-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
NCERT Class 12 Mathematics Chapter 8 Notes
Mathematics is an essential subject that forms the basis of all other subjects. It encourages logical reasoning and is necessary for business, finance and personal decision making. In this subject, strong basic knowledge is required to understand complex subjects and solve problems based on them.. The majority of students face issues and find it difficult to tackle problems in mathematics. To easily understand the concepts, methods and gain knowledge of the higher-level topics, students must learn from Class 12 Mathematics Chapter 8 notes and get an understanding of all the basic concepts.
Quick Links
ToggleThe Class 12 Chapter 8 Mathematics notes- Application of Integrals is a continuation of Chapter 7. Integration is an important concept in higher mathematics. This Chapter deals with the calculation of complex areas under curves, parabolas, ellipses, and intercepts. Students also learn about various integration techniques and formulas. With the help of the Class 12 Mathematics Chapter 8 notes, students can strengthen their foundation and solve problems based on the real world.
Extramarks make Mathematics interesting and fun with coloured illustrations and detailed information. The Class 12 Mathematics Chapter 8 notes help students to practice unlimited questions and attain high scores in the examination. Students can also access different practice tests, mock tests, reference books, etc., from the Extramarks web portal.
NCERT Class 12 Mathematics Chapter 8: Key Notes
The main topics covered in the Class 12 Mathematics Chapter 8 notes are:
- Introduction
- Definite integrals
- Newton Leibnitz’s Theorem
- Area under Simple Curves
- Area between Two Curves.
Introduction:
The Chapter begins by recalling the concepts of finding areas bounded by the curve and definite integrals. It also introduces the various applications of integrals in this Chapter and topics like areas under simple curves. Between lines, and curves, parabola, and ellipses are also taught. Calculation of the average value of a function with the help of integration is included in the Chapter.
Real-life problems such as a record of rainfall in a day expressed in the form of a curve with specified limit x to limit y are included in the Class 12 Mathematics Chapter 8 notes.
Definite Integrals:
Let F(x) be the antiderivative of function f(x), then the definite integral of f(x) from a to b is given as F(b) – F(a), such that variable x has any two independent values a and b. It is denoted as abf(x) dx.
Therefore, we can say that abf(x) dx= F(b) – F(a). the values a and b are called the limits of integration.
Properties:
- abf(x) dx = –baf(x) dx
- abf(x) dx = baf(y) dy
- abf(x) dx = acf(x) dx + cbf(x) dx, where a< c <b
- 0af(x) dx = abf(a-x) dx
- abf(x) dx =abf(a+b-x) dx
- 0af(x)f(x)+f(a-x) dx = a2
- abf(x)f(x)+f(a+b-x) dx = b-a2
- 02af(x) dx = 0af(x) dx + 0af(2a-x) dx
If f(x) is a periodic function, i.e. f(a+x) = f(x) then,
- 0naf(x) dx= n0af(x) dx
- 0naf(x) dx= (n-1) 0af(x) dx
- 0b+naf(x) dx= 0bf(x) dx
- If f(x) 0 on [a, b], then abf(x) dx 0
- If f(x) g(x) on [a, b], then abf(x) dx abg(x) dx
- abf(x) dx abf(x) dx
- abf(x) dx = f(c) (b – a), for a < c < b
Newton Leibnitz’s Theorem:
Consider two differentiable functions g(x) and h(x) for x [a, b], the function f is continuous in interval [a, b] then
ddxg(x)h(x)f(x) dx =ddxh(x) . f(h(x)) – ddxg(x) . f(g(x))
Definite Integral as a Limit of Sum:
The function f(x) is continuous on the interval [a, b] divided into n parts, then
abf(x) dx= nr=0n=1(b-a)n f(a+ (b-a) rn
Reduction Formulae in Definite Integrals
- If In= o2sinnx dx then In=(n-1n) In-2
NOTE: In= o2sinnx dx = o2cosnx dx
- If In= o4tannx dx then In+ In-2= 1n-1
- If In= o2sinmx. cosnx dx then Im,n=(m-1m+n) Im-2, n
The area under the curves:
- The total area A of the region bounded between the x-axis with co-ordinates x = a, x = b and the curve y = f (x) is given as abdA = aby dx =abf(x) dx.
If f(x)>0, ∀x∈[a,c) and f(x)<0 ∀x∈(c,b], then
Area = acf(x) dx+ cbf(x) dx = acf(x) dx – cbf(x) dx ∀ a < c < b
2. The area of the given region bounded between the curve x = g (y), y-axis and the lines y = c,
y = d is given as cddA = cdx dy =cdg(y) dx.
NOTE: If the curve is below the x-axis, then f (x) < 0 from x = a to x = b. In this case, the area will be negative. But since only the numerical value is taken into consideration, we take the absolute value of the area, which is given by abf(x) dx
The area of the region bounded by a curve and a line:
The area of the region is bounded by a line and a circle, parabola, or an ellipse in their standard forms. Vertical stripes or horizontal stripes are used to calculate the area of the region.
For, e.g. Consider the figure given below. We have to find the area bounded by the ellipse in its standard form and the ordinates x = 0 and x = ae, where b2= a2(1- e2) and e < 1. The area of the highlighted region is enclosed by the lines x = 0 and x = ae and the eclipse. Therefore using the formula for area, we will integrate and find the solution.
The area of the region between two curves:
Here total area = ab[f(x)-g(x)]dx i.e.,
Area A= [area bounded by the curve y = f (x), x-axis and lines x = a, x = b] – [area bounded by the curve
y = g (x), x-axis and lines x = a, x = b]
A = abf(x)dx –abg(x)dx = ab[f(x)-g(x)]dx where f(x) > g(x) in the interval [a, b]
In this case, the total area A= Area of the ACBDA region+ Area of the BPRQB region.
Area = ac[f(x)-g(x)]dx + cb[g(x)-f(x)]dx, where a < c < b and f (x) ≥ g (x) in interval [a, c] and f (x) ≤ g (x) in the interval [c, b].
Curve Tracing:
To locate the area of a region, it is necessary to draw a rough sketch. Consider the curve f(x,y) = 0. To find the area of the curve, follow the steps given below:
Step 1: Symmetry
- The curve is said to be symmetric about the x-axis if all the powers of y in the equation are even.
- The curve will be symmetric about the y-axis if all the powers of x in the equation are even.
- The curve is symmetric about line y = x if the given equation remains unchanged on interchanging the value of x and y.
- The curve will be symmetrical in opposite quadrants if the given equation remains unchanged when x and y values are replaced by -x and -y.
Step 2: Origin
- If the constant term is absent in the given equation, then we can say that the curve passes through the origin (0,0).
- Then calculate the tangents at the point (0, 0) by equating the terms having the lowest degree in the given equation to zero.
Step 3: Intersection with Co-ordinates Axes
- Find values of x by substituting y=0 to estimate the intersecting points of the curve with an x-axis
- Find values of y by substituting x=0 to estimate the intersecting points of the curve with the y-axis
Step 4: Asymptotes
- Compare the coefficient of the highest power of variable y in the given algebraic equation to zero to find out the vertical asymptotes.
- Compare the coefficient of the highest power of variable x in the given algebraic equation to zero to find out the horizontal asymptotes.
Step 5: Region
- Solve the given algebraic equation for x in terms of y or vice versa to determine the regions in which the curve doesn’t lie.
Step 6: Critical Points
- Differentiate the value of y with respect to x and find out which values of x satisfy ddxy = 0
Step 7: Trace the given curve
Chapter 8 Mathematics Class 12 Notes: Exercises & Answer Solutions
The Class 12 Mathematics Chapter 8 notes ensure detailed and apt information of all the concepts for students to get a clear understanding. Students learn to calculate the area of different regions bounded by curves, lines, parabolas and ellipses. With the help of the Class 12 Mathematics Chapter 8 notes, students can get all important definitions, formulas, properties, and theorems in one place to enable quick revision to clear their doubts and provide them with a solid foundation..
Click on the links given below to gain access to the Extramarks Questions & Answers of this chapter.
Extramarks, an online learning platform, aims to provide a fun and engaging learning experience. The Class 12 Mathematics Chapter 8 notes are prepared by academic experts by analysing various CBSE sample papers and CBSE previous year question papers. Extramarks provides various study material and CBSE revision notes to help students in the exam preparation.
NCERT Exemplar Class 12 Mathematics
The Extramarks platform provides the best study materials such as the NCERT Exemplar and other NCERT books to help students in their Class 12 board exams as well as other competitive examinations. The NCERT Exemplar includes an unlimited set of CBSE extra questions and miscellaneous problems for students to gain an in-depth knowledge of all concepts included in the Class 12 Mathematics Chapter 8 notes.
The NCERT Exemplar is based on the latest CBSE syllabus. Students must regularly practice all the important questions to attain high scores in the examination. It also teaches several shortcut techniques to tackle complex problems easily in no time. With the help of academic notes such as NCERT Exemplar and Extramarks Class 12 Mathematics Chapter 8 notes, students can study hassle-free according to CBSE pattern.
NCERT Class 12 Mathematics Chapter 8 Notes: Key Features
The key features of Extramarks Class 12 Mathematics Chapter 8 notes are as under.
- The notes provide all concepts included in the CBSE syllabus in a detailed and lucid manner.
- It is prepared by subject matter experts at Extramarks
- Students get an idea of the marking system, weightage and exam pattern of the CBSE examinations.
- The Class 12 mathematics notes Chapter 8 provides authentic knowledge and helps to clarify all doubts or queries way ahead of the exam to put the students at ease.
- Inadvertently students develop time management and problem-solving skills.
Q.1 Find the area of the region bounded by y2 = x, x =1, x = 4 and the x-axis.
Ans
Q.2 Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = – 1 and x = 1.
Ans
Q.3 Using integration, find the area bounded by the curves x2 + y2 = 1 and y2 = (x +1).
Ans
Q.4 Find the area bounded by curves x2 + y2 = 1 and (x – 1)2 + y2 = 1.
Ans
Q.5
Ans
Q.6
Ans
Q.7 Find the area of the region bounded by y2 = x and x2 = y.
Ans
Q.8 Find the area of the region bounded by x2 = y and y = |x|.
Ans
Q.9 Find the area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x.
Ans
Q.10 Find the area of the region bounded by ellipse
.
Ans
Q.11 Using the method of integration find the area bounded by the curve |x| + |y| = 1.
Ans
Q.12 Find the area bounded by the curve x2 = 4y and the line x = 4y – 2.
Ans
Q.13 Using integration, find the area of the region bounded by the line 3y = 2x +4, x-axis and the line x = 1 and x = 3.
Ans
Q.14
Ans
Q.15 Find the area of the region bounded by exponential function from x = 0 and x = 1.
Ans
Q.16 Find the area of the region bounded by Line
x – y=0 , X-axis and ordinates x=1.
Ans
Q.17
Ans
Q.18
Ans
Q.19
Ans
Q.20 Find the area of the region bounded by curve xy = 1 from x = 1 and x = e.
Ans
Q.21 Find the area of the region bounded by curve
y = x2, X-axis and ordinates x = 1.
Ans
Q.22 Find the area of the region bounded by line
y = 2x+1, X-axis, Y-axis and ordinates x = 1.
Ans
Q.23 Find the area of the region bounded by curve y=f(x), ordinates x=a and x=b, as shown below.
Ans
Q.24 Find the area of the region bounded by curve y = f(x), y = g(x) and ordinates x = a and x = b, as shown below.
Ans
Q.25 Find the area of the region bounded by parabola y2 = x and ordinates x=1.
Ans
Q.26 Find the area of the region bounded by parabola y2 = x and ordinates x = 1 and x = 4.
Ans
Q.27 Find the area of the region bounded by curve y2 = x and straight line y = x.
Ans
Q.28 Find the area of the region bounded by curve y=x2 and x=y2.
Ans
Q.29
Ans
Q.30 Using the method of integration, find the area of the region bounded by inequation 2x+y8, x+2y8, x 0 and y0.
Ans
Q.31 Find the area of the region bounded by the curve y2 = 4x and the line y = 4x – 2.
Ans
The given curve is: y2 = 4x …(i)
And the given line is: y = 4x – 2 …(ii)
On solving both the equations:
(4x – 2)2 = 4x
16x2 – 16x + 4 = 4x
16x2 – 20x + 4 = 0
Or 4x2 – 5x + 1 = 0
4x2 – 4x – x + 1 = 0
(4x – 1)(x – 1) = 0
Or x = 1/4, 1
And y = 4(1/4) – 2 or 4(1) – 2
Or y = –1 or 2
Therefore, the points of intersection are (1/4, –1) and (1, 2).
Coordinate of C:
y = 0 or 4x – 2 = 0 or x = ½
So, coordinates of C are (1/2, 0).
And coordinates of E are (1/4, 0).
The area bounded by the parabola y2 = 4x and line y = 4x – 2 is given below:
Please register to view this section
FAQs (Frequently Asked Questions)
1. Why should I refer to Chapter 8 Mathematics notes by Extramarks?
The Class 12 Mathematics Chapter 8 notes are prepared by professionals and subject experts at Extramarks who have years of experience in the subject. While solving the problems, if a student faces any difficulty , they can refer to the stepwise solutions and pictorial representation in the notes to understand each and every step. This will help them to strengthen their basics.
2. Which chapters are included in the Extramarks NCERT Solutions of Class 12 Mathematics?
Extramarks, an online learning platform, provides chapter-wise solutions such as the Class 12 Mathematics Chapter 8 notes to help students in their studies. All the crucial topics included in the syllabus are well-explained in a detailed and stepwise manner. Students of Class 12 are advised to study with the help of these academic notes to get a clear idea of the exam pattern, marking system, weightage as well as important concepts from each chapter.
Chapter 1: Relations and Functions
Chapter 2: Inverse Trigonometric Functions
Chapter 3: Matrices
Chapter 4: Determinants
Chapter 5: Continuity and Differentiability
Chapter 6: Applications of Derivatives
Chapter 7: Integrals
Chapter 8: Application of Integrals
Chapter 9: Differential Equations
Chapter 10: Vector Algebra
Chapter 11: Three Dimensional Geometry
Chapter 12: Linear programming
Chapter 13: Probability