-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Iron (III) Oxide Formula
The Iron III Oxide Formula is Fe2O3. This inorganic compound with the Iron III Oxide Formula Fe2O3 is one of the main iron oxides. The other two compounds are iron (II, III) oxide (Fe3O4), which naturally occurs as the mineral magnetite, and iron (II, III) oxide (FeO), which is rare. Hematite, a natural type of iron, serves as the primary iron supply for the steel industry. It is easily attacked by acids, which are frequently referred to as rust. The fact that rust has a similar composition and shares a number of characteristics makes this label useful to some extent.
Quick Links
ToggleIron (III) Oxide Chemical Formula
Fe2O3 is the Iron III Oxide Formula. The Iron III Oxide Formula is created by using the compound’s valency. Iron (Fe) often has a valency of 3, whereas oxygen (O) typically has a valency of 2. The process of the compounds exchanging valencies to achieve a neutral and balanced state occurs frequently when we compose the formula. As a result, Iron receives the valency of oxygen and vice versa.
Iron (III) Oxide Structural Formula
Fe2O3 is the Iron III Oxide Formula. The Iron III Oxide Formula has a molar mass of 159.69 g/mol, and it can be produced through a number of polymorphs. Iron also adopts an octahedral coordination geometry, meaning that each Fe atom is linked to α and γ. These two are the main ones.
Iron III Oxide
One of the formulas that students frequently encounter when studying Chemistry in various classes is the Iron III Oxide Formula. As students move from junior to senior classes, the use of the formula and the reactions that go along with it typically become more complex. Iron (III) oxide, usually referred to as ferric oxide, is an inorganic chemical substance. It is a crucial source of iron because it is one of the key iron oxides and contains the mineral hematite. Other names for this substance include rust and hydrated ferric oxide. For more information, students can access the reference materials available on the Extramarks educational platform.
Iron III Oxide Formula and Structure
The Iron III Oxide Formula Fe2O3 can be found in a variety of polymorphs. Iron uses an octahedral coordination geometry as the primary one. It indicates that the six oxygen ligands are bonded to each Fe centre. Moreover, in the polymorph, some of the Fe is positioned on tetrahedral sites, where four oxygen ligands are held.
Alpha Phase
The most prevalent type is called a ferric oxide and has the rhombohedral corundum (Al2O3) structure. Additionally, it exhibits weak ferromagnetism between 260K and the Neel Temperature, which is 950K and is antiferromagnetic below 260K.
Precipitation and liquid-phase thermal breakdown are two methods we can use to prepare it. However, the size, pressure, and strength of the magnetic field all affect the material’s magnetic characteristics.
Gamma Phase
In gamma-ferric oxide, the structure is cubic. Additionally, at high temperatures, it is metastable and changes from the alpha phase. It appears as the mineral maghemite in nature. As opposed to ultrafine particles smaller than 10 nanometers, which are superparamagnetic, this phase is ferromagnetic and is used in recording tapes.
Occurrence of Iron III Oxide
It naturally comes in a variety of shapes, including hematite and maghemite. Additionally, we may create it artificially by setting nearly any ferrous compound in the air on fire. Additionally, a variety of hydrates with adjustable compositions and architectures are produced.
Preparation of Iron III Oxide
A byproduct of the oxidation of iron is ferric oxide, also known as Iron III Oxide. In laboratories, it is made by electrolyzing an inert electrolyte solution of sodium bicarbonate with an iron anode:
4Fe+3O2+2H2O→4FeO(OH)
Around 200 °C is when this next hydrated iron iii oxide, represented here as FeO(OH), dehydrates.
FeO(OH)→Fe2O3+H2O
Properties of Iron III Oxide
Though most perovskites are not electrically conductive, some of them are. However, they are not soluble in water or all common organic solvents. They are soluble in acids. It has a melting point of 1,565 oC, a density of 5.24 g/cm3, and decomposes upon boiling.
Uses of Iron III Oxide
It is primarily used as a feedstock by the steel and iron industries, including those that produce steel, iron, and a variety of alloys. Additionally, jewellers polish metallic jewellery and lenses using this fine powder, known as jewellers’ rouge or red rouge and have done so historically for beauty purposes. It also cuts more slowly compared to some contemporary polishes, including Cerium (IV) Oxide. The Iron III Oxide Formula is used in the equations.
Solved Example for You
Question: Mention a process involving Iron III Oxide.
An answer to the problem is:
Fe2O3+3CO→2Fe+3CO2
This is one of the most significant processes in carbothermal reduction since it produces carbon dioxide and offers the iron needed to make steel.