-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Inverse Trigonometric Functions Class 12 Important Questions for CBSE Maths Chapter 2
Important Questions Class 12 Maths Chapter 2 on Inverse trigonometry are made by Extramarks subject matter experts in accordance with the CBSE syllabus. Maths Class 12 Chapter 2 Important Questions include principal Inverse Trigonometric functions with domain and range, the properties of Inverse Trigonometric functions
Quick Links
ToggleThese questions come with concise answers and cover all of the necessary and important concepts which will help students to prepare for exams. Students can refer to Class 12 Maths Chapter 2 Important Questions on the Extramarks website.
Get Access to CBSE Class 12 Maths Important Questions for the Academic Year 2023-24
You can also find CBSE Class 12 Maths Important Questions Chapter-by-Chapter Important Questions here:
CBSE Class 12 Maths Important Questions |
||
Sr No | Chapter No | Chapter Name |
1 | Chapter 1 | Relations and Functions |
2 | Chapter 2 | Inverse Trigonometric Functions |
3 | Chapter 3 | Matrices |
4 | Chapter 4 | Determinants |
5 | Chapter 5 | Continuity and Differentiability |
6 | Chapter 6 | Application of Derivatives |
7 | Chapter 7 | Integrals |
8 | Chapter 8 | Application of Integrals |
9 | Chapter 9 | Differential Equations |
10 | Chapter 10 | Vector Algebra |
11 | Chapter 11 | Three Dimensional Geometry |
12 | Chapter 12 | Linear Programming |
13 | Chapter 13 | Probability |
Inverse Trigonometry Questions for Class 12 Maths Chapter 2
- Show that tan ̄¹1+x² + 1+x²1+x²– 1+x² = 𝝅4 + 12cos ̄¹x²
Ans: To solve this question, substitute x²= cos , therefore,
tan ̄¹1+x² + 1+x²1+x²- 1+x² = tan ̄¹1+cos x + 1-cos x1+cos x – 1-cos x …..(1)
Using the trigonometric identities 1+cos x = 2 cosx2 and 1-cos x = 2 sinx2 on equation (1) we get,
tan ̄¹1+x² + 1+x²1+x²- 1+x²= tan ̄¹2 cos2+2 sin22 cos2-2 sin2 …..(2)
Taking 2 cos2 common from numerator and denominator of (2) we get,
tan ̄¹1+x² + 1+x²1+x²- 1+x²= tan ̄¹1+ tan 21- tan 2 …..(3)
Now using the identity, tan ̄¹x+y1-xy=tan⁻¹(x)+tan⁻¹y on (3) we get,
tan ̄¹1+x² + 1+x²1+x²- 1+x²=tan⁻¹(x)+tan⁻¹tan2
⇒ tan ̄¹1+x² + 1+x²1+x²- 1+x²=𝝅4+12
Let this be known as equation (4).
Re-substituting x²= cos in (4)we get,
tan ̄¹1+x² + 1+x²1+x²- 1+x²=𝝅4+12cos ̄¹x²
Hence Proved.
- Prove that 12sin ̄¹2x1+x²+12cos ̄¹1-y²1+y²=x+y1-xy
Ans. To solve this problem use the substitution,
x = tanθ
y = tanα
In the LHS of the given expression.
tan12sin⁻¹2×1+x²+12cos⁻¹1-y²1+y²= tan12sin⁻¹2tan1+tan²+12cos⁻¹2tan1+tan²
Let this be known as equation (1).
Using the trigonometric identity
2tan1+tan²=sin2
1-tan²1+tan²= cos2
From (1) we get,
tan 12sin⁻¹2×1+x²+12cos⁻¹1-y²1+y²= tan 12sin⁻¹sin2+12cos⁻¹cos 2
tan 12sin⁻¹2×1+x²+12cos⁻¹1-y²1+y²= tan +
Let this be known as equation (2).
Now using the trigonometric identity, tan x+y=tan x+tan y1-tan x tan y on equation (2), we get:
tan 12sin⁻¹2×1+x²+12cos⁻¹1-y²1+y²=tan +tan 1-tan tan ……(3)
Re-substituting =tan ̄¹x and =tan ̄¹y in equation(3) we get,
tan 12sin⁻¹2×1+x²+12cos⁻¹1-y²1+y² = tan(tan ̄¹x) + tan(tan ̄¹y)1-tan(tan ̄¹x)tan(tan ̄¹y)
tan 12sin ̄¹2×1+x²+12cos⁻¹1-y²1+y²=x+y1-xy
- Show that tan ̄¹1+cos x + 1-cos x1+cos – 1-cos x=𝝅4+x2,x𝝐[0,𝝅]
Ans. Using trigonometric identities
1+cos x = 2 cos x2 and 1-cos x = 2 sinx2 we get,
tan ̄¹1+cos x + 1-cos x1+cos x – 1-cos x = tan ̄¹2 cosx2+2 sin x2 1+cos x – 1-cos x ….(1)
Dividing the numerator and denominator of (1) by 2 cos x2 we get,
tan ̄¹1+cos x + 1-cos x1+cos x – 1-cos x = tan ̄¹ 1+ tanx21-tanx2 .…(2)
Now using the identity, tan ̄¹x + y1-xy = tan ̄¹x+tan ̄¹(y) on the equation(2) we get
tan ̄¹1+cos x + 1-cos x1+cos x – 1-cos x = tan ̄¹(1)+tan ̄¹tanx2
⇒ 𝝅4+x2
- Show that
tan ̄¹xa²-x²=sin ̄¹xa=cos ̄¹a²-x²a
Ans. Using the trigonometric substitution x=a sin in tan ̄¹xa²-x²we get,
tan ̄¹xa²-x²=tan ̄¹a sin a²-a²sin² ……..(1)
Taking out “a” common from the denominator of (1) and cancelling out with numerator we get
tan ̄¹xa²-x²=tan ̄¹sin 1- sin² …….(2)
Using the trigonometric identity 1-sin²x = cos x in the denominator of (2) we get,
tan ̄¹xa²-x²=tan ̄¹sin cos
tan ̄¹xa²-x²=tan ̄¹tan()
Let it be known as equation (3).
Using the result tan ̄¹(tan x)=x in (3) we get
tan ̄¹xa²-x²=tan ̄¹ …….(4)
Let us now re-substitute
x=a sin
= sin ̄¹xa
In equation (4) we get,
tan ̄¹xa²-x²=sin ̄¹xa ……..(5)
Now, from x=a sin we get
sin =xa
Hence, using the trigonometric identity,
sin²+ cos²=1, we get
xa²+cos²=1
cos²=1-x²a²
cos =a²-x²a²
Let this be known as equation (6).
Taking cos ̄¹ on both sides of (6) we get,
cos ̄¹cos =cos ̄¹a²-x²a²
=cos ̄¹a²-x²a²
From equation (4) we get,
tan ̄¹xa²-x²=cos ̄¹a²-x²a².
- Solve the following to find x : cot ̄¹2x+ cot ̄¹3x=𝝅4
Ans: To solve this question, use the identity cot ̄¹xy – 1x + y=cot ̄¹(x)+cot ̄¹(y)
cot ̄¹2x+ cot ̄¹3x=cot ̄¹6x²-15x
Hence, cot ̄¹6x²-15x= 𝝅4 ……..(1)
Taking cot on both sides we get,
cot cot ̄¹6x²-15x=cot𝝅4
6x²-15x=cot𝝅4
Let it be known as equation (2).
Solving the equation (2) by substituting the principal value of cot𝝅4we get,
6x²-1=5x
6x²-5x-1=0
Simplifying it further we get,
6x²+(-6x+x)-1=0
6x+1x-1=0
x=1, –16
But, x= –16 is not possible. Therefore,
x=1.
- Prove that
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18= 𝝅4
Ans. To solve this problem use the trigonometric identity,
tan ̄¹x+y1-xy=tan ̄¹x+tan ̄¹y in the LHS of the given expression
Hence,
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18=tan ̄¹13+151- 115+tan ̄¹17+181- 156
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18=tan ̄¹47+tan ̄¹311
Let this be known as equation (1).
Again, using the trigonometric identity tan ̄¹x+y1-xy=tan ̄¹x+tan ̄¹y on (1) we get,
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18=tan ̄¹47+3111 – 1277
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18=tan ̄¹6565
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18=tan ̄¹1
Let this be known as equation (2).
But we know that,
tan𝝅4=1
tan ̄¹1= 𝝅4
Hence from equation (2) it is proved that
tan ̄¹13+tan ̄¹15+tan ̄¹17+tan ̄¹18= 𝝅4.
- Evaluate: tan12cos ̄¹311
Ans. To solve this question, use the substitution 12cos ̄¹311=x in the LHS of the given expression. Therefore,
12cos ̄¹311=x
cos 2x=311
Let this be known as equation (1).
But we know that 1-tan²x1+tan²x= cos 2x. Hence from (1) we get,
1-tan²x1+tan²x=311 ……..(2)
Applying the rule of component and divided on equation (2) we get,
1-tan²x+1+tan²x1-tan²x-1-tan²x=3 + 113 – 11
2-2tan²x=3 + 113 – 11
Let this be known as equation (3).
Taking the reciprocal of equation (3) we get,
-tan²x=3 – 113 + 11
tan²x= 11 – 33 + 11
tan x=11 – 33+11
Let this be known as equation (4).
Now re-substituting 12cos ̄¹311=x in (4) we get,
tan 12cos ̄¹311=11 – 33 + 11
Class 12 Maths Chapter 2 Important Questions – Inverse Trigonometric Functions
Introduction
The sine, cosine, tangent, secant, cosecant, and cotangent carry out opposite operations which are given by the inverse trigonometric functions. When two of the three side lengths are analyzed, they are used in a right triangle to evaluate the measurement of an angle.
Principal Inverse Trigonometric Functions With Domain and Range
Inverse Trigonometric Function | Domain | Range |
sin | -1, 1 | -𝜋/2, 𝜋/2 |
cos | -1, 1 | 0, 𝜋 |
tan | R | (-𝜋/2, 𝜋/2) |
cosec | R -(-1,1) | -𝜋/2, 𝜋/2-0 |
sec | R | (0, 𝜋 – 𝜋/2) |
cot | R | (0, 𝜋) |
Properties of Inverse Trigonometric Functions
The properties of the inverse trigonometric functions are important for better understanding of the concepts in this chapter as well as to solve the mathematical equations. The properties of inverse trigonometric relations signify the relationship between all the inverse trigonometric functions like sine, cosine, secant, cosecant, cotangent and tangent.
- sin-1 (1/x) = cosec-1 x, x1 or x1
- cos-1 (1/x) = sec-1 x, x1 or x1
- tan-1 (1/x) = cot-1 x, x > 0
- sin-1 (–x) = – sin-1 x, x ∈
- –1,1
- –1,1
- tan-1(–x) = – tan-1 x, x ∈ R
- cosec-1 (–x) = – cosec-1 x, | x | 1
- cos-1 (–x) = – cos-1 x, x ∈
- –1,1
- –1,1
- sec-1 (–x) = – sec-1 x, | x | 1
- cot-1 (–x) = – cot-1 x, x ∈ R
- sin-1 x + cos-1 x = 2 , x ∈
- –1,1
- –1,1
- tan-1 x + cot-1 x = 2 , x ∈ R
- cosec-1 x + sec-1 x = 2 , | x | ≥ 1
- tan-1 x + tan-1 y = tan-1 (x + y / 1 – xy) , xy < 1
- tan-1 x – tan-1 y = tan-1 (x – y / 1+ xy) , xy > – 1
- 2tan-11 x = sin-1 (2x / 1 + x2) , | x | ≤ 1
- 2tan-1 x = cos-1 (1 – x2 / 1 + x2) , x ≥ 0
- 2tan-1 x = tan-1 (2x / 1 – x2) , – 1 < x < 1
important questions of chapter 2 maths class 12 are made with a step-by-step approach by Extramarks subject matter experts.
Conclusion
Students can go through Class 12 Maths Chapter 2 Important Questions for their final exam preparations. Extramarks has prepared these questions with solutions for the Class 12 Maths Chapter 2 “Inverse Trigonometric Functions,” which includes all the necessary concepts as per the CBSE syllabus.
Q1.
opt.
ans.
Q2-
opt-
ans-
Q3-
opt-
ans-
Q.4
Option –
Ans.
Q5-
Opt-
Ans-
Please register to view this section
CBSE Class 12 Maths Important Questions
FAQs (Frequently Asked Questions)
1. Prove that sin-1 (3/5) – sin-1(8/17) = cos-1 (84/85).
Let sin-1 (3/5) = a and sin-1 (8/17) = b
Thus, we can write sin a = 3/5 and sin b = 8/17
Now, find the value of cos a and cos b
To find cos a:
Cos a = √[1 – sin2a]
= √[1 – (3/5)2 ]
= √[1 – (9/25)]
= √[(25-9)/25]
= 4/5
Thus, the value of cos a = 4/5
To find cos b:
Cos b= √[1 – sin2b]
= √[1 – (8/17)2 ]
= √[1 – (64/289)]
= √[(289-64)/289]
= 15/17
Thus, the value of cos b = 15/17
We know that cos (a- b) = cos a cos b + sin a sin b
Now, substitute the values for cos a, cos b, sin a and sin b in the formula, we get:
cos (a – b) = (4/5)x (15/17) + (3/5)x(8/17)
cos (a – b) = (60 + 24)/(17x 5)
cos (a – b) = 84/85
(a – b) = cos-1 (84/85)
Substituting the values of a and b sin-1 (3/5)- sin-1 (8/7) = cos-1 (84/85)
Hence proved.
2. Find the value of cot (tan-1 α + cot-1 α).
Given that: cot (tan-1 𝛂 + cot-1 𝛂)
= cot (𝝅/𝟐) (since, tan-1 x + cot-1 x = 𝜋/2)
= cot (180°/2) (we know that cot 90° = 0)
= cot (90°)
= 0
Therefore, the value of cot (tan-1 α + cot-1 α) is 0.