-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Complex Number Power Formula
The Complex Number Power Formula, which is frequently expressed in rectangular or standard form, is one with the formula a + ib, where a and b are real numbers and i (iota) is the imaginary component and stands for (-1). To calculate the value of a complex number raised to the power of “n”, use the Complex Number Power Formula. For instance, 10 + 5i is a complex number, where 10 denotes the real component and 5i denotes the imaginary component. The values of a and b determine whether they are entirely real or entirely fake. When a = 0, the result is a which is a strictly real number. When b = 0, the result is ib, which is a completely imaginary number.
Quick Links
ToggleThe value of a Complex Number Power Formula raised to the power of “n” is determined using the complex number power formula. Remember that a complex number is represented by the formula x + iy, where x and y are real values and i is an imaginary number. If i is satisfied, then i2 = -1.
To obtain all of the roots that are not present in real numbers, real numbers must be extended. The Complex Number Power Formula is the term for this extension. If someone were to ask you what complex numbers are, it would simply be that they are an extension of real numbers that contain all of a polynomial’s degree n roots.
The set of numbers with the pattern a+ib is referred to as the Complex Number Power Formula, if i is defined as the answer to the equation x2 = -1.
Since the Complex Number Power Formula are frequently represented by the variable z, z=a+ib. Here, the numbers a and b stand in for the real and imaginary halves of the complex integer, respectively.
In this case, since 7 is independent of i it will be the real component, whereas 3 will be the imaginary part. i is referred to as iota in any complex number. And it has a value of 1.
On the Argand plane, commonly referred to as the complex plane or the Argand diagram, we graphically express. It resembles our standard coordinate plane, however whereas there the x-axis is, here the real axis is. The y-axis is located there, while the hypothetical axis is located here. An ordered pair is used to represent the Argand plane point a+ib (a,b).
A real number and an imaginary number are effectively combined to create the Complex Number Power Formula. The complex number is written as a+ib, where a and ib are real and imaginary numbers, respectively. Additionally, i = -1 and both a and b are real numbers.
Consequently, the Complex Number Power Formula is a straightforward illustration of the addition of two integers, specifically a real number and an imaginary number. It consists of two parts: one that is entirely real, the other entirely fantastical.
Combine comparable phrases while executing complicated number arithmetic operations like addition and subtraction. In other words, add imaginary numbers to imaginary numbers and real numbers to real numbers.
Formula to Calculate the Power of a Complex Number
The Complex Number Power Formula must first be converted to its polar form, which includes the modulus and argument as parts, in order to be expanded according to the exponent supplied. DeMoivre’s theorem is then applied, and it states:
According to De Moivre’s Formula, for all real values of a number, let’s say x,
(x cos + x sin)
Any integer n has the formula n = cos(nx) + isin(nx).
Sample Questions
Question- Write the polar form of the square root of 5 + 12i.
Answer-The complex number is: 5 + 12i.
Square root of the given complex number = √(5 + 12i) = (5 + 12i)
½
r = √(25 + 144) = √169 = 13
tan θ = (12/5)
θ = tan-1(12/5) = 67.38
⇒arg z = 67.38
5 + 12i = 13ei67.38
(5 + 12i)
½ = (13)1/2e(i67.38)/2
√(5 + 12i) = √13 ei33.69
= √13 (cos 33.69 + i sin 33.69)