-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Kinetic Energy Formula
Kinetic energy is a fundamental concept in physics that describes the energy an object possesses due to its motion. It is directly proportional to both the mass of the object and the square of its velocity, making it a key component in understanding the dynamics of moving objects. The mathematical expression for kinetic energy is given by the formula KE=1/2mv2, where KE is kinetic energy, m is mass and v is velocity. This relationship highlights that even small increases in velocity can lead to significant increases in kinetic energy. Kinetic energy plays a crucial role in various scientific and engineering applications, from the analysis of vehicle collisions and the design of roller coasters to the study of molecular motion in gases. Learn more about kinetic energy, its definition, formula and examples
Quick Links
ToggleWhat is Kinetic Energy?
When an object is moving, it has kinetic energy. Kinetic energy is the energy that an object possesses due to its motion. Kinetic energy is the energy that an object possesses due to its motion. It is given as is given by the formula KE=1/2mv2.
Kinetic Energy Examples
Some of the real life examples of kinetic examples are mentioned below:
- Moving Car:
- When a car is moving, it possesses kinetic energy. The faster the car travels, the more kinetic energy it has. For instance, a car traveling at 60 mph has more kinetic energy than the same car traveling at 30 mph. This is why accidents at higher speeds cause more damage; the car’s kinetic energy is much higher.
- Bicycling:
- A cyclist pedaling a bicycle converts muscular energy into kinetic energy. The faster the cyclist pedals, the more kinetic energy the bicycle and rider accumulate. This kinetic energy allows the cyclist to coast without pedaling when going downhill.
- Flying Airplane:
- An airplane in flight has substantial kinetic energy due to its high velocity and mass. The kinetic energy of the airplane is used to keep it moving through the air and is essential for overcoming air resistance.
Kinetic Energy Formula
The formula for kinetic energy is given as
KE = 1/2mv2
where,
- KE is Kinetic Energy
- m is mass
- v is velocity
Unit of Kinetic Energy
The unit of kinetic energy is Joule(J)
Difference between Kinetic Energy and Potential Energy
Here is a comparison of kinetic energy and potential energy in tabular form:
Feature | Kinetic Energy | Potential Energy |
---|---|---|
Definition | Energy possessed by an object due to its motion. | Energy possessed by an object due to its position or state. |
Formula | KE=1/2mv2 | PE=mgh (gravitational), or PE=1/2kx2 (elastic) |
Depends On | Mass and velocity of the object. | Mass, height, and gravity (gravitational) or spring constant and deformation (elastic) |
Example | A moving car, a running person, flowing water. | A book on a shelf, a compressed spring, water behind a dam. |
Type of Energy | Dynamic energy associated with movement. | Static energy associated with position or configuration. |
Transformation | Can be converted into potential energy (e.g., a ball thrown upwards). | Can be converted into kinetic energy (e.g., a ball falling down). |
Measured in | Joules (J) | Joules (J) |
Presence | Present only when the object is in motion. | Present even when the object is at rest, due to its position or state. |
Energy State | Active energy, as it involves movement. | Stored energy, as it is based on position or state. |
Relativity to Observer | Same in all inertial frames (absolute) | Depends on the reference point chosen (relative) |
Kinetic Energy Formula Solved Examples
Example 1: A car with a mass of 1000 kg is traveling at a speed of 20 m/s. Calculate its kinetic energy.
Solution:
Given:
Mass \( m = 1000 \) kg
Velocity \( v = 20 \) m/s
The kinetic energy \( KE \) is given by the formula:
\[ KE = \frac{1}{2}mv^2 \]
Substitute the values:
\[ KE = \frac{1}{2} \times 1000 \times (20)^2 \]
\[ KE = \frac{1}{2} \times 1000 \times 400 \]
\[ KE = 500 \times 400 \]
\[ KE = 200,000 \text{ Joules} \]
So, the kinetic energy of the car is 200,000 Joules.
Example 2: A person with a mass of 70 kg is running at a speed of 5 m/s. Calculate their kinetic energy.
Solution:
Given:
Mass \( m = 70 \) kg
Velocity \( v = 5 \) m/s
The kinetic energy \( KE \) is given by the formula:
\[ KE = \frac{1}{2}mv^2 \]
Substitute the values:
\[ KE = \frac{1}{2} \times 70 \times (5)^2 \]
\[ KE = \frac{1}{2} \times 70 \times 25 \]
\[ KE = 35 \times 25 \]
\[ KE = 875 \text{ Joules} \]
So, the kinetic energy of the running person is 875 Joules.
Example 3: A ball with a mass of 0.5 kg is thrown with a velocity of 10 m/s. Calculate its kinetic energy.
Solution:
Given:
Mass \( m = 0.5 \) kg
Velocity \( v = 10 \) m/s
The kinetic energy \( KE \) is given by the formula:
\[ KE = \frac{1}{2}mv^2 \]
Substitute the values:
\[ KE = \frac{1}{2} \times 0.5 \times (10)^2 \]
\[ KE = \frac{1}{2} \times 0.5 \times 100 \]
\[ KE = 0.25 \times 100 \]
\[ KE = 25 \text{ Joules} \]
So, the kinetic energy of the thrown ball is 25 Joules.
FAQs (Frequently Asked Questions)
1. Can Kinetic Energy change forms?
Kinetic energy is transmitted between objects and has the ability to change into other forms of energy. One must exert force on an object in order to accelerate it, and exerting force requires effort. When a task is completed, energy is transferred to the other object, which then begins to move.
2. What is the use of the Kinetic Energy Formula?
Kinetic Energy Formula is used to compute the mass, velocity or kinetic energy of the body if any of the two values are given.
3. How is kinetic energy calculated?
Kinetic energy KE is calculated using the formula KE=1/2mv2, where
m is the mass of the object and v is its velocity.
4. What are the units of kinetic energy?
Kinetic energy is measured in Joules (J), which is the same unit as energy in general.
5. Can kinetic energy be negative?
No, kinetic energy cannot be negative. It is always a non-negative scalar quantity.
6. What is the relationship between kinetic energy and potential energy?
Kinetic energy and potential energy are forms of mechanical energy. Kinetic energy is associated with motion, while potential energy is associated with position or state (such as gravitational potential energy or elastic potential energy).