-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Volume Of A Rectangular Prism Formula
Geometry is the branch of Mathematics concerned with object shape, size, angles, and dimensions. Through numerous geometric forms, students can better grasp all of the shapes they observe in their daily lives. It aids in the measurement and calculation of the volume, area, and perimeter of diverse forms.
Quick Links
ToggleThe Volume Of A Rectangular Prism Formula is the entire amount of space inside it. Consider a rectangular container full of water. In this situation, the volume is the entire amount of water that the container can store. A prism is a polyhedron with identical bases, flat rectangular side faces, and the same cross-section all the way around. The geometry of the base of a prism determines its classification. Three-dimensional shapes include rectangular prisms. It has six faces, and all of the prism’s faces are rectangles. In this post, they will learn how to calculate the volume of a rectangular prism.
Rectangular Prism Types:
Rectangular prisms are classified into two categories.
- Right Rectangular Prism
It is a sort of rectangular prism in which all of the angles are right angles. Simply said, a right rectangular prism has bases that are perpendicular to one another.
- Oblique Rectangular Prism
It is a kind of rectangular prism that does not have all of its angles from a right angle. In layman’s terms, an oblique rectangular prism has bases that are not perpendicular to one another.
What is the Volume of Rectangular Prism?
In geometry, a rectangular prism is a three-dimensional polyhedron with six faces and twelve edges. Many people consider it to be a cuboid. A rectangular prism’s faces are coupled in such a way that they stay parallel but congruent to one another. A rectangular prism has six faces in total, which implies it contains three pairs of faces that are equally parallel. The Volume Of A Rectangular Prism Formula is best represented by many items that people use daily, such as storage sheds, monitors, bricks, and so on. Because it has a cross-section throughout its length, it is sometimes referred to as a prism.
The Volume Of A Rectangular Prism Formula is defined as the space filled by a rectangular prism. A rectangular prism is a polyhedron with two congruent and parallel base pairs. The Volume Of A Rectangular Prism Formula has six faces (all of which are rectangular), twelve sides, and eight vertices. Because the rectangular prism is a three-dimensional (3D) shape, the volume of the rectangular prism is expressed in cm3, m3, and so on. In Mathematics, a Cuboid is any polyhedron with all of these qualities.
A rectangular prism has numerous qualities, some of which are as follows:
A rectangular prism has six faces, twelve edges, and eight vertices.
A rectangular prism has the same dimensions as a cuboid, namely length, width, and height.
The topmost portion alongside the base is usually a rectangle.
A rectangular prism’s opposite faces are usually identical or congruent.
A rectangular prism has a rectangular cross-section in general.
The faces positioned laterally commonly form a right rectangular prism. In oblique rectangular prisms, the laterally situated faces are in the shape of a parallelogram.
Volume of Rectangular Prism Formula
The area of a rectangular prism will be l w since its base is a rectangle. This area is then multiplied by the prism’s height to obtain the prism’s volume. As a result, another approach to represent this formula is to multiply the prism’s length, breadth, and height and put the result in cubic units (cm3, m3, in3, etc).
The formula for the volume of a rectangular prism = base area × height of the prism.
Therefore, the Volume Of A Rectangular Prism Formula is, the volume of a rectangular prism (V) = l × w × h, where
The base length is l
The base width is w
The height of the prism is w
To calculate the Volume Of A Rectangular Prism Formula, multiply the length, width, and height, or multiply the area of the base by the height. It is important to know that volume is measured in cubic units.
Rectangular prisms are classified into two types: right rectangular prisms and oblique prisms.
A right rectangular prism has bases that are perpendicular to the other faces.
The bases of an oblique rectangular prism are not parallel to the other sides. As a result, the height of the prism will be determined by the perpendicular drawn from the vertex of one base to the vertex of the other base.
It should be noted that regardless of the kind of rectangular prism, students can use the same method to compute the volume of the prism, namely the Volume Of A Rectangular Prism Formula v = lwh.
How to Find the Volume of a Rectangular Prism?
Before applying the method to calculate the volume of a rectangular prism, students must ensure that all dimensions are in the same units. The Volume Of A Rectangular Prism Formula is calculated using the procedures below.
Step 1: Determine the type of base and its area using an appropriate formula (as explained in the previous section).
Step 2: Determine the prism’s height, which is perpendicular from the top vertex to the prism’s base.
Step 3: To calculate the volume of the rectangular prism in cubic units, multiply the base area by the prism’s height. Volume = base area * prism height
Volume of Rectangular Prism Examples
Mathematics is one of the most difficult and rewarding courses. Extramarks examples can help students better their academics and attain their goals. These Extramarks solved examples are deliberately chosen to help students learn and comprehend the Volume Of A Rectangular Prism Formula. Because the language is simple to comprehend, students can learn more and benefit more completely. Learning Mathematics necessitates the study and comprehension of concepts, as well as the practice of problems based on the Volume Of A Rectangular Prism Formula themes. Students must have conceptual clarity to do well on examinations or competitive exams. As a result, Extramarks provides Volume Of A Rectangular Prism Formula examples to students.
Importance of Mathematics Formulas for Students
Mathematics formulae are designed for a reason by some of the most clever individuals. They assist students in answering questions quickly and accurately. It also makes the process of finding a solution to a sum much easier than starting from scratch. The following are the advantages of Mathematics formulas:
A student must adhere to the time-sensitive curriculum established by the school. Students’ knowledge is checked regularly through various tests such as unit, half-yearly, and final exams. Mathematics formulae are so required to ensure that students have prepared the subject matter on time and with a buffer for review.
A learner is unlikely to solve numerous problems using a pen and paper while reviewing. Thus, to receive a rapid overview of sums and how to solve them, students must be familiar with formulae, which are the keys to obtaining the right solutions.
During exams, students do not have the luxury of deriving a full formula to answer a question, suggesting that they cannot begin at step 1. They must memorise and recall formulas to finish their question paper in the allotted time, which aids them with time management and scheduling.
Practice Questions on Volume of Rectangular Prism
Mathematics emphasises the existence and uniqueness of solutions, whereas practical Mathematics emphasises the logical justification of approaches to solutions. The Volume Of A Rectangular Prism Formula can reflect almost any physical, technological, or biological activity, including celestial motion, bridge construction, and neurological connections. Answering questions based on the Volume Of A Rectangular Prism Formula is required. All forms of Volume Of A Rectangular Prism Formula issues should be practised regularly. Students are asked to tackle the Volume Of A Rectangular Prism Formula questions using the Extramarks learning platform. Extramarks are given to students who use the Volume Of A Rectangular Prism Formula incorrectly. It is essential to continue practising questions from all chapters of the Mathematics curriculum.
FAQs (Frequently Asked Questions)
1. What is the Volume Of A Rectangular Prism Formula
The quantity of space filled by a three-dimensional object determines its volume. Simply said, the volume of a rectangular prism is the amount of space it has filled. The volume unit is indicated by “cubic unit,” and the formula-determined answer can be stated in a variety of cubic unit values, such as cm3, m3, in3, and others. The Volume Of A Rectangular Prism Formula can be calculated by multiplying its length, width, and height. The area of a rectangular prism is given by “l * b” since the base is normally a rectangle. Students are encouraged to visit the website of Extramarks to acquire the study materials and learning resources based on the Volume Of A Rectangular Prism Formula.