-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Critical Velocity Formula
Critical velocity is defined as the speed at which a falling item achieves equilibrium between gravity and air resistance.
Quick Links
ToggleThe third way to define critical velocity is the rate and direction at which a fluid may flow through a conduit without becoming turbulent. Turbulent flow is described as fluid flow that is erratic and changes amplitude and direction on a continual basis. It is the polar opposite of laminar flow, which is defined as fluid movement in parallel layers with no layer disturbance.
Formula of Critical Velocity
The critical velocity of a free-falling object is the speed at which gravity and air resistance are equalised. It is the speed at which the flow of a fluid changes from streamlined to turbulent. A liquid’s critical velocity is determined by a variety of parameters, including its Reynolds number, viscosity coefficient, tube radius, and fluid density. It is represented by the symbol Vc. Its unit of measurement is m/s, and the dimensional formula is given as [M0L1T-1].
Vc = Reη / ρr
Where,
Vc is the critical velocity,
Re is the ratio of inertial force to viscous force, that is, Reynolds number,
η is the coefficient of viscosity,
ρ is the density of the fluid,
r is the radius of tube.
Critical Velocity Types
Lower Critical Velocity: The rate at which laminar flow ceases or switches to the transition phase. There is a temporal difference between laminar and turbulent flow. Experiments have shown that when a laminar flow transitions to turbulence, the transition is gradual. There is, however, a transition period between the two types of fluxes. In 1883, Prof. Reynolds Osborne pioneered this experiment.
Upper Critical Velocity: The Critical Velocity at which a flow switches from a transition phase to a turbulent flow is referred to as the “greater or higher Critical velocity.”
The Critical Velocity Formula is the speed and direction at which a liquid’s flow in a tube transitions from smooth to turbulent. The critical velocity is determined by a variety of variables, but the Reynolds number characterises the flow of liquid through a tube as turbulent or laminar. The Reynolds number is a dimensionless variable, meaning it has no units associated with it. The Critical Velocity Formula will be discussed in the Critical Velocity Formula.
How to Calculate Critical Velocity?
The speed at which gravity and air resistance on a falling object are equalised is known as the Critical Velocity Formula of the object. The alternate method of elucidating Critical Velocity is to determine the speed and direction at which a fluid will flow through a conduit without becoming turbulent. Turbulent flow is described as an unpredictable fluid flow that changes amplitude and direction continually.
The quantity of gas necessary to maintain fluids entrained in the gas stream and raised to the surface is described as “critical velocity.” The higher the line pressure, the higher the needed flow rate. The bigger the pipe or tube, the greater the needed flow rate. Reynolds demonstrated experimentally that if the average velocity of the flow of a certain liquid is less than a specific value, the motion is streamlined, and if it is more than this value, the flow becomes turbulent.
Solved Problems on Critical Angle
Problem 1: Determine the critical velocity of a fluid flowing through a 5 m radius tube. The fluid’s density and coefficient of viscosity are 2.5 kg/m3 and 2 kg/ms, respectively. The Reynolds number is 2500.
Solution:
We have,
Re = 2500
η = 2
ρ = 2.5
r = 5
Using the formula we get,
Vc = Reη / ρr
= (2500) (2)/ (2.5) (5)
= 2000/5
= 400 m/s
FAQs (Frequently Asked Questions)
1. What is critical velocity ?
Critical velocity is the speed at which the flow of a liquid through a tube transitions from laminar to turbulent. The critical velocity is determined by the viscosity coefficient, liquid density, and tube radius.
2. What is an example of a critical velocity?
The sewer pipes are gradually sloped to allow gravity to act on the fluid flow, making it non-turbulent.
3. What is the symbol of critical velocity?
The critical velocity is the velocity at which a liquid flow is streamlined and becomes turbulent. This is indicated as Vc and relies on: Coefficient of viscosity of liquid (η)