-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Chain Rule Formula
The Chain Rule Formula is used in differential calculus to get the derivative of a composite function. According to the chain rule, if y = f(g(x)), then the instantaneous rate of change of function f with respect to g and g with respect to x leads to an instantaneous rate of change of f with respect to x. As a result, y’ = f'(g(x)) will be supplied as the derivative of y. g'(x). One of the key rules of distinction is the chain rule. With cases that have been solved, the article on the Extramarks website and mobile application teaches the Chain Rule Formula.
Quick Links
ToggleWhat is Chain Rule?
The Chain Rule Formula is used to determine the derivative of a composite function, such as cos 2x, log 2x, etc. Another name for it is the composite function rule. Only composite functions are subject to the Chain Rule Formula. Therefore, before beginning the Chain Rule Formula, students should first examine what a composite function is and how it may be distinguished.
Chain Rule Steps
- Step 1: The function must be a composite function, which indicates that one function is nested above another, according to the Chain Rule Formula.
- Step 2: Determine the inner and outside functions.
- Step 3: Without affecting the inner function, find the derivative of the outer function.
- Step 4: to determine the inner function’s derivative.
- Step 5: Add the outcomes of steps 4 and 5.
- Step 6: Condense the derivative of the chain rule.
- For instance: Think of a function: g(x) = ln(sin x) (sin x)
- A composite function is g. Use the chain principle.
- The inner function is called sin, and the outside function is called ln(x).
- 1/sin x is the outer function’s derivative.
- Cos x is the inner function’s derivative.
- The derivative of the inside function is hence g'(x) = derivative of the outer function, leaving the inside function alone, where 1/sin x cos x.
- When students simplify, they will see that cos x/sin x = cot x.
Chain Rule Formula and Proof
Students can find the Chain Rule Formula and Proof notes and solutions on the Extramarks website and mobile application. These solutions have been designed keeping in mind the requirements of each student. Therefore, students can study without worrying about anything else.
Chain Rule Formula 1:
Chain Rule Formula 1:
f(g(x)) = f’ (g(x)) g’ (x)
As an illustration, write sin 2x = f(g(x)), where f(x) = sin x and g(x) = 2x, to determine the derivative of d/dx (sin 2x).
The Chain Rule Formula therefore reads: d/dx (sin 2x) = cos 2x 2 = 2 cos 2x.
Chain Rule Formula 2:
Chain Rule Formula 2:
Students can assume that the expression is applying the Chain Rule Formula and changing “x” to “u.”
Dy/dx equals Dy/Du x Du/Dx
Example: Assume that y = sin 2x and 2x = u in order to calculate d/dx (sin 2x). If so, y = sin u.
According to the chain rule equation, d/dx (sin 2x) = d/du (sin u) Cos u = 2 cos 2x = d/dx(2x) = cos u
Chain Rule formula Proof
Students should visit the Extramarks website and mobile application to obtain further information on the Chain Rule Formula and its study materials. They can also download the study materials and notes cited on the Extramarks website and mobile application in PDF format and use it for offline study.
Double Chain Rule
When a function depends on more than one variable, the functions may be layered one on top of the other. The overall derivative is obtained by multiplying a series of smaller derivatives. Three functions, u, v, and w, please. The components of a function, f, are u, v, and w. Here, the chain rule is expanded. The chain rule is used twice when a function is made up of three other functions. When f = (u o v) o, then w = df/dx = df/du/dv, then dv/dw, then dw/dx
Applications of The Chain Rule
Physics, chemistry, and engineering all make extensive use of the Chain Rule Formula. The chain rule is used:
- To determine the time rate of pressure change,
- To determine how quickly the distance between two moving objects changes,
- To determine the location of a moving object to the right and left in a specific interval,
- How can one tell if a function is growing or shrinking?
- To determine how quickly the average molecular speed is changing.
Solved Examples on Chain Rule Formula
Example 1: Applying the chain rule, get the derivative of y=lnx.
The answer is y = ln x.
Because f(x) = y is made up of the functions ln(x) and x, we may distinguish it using the chain rule.
Suppose that u = x. If so, y = ln u.
FAQs (Frequently Asked Questions)
1. What Uses Does the Chain Rule Formula have?
Finding the derivative of a composite function is the major use of the chain rule formula (a function that is the combination of two or more functions). There are numerous uses for this chain rule in physics, chemistry, and engineering. Students and experts use the chain rule to determine the time rate of change of the pressure, the rate of change of the distance between two moving objects, and the rate of change of the average molecular speed.
2. What purpose does the Chain Rule Formula serve?
When one needs to determine the rate of change of a function that depends on another function, which in turn depends on another function, they utilize the chain rule. The functions in this case seem to be nested. We calculate the derivative using the chain rule formula d/dx (f(g(x)) = f’ (g(x)) g’ (x).