrangement = 2.4 cm
Diameter of carbon atom
Radius of carbon atom = (Diameter/2)
Q.37 The diameter of zinc atom is 2.6Å Calculate (a) radius of zinc atom in pm and (b) number of atoms present in a length of 1.6 cm if the zinc atoms are arranged side by side lengthwise.
Ans.
(a) Radius of zinc = (Diameter/2)
=2.6/2 Å
(b) Length of the arrangement = 1.6 cm
= 1.6 x 10-2 m Diameter of zinc atom = 2.6 × 10–10m
Number of zinc atoms present in the arrangement
Q.38 A certain particle carries 2.5 × 10–16C of static electric charge. Calculate the number of electrons present in it.
Ans.
Charge on one electron = 1.6022 × 10–19 C
= 1.6022 ×10–19 C charge is carried by 1 electron
Number of electrons carrying a charge of 2.5 × 10–16 C
Q.39 In Milikan’s experiment, static electric charge on the oil drops has been obtained by shining X-rays. If the static electric charge on the oil drop is –1.282 × 10–18C, calculate the number of electrons present on it.
Ans.
Charge on the oil drop = – 1.282 ×10–18 C
Charge on one electron = – 1.6022 × 10–19 C
∴Number of electrons present on the oil drop
Q.40 In Rutherford’s experiment, generally the thin foil of heavy atoms, like gold, platinum etc. have been used to be bombarded by the α-particles. If the thin foil of light atoms like aluminium etc. is used, what difference would be observed from the above results?
Ans.
A thin foil of lighter atoms cannot give the same results as given with the foil of heavier atoms.
The lighter atoms will not cause enough deflection of α- particles because they would be able to carry very little positive charge.
Q.41 Symbols
can be written, whereas symbols
are not acceptable. Answer briefly.
Ans.
The convenient way of representing an element with its atomic mass (A) and atomic number (Z) is
Atomic mass of Br is 79, but atomic number Z is 35, thus the symbol
is acceptable but
is not acceptable.
Again, the atomic number of an element is constant, but the atomic mass of an element depends
upon the relative abundance of its isotopes, so
can be written but
can not be written.
Q.42 An element with mass number 81 contains 31.7% more neutrons as compared to protons. Assign the atomic symbol.
Ans.
Let the number of protons in the element be x. Number of neutrons in the element = x + 31.7% of x
= x + 0.317 x = 1.317 x
According to the question,
Mass number of the element = 81
(Number of protons + number of neutrons) = 81
X= 35
The number of protons in the element is 35.
Since the atomic number of an atom is defined as the number of protons present in its nucleus, the atomic number of the given element is 35.
The atomic symbol of the element is
Q.43 An ion with mass number 37 possesses one unit of negative charge. If the ion contains 11.1% more neutrons than the electrons, find the symbol of the ion.
Ans.
Let the number of electrons in the ion carrying a negative charge be x.
Then, number of neutrons present = x+ 11.1% of x
= x + 0.111x = 1.111x
Number of electrons in the neutral atom = (x– 1)
(When an ion carries a negative charge, it carries an extra electron).
Number of protons in the neutral atom = (x – 1)
Mass number of the ion = 37
So, (x– 1) + 1.111x= 37
Or, 2.111x= 38 or, x= 18
The symbol of the ion is
Q.44 An ion with mass number 56 contains 3 units of positive charge and 30.4% more neutrons than electrons. Assign the symbol to this ion.
Ans.
Let the number of electrons present A3+ be x.
Number of neutrons in it = x + 30.4% of x = 1.304x
Since the ion is tri-positive,
Number of electrons in neutral atom = x+ 3 = Number of protons in neutral atom
Mass number of the ion = 56
Number of protons = x + 3 = 23 + 3 = 26
The symbol of the
Q.45 Arrange the following type of radiations in increasing order of frequency: (a) radiation from microwave oven (b) amber light from traffic signal (c) radiation from FM radio (d) cosmic rays from outer space and (e) X-rays.
Ans.
The increasing order of frequency is as follows:
Radiation from FM radio < radiation from microwave oven < amber light < X- rays < Cosmic rays
Frequency is inversely proportional to the wavelength.
The increasing order of wavelength is as follows:
Cosmic rays < X-rays < amber light < radiation from microwave ovens < radiation of FM radio.
Q.46 Nitrogen laser produces a radiation at a wave length of 337.1 nm. If the number of photons emitted is 5.6 × 1024, calculate the power of this laser.
Ans.
Power of laser = Energy with which it emits photons
Where,
N= number of photons emitted
h = Planck’s constant
c = velocity of radiation
λ = wavelength of radiation
Substituting the values in the given expression of Energy (E):
Energy (E):
E = 0.32 × 107J
= 3.2 × 106J
The power of the laser is 3.2 × 106J.
Q.47 Neon gas is generally used in the sign boards. If it emits strongly at 616 nm, calculate (a) the frequency of emission, (b) distance traveled by this radiation in 30 s (c) energy of quantum and (d) number of quanta present if it produces 2 J of energy.
Ans.
Wavelength of radiation emitted = 616 nm
= 616 × 10–9m (Given)
Where,
c= velocity of radiation
λ = wavelength of radiation
Substituting the values in the given expression (ν)
= 4.87 × 1014s–1
Frequency of emission (ν) = 4.87 × 1014s-1
Distance travelled by this radiation in 30 s
= (3.0 × 108ms–1) (30 s)
= 9.0 × 109m
(6.626 × 10–34Js) (4.87 × 1014s–1)
(c) Energy of quantum (E) = 32.27 × 10–20J
=
Therefore, 32.27 × 10–20J of energy is present in 1 quantum.
Number of quanta in 2 J of energy =
= 6.19 x 1018 = 6.2 x 1018
Q.48 In astronomical observations, signals observed from the distant stars are generally weak. If the photon detector receives a total of 3.15 × 10–18J from the radiations of 600 nm, calculate the number of photons received by the detector.
Ans.
From the expression of energy of one photon (E)
Where,
λ = wavelength of radiation
h= Planck’s constant
c= velocity of radiation
Substituting the values in the given expression of E:
E = 3.313 x 10-19 J
Energy of one photon = 3.313 × 10–19J
Number of photons received with 3.15 × 10–18J energy
=9.5
Q.49 Lifetimes of the molecules in the excited states are often measured by using pulsed radiation source of duration nearly in the nano second range. If the radiation source has the duration of 2 ns and the number of photons emitted during the pulse source is 2.5 × 1015, calculate the energy of the source.
Ans.
Frequency of radiation (ν) = 1/ (2.0x 10-9 s)
= 5.0 x 108 s-1
Energy (E) of source = N h ν
Where,
N = number of photons emitted
h = Planck’s constant
ν = frequency of radiation
Substituting the values in the given expression of (E):
E= (2.5 × 1015) (6.626 × 10–34Js) (5.0 × 108s–1)
= 8.282 × 10–10J
Thus the energy of the source = 8.282x 10-10 J
Q.50 The longest wavelength doublet absorption transition is observed at 589 and 589.6 nm. Calculate the frequency of each transition and energy difference between two excited states.
Ans.
λ1= 589nm= 589 x 10-9 m
λ2 =589.6nm= 589.6 x 10-9 m
ΔE= E2 – E1
= h (ν2 – ν1)
= (6.626 x 10-34 Js) (5.093 – 5.088) x 1014 s-1
= 3.31 x 10-22 J
Q.51 The work function for caesium atom is 1.9 eV. Calculate (a) the threshold wavelength and (b) the threshold frequency of the radiation. (c) If the caesium element is irradiated with a wavelength 500 nm, calculate the kinetic energy and the velocity of the ejected photoelectron.
Ans.
Work function (W0) for caesium atom is 1.9 eV.
(a)From the expression
W0 = hc/λ0
we get,
λ0= threshold wavelength
h = Planck’s constant
c = velocity of radiation
Substituting the values in the given expression of (λ0):
We get,
The threshold wavelength is 653 nm.
(b) From the expression W0 = hν0, we get
ν0 = W0/h
Where, ν0 = Threshold frequency
h = Planck’s constant
Substituting the values in the given expression of ν0:
(1 eV = 1.602 × 10–19J)
ν0 = 4.593 × 1014 s–1
The threshold frequency of radiation (ν0) is
4.593 × 1014 s–1.
(c) According to the question:
Wavelength used in irradiation (λ) = 500 nm
Kinetic energy of ejected electron = h (ν–ν0)
= 9.3149 × 10–20 J
Kinetic energy of the ejected photoelectron
= 9.3149 × 10–20J
Since, K.E. = ½ mv2
= 9.3149 x 10-20 J
v = 4.52 × 105 ms–1
The velocity of the ejected photoelectron is 4.52×105ms–1
Q.52 Following results are observed when sodium metal is irradiated with different wavelengths. Calculate (a) threshold wavelength and, (b) Planck’s constant.
λ (nm) | 500 | 450 | 400 |
v x 10-5 (cm s-1) | 2.55 | 4.35 | 5.35 |
Ans.
(a) Assuming the threshold wavelength
Three different equalities can be formed by the given values as:
Solving this equation we get the value of λ0 = 539.68 » 540 nm
(b) Substituting this value in equation (3),we get,
Note: The value of h is not the correct value of Planck’s constant. It is solved according to the values given in NCERT. The correct value of Planck’s constant is
Q.53 The ejection of the photoelectron from the silver metal in the photoelectric effect experiment can be stopped by applying the voltage of 0.35 V when the radiation 256.7 nm is used. Calculate the work function for silver metal.
Ans.
From the principle of conservation of energy, the energy of an incident photon (E) is equal to the sum of the work function (W0) of radiation and its kinetic energy (K.E) i.e.,
E = W0 + K.E.
Or, W0 = E – K.E.
Energy of incident photon (E)= hc/λ
Where,
c = velocity of radiation
h = Planck’s constant
λ= wavelength of radiation
Substituting the values in the given expression of E:
E= 4.83 eV.
The potential applied to silver metal changes to kinetic energy (K.E) of the photoelectron. Hence,
K.E = 0.35 V
Work function, W0= E – K.E = 4.83 eV – 0.35 eV
= 4.48 eV
Q.54 If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electron is ejected out with a velocity of 1.5 × 107ms–1, calculate the energy with which it is bound to the nucleus.
Ans.
Energy of incident photon (E) is given by,
= 1.3252 x 10-15 J = 13.252 x 10-16 J
Energy of the electron ejected (K.E) = ½ mv2
= ½ (9.10939 x 10-31 kg)(1.5 x 107 ms-1)2
= 10.2480 × 10–17 J
= 1.025 × 10–16 J
Hence, the energy with which the electron is bound to the nucleus can be obtained as:
= E – K.E.
= 13.252 × 10–16 J – 1.025 × 10–16 J = 12.227 × 10–16 J
= 7.6 x 103 eV
Q.55 Emission transitions in the Paschen series end at orbit n= 3 and start from orbit n and can be represented as ν= 3.29 × 1015(Hz) [1/32– 1/n2] Calculate the value of n if the transition is observed at 1285 nm. Find the region of the spectrum.
Ans.
Q.56 Calculate the wavelength for the emission transition if it starts from the orbit having radius 1.3225 nm and ends at 211.6 pm. Name the series to which this transition belongs and the region of the spectrum.
Ans.
The radius of the nth orbit of hydrogen-like particles is given by,
For radius (r1) = 1.3225 nm = 1.3225 × 10–9m
= 1322.5 × 10–12m = 1322.5 pm
Or, n1 = 5 and n2 = 2
Thus, the transition is from the 5th orbit to the 2nd orbit. It belongs to the Balmer series.
Wave number
or the transition is given by,
= 2.3037 x 106 m-1
Wavelength (λ) associated with the emission transition is given by,
λ =1
/
= 0.434 ×10–6 m
λ = 434 nm
It lies in the visible region.
Q.57 Dual behaviour of matter proposed by de Broglie led to the discovery of electron microscope often used for the highly magnified images of biological molecules and other types of material. If the velocity of the electron in this microscope is 1.6 × 106ms–1, calculate de Broglie wavelength associated with this electron.
Ans.
From de Broglie’s equation,
λ= 4.55 x 10-10 m, or λ = 455 pm
de Broglie’s wavelength associated with the electron is 455 pm.
Q.58 Similar to electron diffraction, neutron diffraction microscope is also used for the determination of the structure of molecules. If the wavelength used here is 800 pm, calculate the characteristic velocity associated with the neutron.
Ans.
From de Broglie’s equation,
Where,
v= velocity of particle (neutron)
h= Planck’s constant
m= mass of particle (neutron)
λ = wavelength
Substituting the values in the expression of velocity (v),
= 4.94 × 102ms–1
V = 494 ms–1
Velocity associated with the neutron = 494 ms–1
Q.59 The velocity associated with a proton moving in a potential difference of 1000 V is 4.37 × 105ms–1. If the hockey ball of mass 0.1 kg is moving with this velocity, calculate the wavelength associated with this velocity.
Ans.
Q.60 If the position of the electron is measured within an accuracy of + 0.002 nm, calculate the uncertainty in the momentum of the electron. Suppose the momentum of the electron is
h/4πm×0.05 nm, is there any problem in defining this value?
Ans.
From Heisenberg’s uncertainty principle,
Where,
Δx= uncertainty in position of the electron
Δp= uncertainty in momentum of the electron
Substituting the values in the expression in the last equation:
= 2.637 × 10–23Jsm–1
Δp = 2.637 × 10–23 kgms–1
Or, uncertainty in the momentum of the electron
= 2.637× 10–23 kgms–1.
Given that actual momentum
Substituting the values, we get
= 1.055 × 10–24 kgms–1
Since the magnitude of the actual momentum is smaller than the uncertainty, the value cannot be defined.
Q.61 The quantum numbers of six electrons are given below. Arrange them in order of increasing energies. If any of these combination(s) has/have the same energy lists:
- n=4, l=2, ml=-2, ms=-1/2
- n=3, l=2, ml=1, ms=+1/2
- n=4, l=1, ml=0, ms=+1/2
- n=3, l=2, ml=-2, ms=-1/2
- n=3, l=1, ml=-1, ms=+1/2
- n=4, l=1, ml= 0, ms=+1/2
Ans.
- For n = 4 and l= 2, the orbital occupied is 4d.
- For n = 3 and l= 2, the orbital occupied is 3d.
- For n = 4 and l= 1, the orbital occupied is 4p.
- For n=3 and l= 2, the orbital occupied is 3d.
- For n=3 and l= 1, the orbital occupied is 3p.
- For n=4 and l= 1, the orbital occupied is 4p.
Therefore, the increasing order of energies is
5(3p) < 2(3d) = 4(3d) < 3(4p) = 6(4p) < 1 (4d)
Q.62 The bromine atom possesses 35 electrons. It contains 6 electrons in 2p orbital, 6 electrons in 3p orbital and 5 electrons in 4p orbital. Which of these electron experiences the lowest effective nuclear charge?
Ans.
In a multi-electron atom the effective nuclear charge experienced by an electron is dependent upon the distance between the nucleus and the orbital in which the electron is present. If the distance increases the effective nuclear charge decreases.
Among the given orbitals, the 4p orbital is the farthest from the nucleus, so it experiences the lowest attraction force by the nucleus. Again the electrons in the 4p orbital are shielded by electrons present in the 2p and 3p-orbitals along with the s-orbital. Hence, the electrons in the 4p orbital will experience the lowest effective nuclear charge.
Q.63 Among the following pairs of orbitals which orbital will experience the larger effective nuclear charge? (i) 2s and 3s, (ii) 4d and 4f,(iii) 3d and 3p
Ans.
Nuclear charge is defined as the net positive charge experienced by an electron in the orbital of a multi-electron atom. It is inversely proportional to the distance between the orbital and the nucleus.
- The electrons present in the 2s orbital experience more effective nuclear charge than the 3s orbital because 2s orbital is closer to nucleus than 3s orbital.
- 4d orbital experiences greater nuclear charge than 4f orbital, since 4d orbital is closer to nucleus.
- 3p orbital is closer to the nucleus than 3d orbital, hence it will experience greater effective nuclear charge.
Q.64 The unpaired electrons in Al and Si are present in 3p orbital. Which electrons will experience more effective nuclear charge from the nucleus?
Ans.
Nuclear charge is directly proportional to the effective nuclear charge. The higher the atomic number higher will be the nuclear charge.
Silicon has 14 protons while aluminium has 13 protons in the nucleus. Hence, silicon has a larger nuclear charge of +14 than aluminium which has a nuclear charge of +13. The electrons in the 3p orbital of silicon will experience a more effective nuclear charge than aluminium.
Q.65 Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Ans.
(a) Phosphorus (P):
Atomic number = 15
The electronic configuration of P is: 1s22s22p63s23p3
The orbital picture of P can be represented as:
Phosphorus has three unpaired electrons.
(b) Silicon (Si):
Atomic number = 14
The electronic configuration of Si is: 1s22s22p63s23p2
The orbital picture of Si can be represented as:
Silicon has two unpaired electrons.
(c) Chromium (Cr):
Atomic number= 24
The electronic configuration of Cr is:
1s22s22p63s23p64s13d5
The orbital picture of Cr can be represented as:
Chromium has six unpaired electrons.
(d) Iron (Fe):
Atomic number= 26
The electronic configuration is:
1s22s22p63s23p64s23d6
The orbital picture of Fe can be represented as:
Iron has four unpaired electrons.
(e) Krypton (Kr):
Atomic number= 36
The electronic configuration is:
1s22s22p63s23p64s23d104p6
The orbital picture of Kr can be represented as:
Krypton has no unpaired electrons, all orbitals are fully occupied.
Q.66 a) How many sub-shells are associated with n = 4? (b) How many electrons will be present in the sub-shells having ms value of –1/2 for n= 4?
Ans.
(a) Given n=4,
For a given value of ‘n’, ‘l’ can have values from 0 to (n-1).
Thus, l= 0,1,2,3
Thus, four sub-shells are associated with n=4, which are s, p, d and f.
(b) The maximum number of electrons present in nth shell =2n2. For n=4, the maximum capacity of electrons
= 2×42 = 32.
Total number of orbitals = n2 = 42=16
If each orbital is taken fully, then it will have 1 electron with ms value of –1/2.
Number of electrons with ms value of (–1/2) is 16.
Q.67 If the velocity of the electron in Bohr’s first orbit is 2.19 × 106ms–1, calculate the de Broglie wavelength associated with it.
Ans.
According to de Broglie’s equation,
Where,
λ = wavelength associated with the electron
h= Planck’s constant
m = mass of electron
v = velocity of electron
Substituting the values in the expression of λ
= 3.32 x 10-10 m= 3.32 x 10-10 m x (100/100)
= 332 x 10-12 m
λ = 332 pm
Wavelength associated with the electron = 332 pm
FAQs (Frequently Asked Questions)
1. What is the importance of NCERT Class 11 Chemistry Chapter 2?
Chapter 2: Structure of Atoms forms the basis for Chemistry as you learn about the smallest unit of any substance. A strong foundation is crucial for further studies. This chapter is also very scoring if you understand it well.
2. Why should one opt for NCERT Solutions for Class 11 Chemistry Chapter 2?
Chemistry is a scoring subject provided that you understand the concepts well. NCERT Solutions by Extramarks are written in an easy-to-understand language. All the concepts are explained in detail along with the relevant examples.