-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Exponential Growth Formula
Algebra is a broad area of mathematics. In a nutshell, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a common thread that runs through almost all Mathematics.
Quick Links
ToggleIn Mathematics, Exponential Growth Formula and formulas aid in the calculation of large numbers and are applied in various real-world situations. For example, we can use the Exponential Growth Formula to calculate the population growth of a city, the rate of change of bacteria in a culture, the half-life, the radioactive decay of radioactive isotopes, and so on. An Exponential Growth Formula, as the name implies, is a function that involves exponents. There are two types of Exponential Growth Formulas: Exponential Growth Formula and exponential decay. We will discuss the definition of an exponential function, its graph, types, and exponential formulas, as well as some solved examples, in this article.
An Exponential Growth Formula, as the name implies, is a function that involves exponents. A mathematical function is written as f(x) = axe, where “a” is the function’s base, which is a constant greater than zero, and “x” is the function’s exponent, which is a variable. When x > 1, the function f(x) grows as x gets more extensive. Typically, the base of an Exponential Growth Formula is a transcendental number denoted by e. “e” has a value of approximately 2.71828. An Exponential Growth Formula curve is affected by the value of x. An exponential function’s domain is a set of all real numbers R, whereas its range is a set of all positive real numbers.
Meaning of Exponential Growth Formula
As the name implies, in exponential growth, a quantity grows slowly at first and then rapidly. The graph of an exponentially growing function is increasing. The Exponential Growth Formula can be used to depict economic growth, population expansion, compound interest, bacterial growth in culture, population increases, and so on.
As the name implies, in exponential decay, a quantity decreases rapidly at first and then gradually fades. The graph of an exponentially decaying function is decreasing. The concept of exponential decay can be used to calculate half-life, mean lifetime, population decay, radioactive decay, and other parameters.
An Exponential Growth Formula is a mathematical function of form f (x) = ax, where ‘x’ is variable and ‘a’ is a constant that must be greater than 0. The most commonly used Exponential Growth Formula basis is the transcendental wide variety e, which is approximately equal to 2.71828.
Formula of Exponential Growth
Exponents, as the name implies, are used in Exponential Growth Formula. A number’s exponent (base) indicates how many times the number (base) has been multiplied. An exponential equation is one in which the power is a variable in and of itself.
In an Exponential Growth Formula, a variable is an exponent (or a part of the exponent). As an example,
3 ^ x = 243
5 ^ (x – 3) = 125 \s6 ^ (y – 7) = 216
The examples above are of Exponential Growth Formula. Take note of how the variables x and y are either completely or partially from the exponent in the equation. The Exponential Growth Formula is frequently used to solve problems involving compound interest, exponential growth, decay, and so on.
Solved Examples Using Exponential Growth Formula
- Solve 5x = 4.
Because the bases in the given equation cannot be made equal, logarithms must be used to solve for x.
⇒ log 5x = log 4
As per the property log am = m log a, we have:
⇒ x log 5 = log 4
Divide both LHS and RHS by log 5.
⇒ x = log 4/log 5.
2. The first prize in a radio station contest is a $100 gift card. Every day, a name is called. If the person does not contact the company within 15 minutes, the award will be increased by 2.5 per cent the following day. If there are no winners after t days, write an equation to express the gift card’s monetary value.
The equation for exponential growth is y = a(1 + r) ^ t.
We have, a = 100, r = 2.5% or 0.025
In the equation y = 100(1.025) ^ t, y is the amount of the gift card and t is the number of days since the contest began.
3. In 2010, a gym sold 550 memberships. Since then, subscriptions have increased at a rate of 3% per year. Create an equation to represent the number of memberships sold over t years.
The equation for exponential growth is y = a (1 + r) ^ t.
We have, a = 550, r = 3% or 0.03
In the equation y = 550(1.03) ^ t, y is the number of subscriptions sold and t is the number of years.
FAQs (Frequently Asked Questions)
1. From where can students study the Exponential Growth Formula?
Students can learn about the Exponential Growth Formula by visiting the Extramarks website. Extramarks just released its mobile application, which has had a huge impact on the academic world. All of the content on the Extramarks website and mobile application was created by highly experienced individuals with years of relevant expertise in educating students about the Exponential Growth Formula. As a result, students can be confident that the information they access on the website or the mobile application, which has been launched across multiple platforms, is correct and error-free.
Students can learn more about the content by going to the Extramarks website. Extramarks has recently launched mobile applications for a range of platforms, and all of the material available to students is provided by highly experienced specialists. These professors are well-educated and well-respected in their fields, and they have years of relevant experience instructing students. While these educators were gathering and organising all of the material for the website, they were thinking about all of the obstacles that students encountered. This information has been meticulously designed so that students may simply access it. Extramarks desires for all information to be openly available to students in need.