-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Radioactive Decay Formula
The Radioactive Decay Formula is the spontaneous breakup of an atomic nucleus of a radioactive material that results in the emission of radiation from the nucleus. A parent nuclide decays in a radioactive process, while a daughter nuclide is created in the Radioactive Decay Formula.
Quick Links
ToggleRadioactive Decay Equation
The average number of radioactive decays per unit of time or the change in the number of radioactive nuclei present is determined by the activity of the Radioactive Decay Formula as
A = – dN/dt
A is the total activity
N is the number of particles
T = time taken for the whole activity to complete
Radioactivity Formula
In the years 1899 and 1900, a British physicist named Ernest Rutherford (working at McGill University in Montreal, Canada) and a French physicist named Paul Villard (working in Paris) conducted experiments on electromagnetic radiation and classified it into three types. Rutherford further classified them as alpha, beta, and gamma rays based on their penetration of matter and deflection by a magnetic field.
The Extramarks experts provide information about the three Radioactive Decay Formula below:
Alpha decay formula
Beta decay formula
Gamma decay formula
Alpha Decay Formula
Alpha particles are charged. The most frequent type of cluster decay is +2e decay, in which the parent atom ejects a defined daughter collection of nucleons, leaving another determined product behind. Alpha decay, like other cluster decays, is fundamentally a quantum tunnelling process.
It is governed by the interaction of the nuclear force and, by extension, the electromagnetic force. Because of their relatively large mass, the electrical charge of +2e, and low velocity, alpha particles have a typical K.E. of 5 MeV. Alpha particles are highly likely to contact other atoms and lose energy, and their movement is frequently slowed by a few centimetres of air.
Beta Decay Formula
Beta decay is a kind of Radioactive Decay Formula in which a proton is converted into a neutron or vice versa within the radioactive sample’s nucleus. Processes like beta decay and alpha decay allow the nucleus of a radioactive sample to approach as near to the ideal neutron/proton ratio as feasible. During this process, the nucleus produces a beta particle, which can be either an electron or a positron. Remember that a proton may become a neutron or a neutron can become a proton. To follow the rule of charge conservation, electrons and positrons are created. Beta-decay is caused by a weak interaction.
A Radioactive Decay Formula in which a beta ray is released from an atomic nucleus is known as beta decay. The proton in the nucleus is turned into a neutron during beta decay, and vice versa. The conversion of a proton to a neutron is known as β+ decay. Similarly, β- decay occurs when a neutron is transformed into a proton. A beta particle is released as a result of the alteration in the nucleus. When there is a β- decay, the beta particle is a high-speed electron, and when there is a β+ decay, it is a positron. Beta particles are utilised to cure diseases such as eye and bone cancer, as well as tracers.
Gamma Decay Formula
Gamma decay is the production of extremely high-frequency electromagnetic radiation, i.e. very high energy, to stabilise the unstable nucleus. One must be well-versed in the many energy states of an atom. The Nucleus has its amount of energy. Gamma decay is the nucleus’ method of transitioning from a higher energy level to a lower energy level by emitting high-energy photons. The atom’s energy level transition energies are measured in MeV. As a result, the gamma-ray released, like x-rays, has a very high energy on the order of MeV. The sole difference between gamma rays and x-rays is that gamma rays are released from the nucleus.
Radioactive Half Life Formula
The Radioactive Half-Life Formula:
t1/2=0.693/λ
Here, λ is the decay constant
Definition of the Half-Life:
The half-life of an element is the length of time it takes for half of its specific sample to react. Furthermore, it refers to the amount of time required to reduce a specific quantity’s starting value to half. This is a popular term in nuclear physics that defines how rapidly atoms undergo the Radioactive Decay Formula.
Furthermore, it may indicate how long the atom would withstand the Radioactive Decay Formula. Furthermore, the half-life can help characterise any sort of decay, whether exponential or non-exponential. An excellent example is that the medical sciences refer to the biological half-life of medications in the human body.
Radioactive Half-Life Formula Derivation
Half-life refers to the length of time required for half of a certain sample to react, i.e. the time required for a given quantity to reduce its starting value to half. The Radioactive Decay Formula half-life is widely used in nuclear physics to explain the rate at which an atom decays radioactively. The half-life formula is determined by dividing 0.693 by the constant. The disintegration or decay constant is referred to here.
Solved Example
The half-life of carbon-14 is 5.730 years. Determine the rate of carbon-14 decay.
If the half-life of 100 mg of carbon-14 is 5.730 years (t=5.730). We can employ the formula.
t ln2/λ
λ= ln2t1/2
λ=0.693/5.730
λ= 0.1209
FAQs (Frequently Asked Questions)
1. What is the Radioactive Decay Formula?
Investigations demonstrate that the Radioactive Decay Formula is a nuclear phenomenon that happens when an unstable nucleus decays. This is known as the Radioactive Decay Formula.