NCERT Solutions Class 11 Chemistry Chapter 1
Home » NCERT Solutions » NCERT Solutions Class 11 Chemistry Chapter 1
-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
NCERT Solutions for Class 11 Chemistry Chapter 1 – Some Basic Concepts of Chemistry
Extramarks Chemistry class 11 chapter 1 NCERT solutions were created keeping the needs of Class 11 students in mind by chemistry subject matter experts. The NCERT Solutions on this page provide step-by-step explanations to assist students in answering comparable questions that may appear on their term – I examinations.
NCERT Solutions for Class 11 Chemistry Chapter 1 have been developed by qualified teachers in a simple and clear language in compliance with the most recent CBSE Syllabus 2022-23 and its guidelines. . The answers cover the fundamental ideas in order to provide a high-quality learning experience for Class 11 students. To complete a portion of the term – I syllabus before the first term test, you can get the Class 11 Chemistry NCERT Solutions Chapter 1 from Extramarks’ website.
Our chemistry experts explain the answers to all the questions using the latest NCERT syllabus following the CBSE pattern. Some essential topics in Chemistry Class 11 NCERT Solutions are provided to make your learning easier and more interesting.
NCERT Solutions for Class 11 Chemistry Chapter 1- Some Basic Concepts of Chemistry
CBSE Class 11 Chemistry Chapter 1: Chapter Summary
Chemistry is crucial because it affects every aspect of life. Chemistry subjects have the qualities and structure of substances, as well as the changes that they undergo. Matter is found in all substances and can exist in three states: solid, liquid, or gas. Students will learn about the nature of materials and chemical rules of combination in this chapter. This chapter will assist students in establishing a solid foundation in Chemistry. Students will learn about atomic and molecular masses, as well as the mole idea, chemical reactions, and molecular formulas.
As a result, the chapter’s practical problems will aid students in better understanding the topics. The Law of Conservation of Mass, the Law of Definite Proportions, the Law of Multiple Proportions, the International System of Units, Weights and Measures, and other concepts will be covered. This is one of the foundational chapters in Chemistry, but it doesn’t carry much weightage. Make sure you understand the whole chapter before answering the questions.
Important Topics: Mole Fraction, Stoichiometry, Equivalent Mass and Normality, Atomic Number, Mass number and Isotypes, Avogadro’s Law and Percent Composition.
NCERT Solutions for Class 11 Chemistry Chapter 1 – A Quick glance through the Chapter
Atomic Mass and Molecular Mass
One mass unit is defined as a mass that is one-twelfth the mass of one carbon–12 atoms. The Molecular Mass is the sum of the atomic masses of the atoms in a molecule. You may get it by multiplying each element’s mass by the number of atoms in each of its atoms and adding the results. Gram molecular mass refers to molecular mass expressed in grams. The sum of all atoms’ atomic masses during a formula unit of the compound is known as the formula mass. The mole is the amount of substance in a system that includes the same number of elementary entities as there are atoms in 0.012 kilograms of carbon-12; it is denoted by the sign -mol. This number of entities per mol is so important that it has its own name and symbol. In honour of Avogadro, it is known as the ‘Avogadro constant.’
Concepts of Mass, Weight, Volume and Temperature
Mass, which is a constant quantity, is the matter present in a substance. The kilogram is the SI unit for mass (Kg). Weight, on the other hand, is the force exerted on a substance by gravity. Due to variations in gravity, it varies from location to place. The SI unit of weight is the Newton. Again, volume refers to the amount of space occupied by a body. In addition, the cubic metre is a SI unit. A litre is another common measurement. One cubic metre equals 1000 litres. The density, which has the SI unit Kg per cubic metre or gram per cubic metre, is the quantity of mass per unit volume. The measurement of heat in a substance is called temperature. SI unit is Kelvin, and other standard units are Degree Celsius (°C) and degree. Fahrenheit (°F).
How can our subject experts help you to improve yourself?
Along with NCERT Solutions Class 11 Chemistry Chapter 1 of all topics, Extramarks also offers past years’ question papers to assist you to understand the question pattern. The question papers come with answer keys that are prepared by our qualified faculty experts with years of experience. Students can also attend LIVE online sessions for one-on-one interaction, and to clarify their doubts related to the topic.
Why Should You Prefer NCERT Solutions prepared by Extramarks for Class 11 Chemistry Chapter 1? Some Basic Concepts of Chemistry prepared by the subject Experts of Extramarks?
The large number of new concepts discussed make Chapter 1 difficult to comprehend for students. Extramarks offers Chapter 1 NCERT Solutions for Class 11 Chemistry to explain the concepts in a well-organised, comprehensible, and straightforward manner. It follows the latest syllabus to help you get better grades in tests. The solutions are prepared by Extramarks subject-matter experts who have years of experience in teaching, which itself speaks of the credibility and accuracy of the learning material.
The NCERT Solutions presented here have been created with one goal in mind: to assist students in preparing for their term-by-term examinations and passing them with flying colours. The NCERT Solutions comprise all of the exercise questions from the NCERT textbook, thus they cover a lot of significant questions that might come in the term I and II exams.
Q.1 Calculate the molecular mass of the following:
1: H2O
2: CO2
3: CH4
Ans.
1. Molecular mass of H2O is:
= (2 × Atomic Mass of Hydrogen) + (2 × Atomic Mass of Oxygen)
= [2(1.0084) + 1(16.00 u)]
= 2.0168 u + 16.00 u
= 2.016 u + 16.00 u
= 18.0168 u
2. Molecular mass of CO2 is:
= (1 × Atomic mass of carbon) + (2 × Atomic mass of oxygen)
= [1(12.011 u) + 2 (16.00 u)]
= 12.011 u + 32.00 u
= 44.011
3. The molecular mass of CH4
= (1 × Atomic mass of carbon) + (4 × Atomic mass of hydrogen)
= [1(12.011 u) + 4 (1.008 u)]
= 12.011 u + 4.032 u
= 16.043 u
Q.2 Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
Ans.
The balanced reaction of combustion of carbon can be written
(i) As per the balanced equation, 1 mole of carbon burns in1 mole of dioxygen (air) to produce 1 mole of carbon dioxide.
(ii) According to the question, only 16 g of dioxygen is available. Hence, it will react with 0.5 mole of carbon to give 22 g of carbon dioxide. Hence, it is a limiting reactant.
(iii) According to the question, only 16 g of dioxygen is available. It is a limiting reactant. Thus, 16 g of dioxygen can combine with only 0.5 mole of carbon to give 22 g of carbon dioxide.
Q.3 Calculate the mass percent of different elements present in sodium sulphate (Na2SO4).
Ans.
The molecular formula of sodium sulphate is: Na2SO4
Molar mass of Na2SO4= [(2 × 23.0) + (32.066) + 4 (16.00)] = 142.066 g
Q.4 Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
Ans.
% of iron by mass=69.9% [Given]
% of oxygen by mass=30.1% [Given]
Simplest molar ratio of iron to oxygen:
= 1.25: 1.88
= 1: 1.5
= 2: 3
∴The empirical formula of the iron oxide is Fe2 O3
Q.5 Calculate the mass of sodium acetate (CH3 COONa) required to make 500 ml of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol-1
Ans.
0.375 M aqueous solution of sodium acetate
≡ 1000 mL of solution containing 0.375 moles of sodium acetate
∴ Number of moles of sodium acetate in 500 mL
= 0.1875 mole
Molar mass of sodium acetate = 82.0245 g mol-1 (Given)
∴ Required mass of sodium acetate = (82.0245 g mol-1) (0.1875 mole)
= 15.38 g
Q.6 Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69%.
Ans.
Mass percent of nitric acid in the sample = 69 % [Given]
Thus, 100 g of nitric acid contains 69 g of nitric acid by mass.
Molar mass of nitric acid (HNO)3
= {1 + 14 + 3(16)} g mol–1
= 1 + 14 + 48
= 63 g mol–1
∴ Number of moles in 69 g of HNO3
Q.7 How much copper can be obtained from 100 g of copper sulphate (CuSO4)?
Ans.
1 mole of CuSO4 contains 1 mole of copper.
Molar mass of CuSO4 = (63.5) + (32.00) + 4(16.00)
= 63.5 + 32.00 + 64.00
= 159.5 g
159.5 g of CuSO4 contains 63.5 g of copper.
⇒100 g of CuSO4 will contain of copper.
Amount of copper that can be obtained from 100 g CuSO4
= 39.81 g
Q.8 Determine the molecular formula of an oxide of iron in which the mass per cent of iron and oxygen are 69.9 and 30.1 respectively.
Ans.
Mass percent of iron (Fe) = 69.9% (Given)
Mass percent of oxygen (O) = 30.1% (Given)
Number of moles of iron present in the oxide
= 1.25
Number of moles of oxygen present in the oxide
= 1.88
Ratio of iron to oxygen in the oxide,
= 1.25 :1.88
= 1 : 1.5
= 2 : 3
The empirical formula of the oxide is Fe2 O3.
Empirical formula mass of Fe2 O3= [2(55.85) + 3(16.00)]g
Molar mass of Fe2O3 = 159.69 g
= 0.999
= 1 (approx)
Molecular formula of a compound is obtained by multiplying the empirical formula with n.
Thus, the empirical formula of the given oxide is Fe2 O3 and n is 1.
Hence, the molecular formula of the oxide is Fe2 O3.
Q.9 Calculate the atomic mass (average) of chlorine using the following data:
% Natural Abundance | Molar Mass | |
35Cl | 75.77 | 34.9689 |
37Cl | 24.23 | 36.9659 |
Ans.
The average atomic mass of chlorine
(Fractional abundance of 35Cl)(Molar mass of 35Cl)+(Fractional abundance of 37Cl)
(Molar mass of 37Cl)=[{(75.77100)(34.9689)}+{(24.23100) (36.9659 u)}]
= 26.4959 + 8.9568
= 35.4527 u
The average atomic mass of chlorine = 35.4527 u
Q.10 In three moles of ethane (C2H6), calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.
(iii) Number of molecules of ethane.
Ans.
(i) 1 mole of C2H6 contains 2 moles of carbon atoms.
Number of moles of carbon atoms in 3 moles of C2H6
= 2 × 3 = 6
(ii) 1 mole of C2H6 contains 6 moles of hydrogen atoms.
Number of moles of carbon atoms in 3 moles of C2H6
= 3 × 6 = 18
(iii) 1 mole of C2H6 contains 6.023 × 1023 molecules of ethane.
Number of molecules in 3 moles of C2H6
= 3 × 6.023 × 1023 = 18.069 × 1023
Q.11 What is the concentration of sugar (C12H22O11) in mol L-1 if its 20 g are dissolved in enough water to make a final volume up to 2 L?
Ans.
Molarity (M) of a solution is given by,
= 0.02925 mol L–1
Molar concentration of sugar = 0.02925 mol L–1
Q.12 If the density of methanol is 0.793 kg L–1, what is its volume needed for making 2.5 L of its 0.25 M solution?
Ans.
Molar mass of methanol (CH3OH) = (1 × 12) + (4 × 1) + (1 × 16)
= 32 g mol–1
= 0.032 kg mol–1
Molarity of methanol solution = 24.78 mol L–1
(Since density is mass per unit volume)
Applying,
M1V1 = M2V2
(Given solution) (Solution to be prepared)
(24.78 mol L-1) V1 = (2.5 L) (0.25 mol L-1)
V1 = 0.0252 L
V1 = 25.22 mL
Q.13 Pressure is determined as force per unit area of the surface. The SI unit of pressure, Pascal is as shown below:
1Pa = 1N m–2
If mass of air at sea level is 1034 g cm–2, calculate the pressure in Pascal.
Ans.
Pressure is defined as force acting per unit area of the surface.
= 1.01332 × 105 kg m–1s–2
We know,
1 N = 1 kg ms–2
Then,
1 Pa = 1 Nm–2 = 1 kg m–2s–2
1 Pa = 1 kg m–2s–2
Pressure = 1.01332 × 105Pa
Q.14 What is the SI unit of mass? How is it defined?
Ans.
The SI unit of mass is kilogram (kg). 1 Kilogram is defined as the mass equal to the mass of the international prototype of kilogram.
Q.15 Match the following prefixes with their multiples:
Prefixes | Multiples | |
(i) | Micro | 106 |
(ii) | Deca | 109 |
(iii) | Mega | 10-6 |
(iv) | Giga | 10-15 |
(v) | Femto | 10 |
Ans.
Prefixes | Multiples | |
(i) | Micro | 10-6 |
(ii) | Deca | 10 |
(iii) | Mega | 106 |
(iv) | Giga | 109 |
(v) | Femto | 10-15 |
Q.16 What do you mean by significant figures?
Ans.
Significant figures are those meaningful digits that are known with certainty .
They indicate uncertainty in an experiment or calculated value. For example, if 15.6 mL is the result of an experiment, then 15 is certain while 6 is uncertain, and the total number of significant figures are 3.
Hence, significant figures are defined as the total number of digits in a number including the last digit that represents the uncertainty of the result.
Q.17 A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
Ans.
(i) 1 ppm is equivalent to 1 part out of 1 million (106) parts.
Mass percent of 15 ppm chloroform in water
(ii) 100 g of the sample contains 1.5 × 10-3 g of CHCl3
⇒1000 g of the sample contains 1.5 × 10-2 g of CHCl3
∴ Molality of chloroform in water
Molar mass of CHCl3 = 12.00 + 1.00 + 3(35.5)
= 119.5 g mol-1
∴ Molality of chloroform in water = 0.0125 × 10-2 m
= 1.25 × 10-4 m
Q.18 Express the following in the scientific notation:
(i) 0.0048
(ii) 234,000
(iii) 8008
(iv) 500.0
(v) 6.0012
Ans.
(i) 0.0048 = 4.8× 10–3
(ii) 234, 000 = 2.34 ×105
(iii) 8008 = 8.008 ×103
(iv) 500.0 = 5.000 × 102
(v) 6.0012 = 6.0012
Q.19 How many significant figures are present in the following?
(i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034
Ans.
(i) 0.0025
There are 2 significant figures.
(ii) 208
There are 3 significant figures.
(iii) 5005
There are 4 significant figures.
(iv) 126,000
There are 3 significant figures.
(v) 500.0
There are 4 significant figures.
(vi) 2.0034
There are 5 significant figures.
Q.20 Round up the following upto three significant figures:
(i) 34.216
(ii) 10.4107
(iii) 0.04597
(iv) 2808
Ans.
(i) 34.2
(ii) 10.4
(iii) 0.0460
(iv) 2810
Q.21 The following data are obtained when dinitrogen and dioxygen react together to form different compounds:
Mass of dinitrogen Mass of dioxygen
(i) 14 g 16 g
(ii) 14 g 32 g
(iii) 28 g 32 g
(iv) 28 g 80 g
(a) Which law of chemical combination is obeyed by the above experimental data? Give its statement.
(b) Fill in the blanks in the following conversions:
(i) 1 km = …………………. mm = …………………. pm
(ii) 1 mg = …………………. kg = …………………. ng
(iii) 1 mL = …………………. L = …………………. dm3
Ans.
If we fix the mass of dinitrogen at 28 g, then the masses of dioxygen that will combine with the fixed mass of dinitrogen are 32 g, 64 g, 32 g, and 80 g. The masses of dioxygen bear a whole number ratio of 2:4:2:5. Hence, the given experimental data obeys the law of multiple proportions. The law states that if two elements combine to form more than one compound, then the masses of one element that combines with the fixed mass of another element are in the ratio of small whole numbers.
Q.22 If the speed of light is 3.0 ×108 m s–1, calculate the distance covered by light in 2.00 ns.
Ans.
According to the question:
Time taken to cover the distance = 2.00 ns
= 2.00 × 10–9 s
Speed of light = 3.0 × 108 ms–1
Distance travelled by light in 2.00 ns
= Speed of light × Time taken
= (3.0 × 108 ms –1) (2.00 × 10–9 s)
= 6.00 × 10–1m
= 0.600 m
Q.23 In a reaction
A + B2 → AB2
Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Ans.
A limiting reagent determines the extent of a reaction. It is the reactant which is the first to get consumed during a reaction, thereby causing the reaction to stop and limiting the amount of products formed.
(i) According to the given reaction, 1 atom of A reacts with 1 molecule of B. Thus, 200 molecules of B will react with 200 atoms of A, thereby leaving 100 atoms of A unused. Hence, B is the limiting reagent.
(ii) According to the reaction, 1 mol of A reacts with 1 mol of B. Thus, 2 mol of A will react with only 2 mol of B. As a result, 1 mol of A will not be consumed. Hence, A is the limiting reagent.
(iii) According to the given reaction, 1 atom of A combines with 1 molecule of B. Thus, all 100 atoms of A will combine with all 100 molecules of B. Hence, the mixture is stoichiometric where no limiting reagent is present.
(iv) 1 mol of atom A combines with 1 mol of molecule B. Thus, 2.5 mol of B will combine with only 2.5 mol of A. As a result, 2.5 mol of A will be left as such. Hence, B is the limiting reagent.
(v) According to the reaction, 1 mol of atom A combines with 1 mol of molecule B. Thus, 2.5 mol of A will combine with only 2.5 mol of B and the remaining 2.5 mol of B will be left as such. Hence, A is the limiting reagent.
Q.24 Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
N2(g)+ 3H2(g) → 2NH3(g)
(i) Calculate the mass of ammonia produced if 2.00 × 103g dinitrogen reacts with 1.00 × 103 g of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii) If yes, which one and what would be its mass?
Ans.
(i) Balancing the given chemical equation,
N2(g)+ 3H2(g)→2NH3(g)
From the equation, 1 mole (28 g) of dinitrogen reacts with 3 mole (6 g) of dihydrogen to give 2 mole (34 g) of ammonia.
⇒ 2.00 × 103 g of dinitrogen will react with
dihydrogen i.e., 2.00 × 103 g of dinitrogen will react with 428.6 g of dihydrogen.
Given,
Amount of dihydrogen = 1.00 × 103 g
Hence, N2 is the limiting reagent.
∴ 28g of N2 produces 34 g of NH3
Hence, mass of ammonia produced by 200 g of N2
= 2428.57 g
(ii) N2 is the limiting reagent and H2 is the excess reagent. Hence, H2 will remain unreacted.
(iii) Mass of dihydrogen left unreacted = 1.00 × 103 g – 428.6 g
= 571.4 g
Q.25 How are 0.50 mol Na2CO3 and 0.50 M Na2CO3 different?
Ans.
Molar mass of Na2CO3 = (2 × 23) + 12.00 + (3 × 16)
= 106 g mol–1
Now, 1 mole of Na2CO3 means 106 g of Na2CO3
Hence, 0.50 mol of Na2CO3 is present in 1 L of water or 53 g of Na2CO3 is present in 1 L of water.
Q.26 If ten volumes of dihydrogen gas react with five volumes of dioxygen gas, how many volumes of water vapour would be produced?
Ans.
Reaction of dihydrogen with dioxygen can be written as:
2H2(g)+ O2(g) → 2H2O(g)
Now, two volumes of dihydrogen react with one volume of dioxygen to produce two volumes of water vapour.
Hence, ten volumes of dihydrogen will react with five volumes of dioxygen to produce ten volumes of water vapour.
Q.27 Convert the following into basic units:
(i) 28.7 pm
(ii) 15.15 pm
(iii) 25365 mg
Ans.
(i) 28.7 pm:
1 pm = 10–12 m
∴ 28.7 pm = 28.7 × 10–12 m
= 2.87 × 10–11 m
(ii) 15.15 pm:
1 pm = 10–12 m
15.15 pm = 15.15 × 10–12 m
= 1.515 × 10–13 m
(iii) 25365 mg:
1 mg = 10–3 g
25365 mg = 2.5365 × 104 × 10–3 g
Since,
1 g = 10–3 kg
2.5365 × 101g = 2.5365 × 10–1 × 10–3 kg
∴ 25365 mg = 2.5365 × 10–2 kg
Q.28 Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Ans.
Hence, 1 g of Li (s) will have the largest number of atoms.
Q.29 Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).
Ans.
Q.30 What will be the mass of one 12C atom in g?
Ans.
1 mole of carbon atoms = 6.023 × 1023 atoms of carbon
= 12 g of carbon
= 1.993 × 10–23g
Q.31 How many significant figures should be present in the answer of the following calculations:
(ii) 5 X 5.364
(iii) 0.0125 X 0.78640 X.0215
Ans.
Least precise number of calculation = 0.112
Number of significant figures in the answer
= Number of significant figures in the least precise number
= 3
(ii) 5 × 5.364
Least precise number of calculation = 5.364
Number of significant figures in the answer = Number of significant figures in 5.364
= 4
(iii) 0.0125 + 0.7864 + 0.0215
Since the least number of decimal places in each term is four, the number of significant
figures in the answer is also 4.
Q.32 Use the data given in the following table to calculate the molar mass of naturally occurring argon isotopes:
Isotope | Isotopic molar mass | Abundance |
36Ar | 35.96755 gmol–1 | 0.337% |
38Ar | 37.96272 gmol–1 | 0.063% |
40Ar | 39.9624 gmol–1 | 99.600% |
Ans.
Molar mass of argon
= 39.947gmol–1
Q.33 Calculate the number of atoms in each of the following (i) 52 moles of Ar (ii) 52 u of He (iii) 52 g of He.
Ans.
(i) 1 mole of Ar = 6.022 × 1023 atoms of Ar
∴ 52 mol of Ar = 52 × 6.022 × 1023 atoms of Ar
= 3.131 × 1025 atoms of Ar
(ii) 1 atom of He = 4 u of He
Or,
4 u of He = 1 atom of He
= 13 atoms of He
(iii) 4 g of He = 6.022 × 1023 atoms of He
= 7.8286 × 1024 atoms of He
Q.34 A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate (i) empirical formula, (ii) molar mass of the gas, and (iii) molecular formula.
Ans.
Q.35 Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction, CaCO3(s) + 2HCl(aq) → CaCl2(aq)+ CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?
Ans.
0.75 M of HCl ≡ 0.75 mol of HCl are present in 1 L of water
≡ [(0.75 mol) × (36.5 g mol–1)] HCl is present in 1 L of water
≡ 27.375 g of HCl is present in 1 L of water
Thus, 1000 mL of solution contains 27.375 g of HCl.
Amount of HCl present in 25 mL of solution
= 0.6844 g
From the given chemical equation,
CaCO3(s)+ 2HCl(aq)→CaCl2(aq)+CO2(g)+H2O(l)
2 mol of HCl (2 × 36.5 = 73 g) react with 1 mol of CaCO3 (100 g).
=0.938 g
Q.36 Chlorine is prepared in the laboratory by treating manganese dioxide (MnO2) with aqueous hydrochloric acid according to the reaction
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
How many grams of HCl react with 5.0 g of manganese dioxide?
Ans.
1 mol [55 + 2 × 16 = 87 g] MnO2 reacts completely with 4 mol
[4 × 36.5 = 146 g] of HCl.
5.0 g of MnO2 will react with
= 8.4 g of HCl
Hence, 8.4 g of HCl will react completely with 5.0 g of manganese dioxide.
Please register to view this section
FAQs (Frequently Asked Questions)
1. Does Extramarks provide answers to NCERT textbook questions for Class 11 Chemistry Chapter 1 in a detailed way?
Absolutely, Extramarks provides step-by-step answers to NCERT Solutions for Class 11 Chemistry Chapter 1. This allows students to study all the concepts in detail and clarify their doubts way ahead of exams.
2. Why is Chapter 1 of Class 11 Chemistry important?
The chapter covers basic chemistry ideas that are helpful for students in the medical and non-medical streams. Atomic mass, weight, molecular mass, temperature, and other concepts are introduced. Chemical equations and formulae are also discussed and introduced in this chapter. Students must be comprehensive with these topics because they serve as the foundation for concepts that will be studied later in the class and in Class 12. These are also crucial for board exams and other competitive exams.
3. Define the law of multiple proportions. Explain it with an example. How does this law prove the existence of atoms?
The Law of multiple proportions says that when two elements mix to generate two or more compounds, the masses of one of the elements which combine with a fixed mass of the other have an easy ratio to each other. e.g. Carbon and Oxygen combine to form two different chemical compounds- carbon dioxide and carbon monoxide. The masses of oxygen combined with a definite mass of carbon in CO and CO2 are 16 and 32, respectively. These masses of oxygen bear a ratio of 32: 16 or 2: 1 with one another. For example, sulphur and oxygen combine to form two compounds, namely, sulphur trioxide and sulphur dioxide.