CBSE Class 12 Maths Revision Notes Chapter 7

Class 12 Mathematics Chapter 7 Notes

Mathematics is a demanding and challenging subject. It requires tremendous practice. If students face difficulty solving complex mathematical problems, at Extramarks, we assure them that they will feel more relaxed once they access the study material provided by Extramarks. . Class 12 mathematics Chapter 7 notes for Integrals includes everything a student needs to understand and excel in Mathematics..

Integrals is an essential but tricky and not so easy topic; hence professional help is required to prepare the students for their CBSE exams and other entrance exams like IIT, JEE, etc. Based entirely on the CBSE Syllabus, our Class 12 mathematics Chapter 7 notes will give the students precisely what they need to ace their exams.

Extramarks, an online learning platform, aims to make learning Mathematics engaging and fun with coloured illustrations, graphical representation and detailed information. The Class 12 Mathematics Chapter 7 notes help students practice important questions and get a high score in the examination. Students can also access various practice tests, mock tests, CBSE books, etc., available on the Extramarks web portal and mobile app.

NCERT Class 12 Mathematics Chapter 7 Notes: Main Topics

The main topics covered in this chapter are as follows:

  • Introduction
  • Integration
  • Indefinite Integrals
  • Application of Integrals
  • Integral Calculus

An overview of Class 12 Mathematics cChapter 7 notes is given below.

INTRODUCTION:

The Class 12 Mathematics chapter 7 notes include various complex concepts related to Integration and application of Integrals.

Integration is the inverse of differentiation. Integration is defined as the process of determining a function, say F(x), whose differential coefficient is known.
Therefore, Let the differential coefficient of F(x) be f(x).
ddx[F(x)]=f(x), we say that F(x) is integral or antiderivative of f(x).
Integration is denoted by f(x) dx= F(x) where,
f(x) is a function f of variable x is known as the integral and f(x) dx is known as the element of integration.

INDEFINITE INTEGRAL

If ddx[F(x)]=f(x) then arbitrary constant C, f(x) dx= F(x) + C.
This shows that F(x) and F(x) + C are integrals of the same function f(x). If the value of C varies, we get different values of integrals of f(x). Therefore, the integral of the function f(x) is not definite. By virtue of this property, we can say that F(x) is the indefinite integral of f(x).

Properties:

  1. [f(x) + g(x) dx] = f(x) dx + g(x) dx
  2. ddx[F(x)]=f(x)
  3. k.f(x) = k. f(x)dx
  4. If f1(x), f2(x), f3(x)…… fn(x) are functions and k1, k2,, k3…..kn are real numbers. Then
    [r1f1(x) r2f2(x)r3 f3(x)…… rnfn(x)] dx = r1f1(x) dx r2f2(x) dx … rnfn(x) dx

Standard Formulas:

  1. xndx = xn+1n+1 + C, n -1
  2. 1xdx = log x+C
  3. exdx = ex + C
  4. axdx = axlogea+C
  5. sin x dx =-cos x +C
  6. cos x dx=sin x+C
  7. sec2x dx=tan x+C
  8. sec x. tan x dx=sec x+C
  9. cosec x. cot x dx=-cosec x+C
  10. tan x dx= log|cosx|+ C = log|secx|+ C
  11. cot x dx = log|sinx|+ C
  12. sec x dx = log|secx + tanx|+ C
  13. cosec x dx = log|cosecx − cotx|+ C
  14. 11-x2dx = sin-1x +C
  15. 11+x2dx = tan-1x +C
  16. 1xx2-1dx = sec-1x +C

Geometric Interpretation:

Geometric Interpretation

If d/dx[F(x)]=f(x), then f(x) dx= F(x) + C. If the value of C varies, we get different values of integrals of f(x), differing by a constant. The graph of the function depicts an infinite family of curves and they have the same slope F’(x) = f(x).

METHODS OF INTEGRATION:

1. Substitution Method:

By using the substitution method, the variable x in f(x) dx changes into another variable, t. Therefore, the integrand f(x) changes into F(t), which is known to be the algebraic sum of standard integrals. There is no formula to determine a suitable substitute.

a. If given integrand is of the form f’(ax + b),
We substitute ax+b=t. Therefore, dx= 1a dt
Integrating on both sides, we get
f′(ax+b)dx = f'(t)1a dt = f(t)a =f(ax + b)a+C

b. If given integrand is of the form xn-1f’(xn),
We substitute xn=t. Therefore, n.xn-1dx= dt
Integrating on both sides, we get
xn-1f’(xn)dx = f'(t)dtn = 1n =f(ax + b)a+C
Therefore, f'(t) dt = 1n f(t) = 1n f(xn) + C

c. If given integrand is of the form [f(x)n]f’(x),
We substitute f(x)=t. Therefore, f’(x) dx= dt

d. If given integrand is of the form f’(x)f(x),
We substitute f(x)=t. Therefore, f’(x) dx= dt
Integrating on both sides, we get
f’(x)f(x) dx = dtt = log t=log f(x)+C

Some Special Integrals:

dxx2+a2=1a tan-1xa+C
dxx2-a2=12alogx-ax+a+C
dxa2-x2=12aloga+xa-x+C
1a2-x2dx = sin-1xa +C
1×2+a2dx = log x+x2+a2 + C
1×2-a2dx = log x+x2-a2 + C
a2-x2 dx = x2a2-x2+ a22 sin-1xa +C
x2+a2 dx = x2x2+a2+ a22 log x+x2+a2 + C
x2-a2 dx = x2x2-a2+ a22 log x+x2-a2 + C

Rules to solve integrations of the following forms through Integral Substitution
∫f(a2-x2)dx, substitute x=a.sin⁡ θ or x=a.cos θ
∫f(a2+x2)dx, substitute x=a.tan θ or x=a.cot θ
∫f(x2-a2)dx, substitute x=a.sec θ or x=a.cosec θ
f(a+xa-x) dx or f(a-xa+x) dx, substitute x=a.cos 2θ

Integrals of the form 1:

dxax2+bx+c
dxax2+bx+c
ax2+bx+c dx

Rules to solve the above-mentioned integrals:
Step 1: Make the coefficient of x2 =1. Take the coefficient of x2 common from the quadratic equation.
Step 2: ax2+bx+c in the form of a[(x + b2a)2] – b2-4ac2a
Step 3: Use one of the special integrals to transform the integrand.
Step 4: Integrate the function.

Integrals of the form 2:

px+qax2+bx+cdx
px+qax2+bx+cdx
(px+q)ax2+bx+c dx
To solve these integrals, we carry out the following steps:
Substitute px+q as λ (2ax+b) + μ or px+q= λ+ μ
On comparing, we get
p = 2aλ and q = bλ+ μ, which is equal to
λ=p2a and μ = q – bλ μ = q – bp2a
Using these, we transform the integrand and thus integrate the function.

Integrals of form 3:

P(x) ax2+bx+cdx, where P(x) is a polynomial of degree ⩾ 2.
This equation becomes (a0+a1x+a2x2….. + an-1xn-1)ax2+bx+c + k dx ax2+bx+c.
The value of the constants is found by separating the relation and comparing the coefficients of the different powers of x on both sides.

Integrals of the form 4:

x2+ 1×4+ kx2+ 1dx or x2- 1×4+ kx2+ 1dx , where k is a constant
Rules to solve the above-mentioned integrals:
Step 1: The numerator and denominator are divided by x2
Step 2: Substitute z = x + 1x or z = x – 1x
Step 3: Integrate the function with respect to z
Step 4: Express the answer in terms of variable x

Integrals of the form 5:

dxPQ, Let P = ax+b and Q = cx+d (linear or quadratic equations)
Substitute cx + d = z2
Integrate the function with respect to z and express the solution in terms of variable x

Integrals of the form 6:

dxa+b cos x
dxa+b sin x
dxa+b cos x + c sin x

Rules:
Step 1: Substitute cos x = 1 – tan2x21 + tan2x2 and sin x = 2 tanx21 + tan2x2
Step 2: Put tanx2 = z
Step 3: Integrate the function

Integrals of the form 7:

dxa+b cos2x
dxa+b sin2 x
dxa cos2x+b sin x cos x + c sin2x

Rules:
Step 1: Divide entire function by cos2x
Step 2: Substitute sec x = 1 + tan2x
Step 3: Substitute z = tan x dz = sec2x dx
Step 4: Integrate the function

Integrals of form 8:

a cos x + b sin xc cos x + d sin x
Rules:
Step 1: Substitute a.cosx+b.sinx= λ(c.cosx+d.sinx) + μ(−c.sinx+d.cosx)
Step 2: Find values of λ and μ by equating sin x and cos x
Step 3: DIvide the Function into two parts and substitute the value of λ and μ

Integrals of the form 9:

a + b cos x + c sin xd + e cos x + f sin x

Rules:
Step 1: Substitute a + b.cosx + c.sinx= l (e+f.cosx+g.sinx) +m (−f.sinx + g.cosx) + n
Step 2: Find values of l, m and n by equating sin x and cos x
Step 3: Divide the Function into three parts and substitute the value of l, m and n.

Refer to the Extramarks Class 12 chapter 7 Mathematics notes to practice additional problems on the above-mentioned concepts.

METHOD OF PARTIAL FRACTIONS:

Integrals of the form p(x)q(x)dx are integrated with the help of partial fractions.
Firstly, check the degree of p(x) and q(x)

Substitute p(x)q(x) = r(x) + f(x)q(x) where degree of p(x) degree of q(x) > degree of f(x)
Case 1: Denominator has non-repeated linear components
q(x) = (x−1)(x−2)…(x−n)
Therefore, f(x)q(x) = A1 (x−1)+A2 (x−2)+…….+An (x−n)
Extract LCM and find the value of A1, A2, …… , An

Case 2: Denominator has repeated as well as non-repeated linear components.
q(x) = (x−1)2(x−3)…(x−n)
Therefore, f(x)q(x) = A1 (x−1)+A2 (x−1)2+…….+An (x−n)
Extract LCM and find the value of A1, A2, …… , An

Case 3: Denominator has a non-repeated quadratic component which is not further factorisable.
q(x) = (ax2+bx+c)(x−3)(x−4)…(x−n)
Therefore, f(x)q(x) = A1x+A2 (ax2+bx+c)+A3 (x−3)+A4 (x−4)…….+An (x−n)
Extract LCM and find the value of A1, A2, …… , An

Case 4: Denominator has a repeating quadratic component.
q(x) = (ax2+bx+c)2(x−5)(x−6)…(x−n)
Therefore, f(x)q(x) = A1x+A2 (ax2+bx+c)+A3x+A4 (ax2+bx+c)2+A5 (x−5)…….+An (x−n)
Extract LCM and find the value of A1, A2, …… , An

Case 5: The power x is even
Step 1: Substitute z= x2
Step 2: Resolve the functions in terms of z into partial fractions
Step 3: Substitute z= x2 again and carry out Integration.

METHOD OF INTEGRATION BY PARTS

Let u and v be two functions, then integration of the product of u.v is given as
u.v dx= uv dx-(dudx. v.dx) dx
Case 1: Integrals of the form f(x).xn dx
Take xn = u i.e., the first function and f(x) as v.

Case 2: Integrals of form 1.(log x)n dx
Take (log x)n = u i.e., the first function and 1 as v.

Case 3: If the two functions u and v are of different types, then the first function can be chosen as
I – Inverse Trigonometric function
L – Logarithmic function
A – Algebraic function
T− Trigonometric function
E− Exponential function.
The sequence is remembered using an abbreviation, i.e., ‘ILATE’.
Integrals of the form: ex [f(x) + f′(x)] dx
Rules:
Divide these into two different integrals
Use Integration by parts to integrate the first part only.

Integrals of the form:
After Integration, if the initial integrand is formed again, then we solve it with the help of the following steps:
Use the Integration by part technique twice.
Substitute the repeating integrand as equal to I.
Further, solve for I.

Integration of hyperbolic functions:
sin hx dx =-cos hx +C
cos hx dx=sin hx+C
sec2hx dx=tan hx+C
cosec2hx dx=-cot hx+C
sec hx. tan hx dx=sec hx+C
cosec hx. cot hx dx=-cosec hx+C

Chapter 7 Mathematics Class 12 Notes: Exercises & Solutions

The Class 12 Mathematics Chapter 7 notes include various questions for students to practice. The detailed and well-structured information helps students to get in-depth knowledge of Integration and, thus, apply that knowledge to solve the sums. Students will learn the rules to integrate a function of different forms. The Class 12 Mathematics Chapter 7 notes are simple to comprehend for students who desire to ace their examinations. It includes solutions to all exercise questions, miscellaneous problems as well as some CBSE extra questions. Students are recommended to solve the CBSE sample papers for more practice.

Click on the links given below to gain access to the Extramarks exercises and answer solutions:

Students can enjoy a seamless and wholesome learning experience by choosing Extramarks. The Class 12 Mathematics Chapter 7 notes are written in a very easy language. It is prepared after extensive research and in accordance with CBSE Syllabus and various CBSE previous year question papers.

NCERT Exemplar Class 12 Mathematics

The Extramarks platform empowers the learners through the best study materials like Class 12 Mathematics Chapter 7 notes. These help students to excel in their Board exams as well as other national-level competitive examinations. The unlimited practice questions, detailed concepts, and stepwise derivations in the Class 12 Mathematics Chapter 7 notes by Extramarks help students to gain deeper knowledge about various concepts related to Integration.

The NCERT Exemplar teaches several tips, tricks and shortcut techniques to quickly solve problems without making any silly errors. With the help of academic notes such as NCERT Exemplar and Extramarks Class 12 Mathematics chapter 7 notes, students can study hassle-free and enjoy their learning experience.

Key Features Of Class 12 Mathematics Chapter 7 Notes

The key features of Class 12 Mathematics Chapter 7 notes offered by Extramarks include

  • The Class 12 Mathematics Chapter 7 notes are prepared by professionals and subject matter experts at Extramarks who have years of experience in the subject.
  • It includes all concepts included in the CBSE syllabus and is based on the latest pattern followed by NCERT 2021-22.
  • The notes provide detailed and apt information in a lucid manner.
  • Class 12 Mathematics Chapter 7 notes help students to strengthen their basics and thus, makes it easier for students to understand complex topics.
  • Students can develop time-management, problem-solving and analytical skills.

Q.1

Evaluatesec4xtanxdx

Ans

sec4xtanxdx=sec2xsec2xtanxdx=1+tan2xsec4xtanxdxLettanx=tsec2xdx=dt=1+t2tdt=t+t3dt=t22+t44+C=tan2x2+tan4x4+C

Q.2

Evaluate11+sinxdx

Ans

11+sinxdx=11+sinx×1sinx1sinxdx=1sinx1sin2xdx=1sinxcos2xdx=sec2xsecxtanx=tanxsecx+C

Q.3

Evaluate11+tanxdx

Ans

11+tanxdx=cosxcosx+sinxdx=122cosxcosx+sinxdx=12cosx+cosxcosx+sinxdx=12cosx+sinx+cosxsinxcosx+sinxdx=12cosx+sinxcosx+sinxdx+12cosxsinxcosx+sinxdx=121dx+12cosxsinxcosx+sinxdx=x2+121tdtLetcosx+sinx=tsinx+cosxdx=dt=x2+12logt+C=x2+12logcosx+sinx+C

Q.4

Evaluate0111+xxdx

Ans

0111+xxdx=0111+xx×1+x+x1+x+xdx=011+x+x1dx=011+x+xdx=21+x3/2301+2x3/2301=21+13/2321+03/23+213/23203/23=21+13/2323+23=223/23=423

Q.5

Evaluatesec3xdx

Ans

sec3xdx=secxsec2xdx=1+tan2xsec2xdxLettanx=tsec2xdx=dt=1+t2dt=t21+t2+12logt+1+t2+C=tanx.secx2+12logtanx+secx+C

Q.6

Evaluatex24x+2dx

Ans

x24x+2dx=x222dx=x2222dx=x22x24x+2logx2+x24x+2+C

Q.7

Evaluate2x+4x2+3x+2dx

Ans

2x+4x2+3x+2dx=2x+3+1x2+3x+2dx=2x+3x2+3x+2+1x2+3x+2dx=2x+3x2+3x+2dx+x2+3x+2dx=tdt+x+3/221/22dxLetx2+3x+2=t2x+3dx=dt=2t3/22+x+3/22x2+3x+218logx+3/2+x2+3x+2+C=2x2+3x+23/23+2x+34x2+3x+218logx+3/2+x2+3x+2+C

Q.8

Evaluate0π/4sinx+cosx9+16sin2xdx

Ans

I=0π/4sinx+cosx9+16sin2xdx   =0π/4sinx+cosx9+161sinxcosx2dxLetsinxcosx=tcosx+sinxdx=dtx=π/4         t​ =0x=0              t=1I=1019+161t2dt     =1012516t2dt     =101524t2dt     =140log5+4t54t10     =140log1/19     =140log9

Q.9

Evaluate0πxtanxsecx+tanxdx.

Ans

LetI=0πxtanxsecx+tanxdx   .1        =0ππxtanπxsecπx+tanπxdx        =0ππxtanxsecxtanxdx      I=π0ππxtanxsecx+tanxdx   .2    2I=π0πtanxsecx+tanxdx  addingequation1and2       =π0πsinx1+sinxdx         =π0π1+sinx1+sinxdxπ0π11+sinxdx       =π0πdxπ0π11+sinx×1sinx1sinxdx       =πx0ππ0π1sinxcos2xdx       =π2π0πsec2xsecxtanxdx       =π2πtanxsecx0π       =π2πtanπsecπ+πtan0sec0       =π2π01+π01   2I=π22π      I=π22π2=π2π2

Q.10

Evaluate14x1+x2+x3dx.

Ans

I=14x1+x2+x3Sincefx=x1x2x3       x<1x1x2x3     1x<2x1+x2x3     2x<3x1+x2+x3           3x                =3x+6;            x<1x+4;        1x<2x;               2x<33x6               3xI=12x+4dx+23xdx+343x6dxI=x22+4x12+x2223+3x226x34I=222​ +4212241+322​ 222+3422​ 643322+63I=2+8+124+922+2424272+18  =2724=2782  =192

Q.11

Evaluatetanxsinxcosxdx.

Ans

tanxsinxcosxdx=tanxsinxcosxcos2xdx=tanxsec2xtanxdx=sec2xtanxdx=1tdt=2t+CLettanx=tsec2xdx=dt=2tanx+C

Q.12

Evaluatetan2xdx.

Ans

tan2xdx=12logsec2x+C

Q.13

Evaluatex3x2+x1x1dx.

Ans

x3x2+x1x1dx=x2x1+x1x1dx=x2+1+x1x1dx=x2+1dx=x33+x+C

Q.14

Evaluatex2x4+1dx.

Ans

x2x4+1dx=122x2x4+1dx=12x2+1+x21x4+1dx=12x2+1x4+1dx+12x21x4+1dx=121+1x2x2+1x2dx+1211x2x2+1x2dx=121+1x2x1x+2dx+1211x2x+1x2dxLetx1x=u          x+1x=vx+1x2dx=du     x1x2dx=dux2x4+1dx=121u2+22du+121v2+22du                       =1212tan1u2+12122logv2v+2+C                       =122tan1x1x2+142logx+1x2x+1x+2+C

Q.15

Evaluatesinxasinx+adx.

Ans

sinxasinx+adx=sinx+a2asinx+adx=sinx+acos2acosx+asin2asinx+adx=cos2adxsin2a  cotx+adx=xcos2asin2alogsinx+a+C

Q.16

Evaluate0π2cos2xcos2x+4sin2xdx.

Ans

0π2cos2xcos2x+4sin2xdx=0π2cos2xcos2x+41cos2xdx=0π2cos2x43cos2xdx=130π23cos2x43cos2xdx=130π243cos2x443cos2xdx=130π243cos2x43cos2xdx+430π2143cos2xdx=130π2dx+430π21431+cos2x2dx=13x0π2+430π21833cos2xdx=π6+830π21531tan2x1+tan2xdx=π6+830π2sec2x51+tan2x31tan2xdx=π6+830π2sec2x2+8tan2xdx=π6+430π2sec2x1+4tan2xdx                                        Lettanx=tx=π/2t=sec2xdx=dtx=0     t=0=π6+43011+2t2dt=π6+23tan12t0=π6+23tan1tan10=​ π6+π3=π6

Q.17

Evaluate 2x+3x6xdx.

Ans

2x+3x6x=12x+13xdx               =12xlog12+13xlog13+C

Q.18

Evaluatetanxtan2xtan3xdx.

Ans

tan3x=tan2x+x         =tan2x+tanx1tan2xtanxtan3x1tan2xtanx=tan2x+tanxtan3xtan2xtanx=tanxtan2xtan3xtanxtan2xtan3xdx=tan3xtan2xtanxdx=13logsec3x12logsec2xlogsecx+C

Q.19

Evaluatecos3ax+bsinax+bdx.

Ans

cos3ax+bsinax+bdxLetcosax+b=tasinax+bdx=dt=1at3dt=t44a+C=cos4ax+b4a+C

Q.20

Evaluatesecxlogsecx+tanxdx.

Ans

secxlogsecx+tanxdxLetlogsecx+tanx=t1secx+tanxsecxtanx+sec2xdx=dtsecxdx=dt=tdt=t22+C=logsecx+tanx22+C

Q.21

Evaluate2xx2+1x2+2dx.

Ans

2xx2+1x2+2dxLetx2=t2xdx=dt=dtt+1t+2=dtt2+3t  2dt=1t+3/221/22dt=121/2logt+1t+2+C=logx2+1x2+2+C

Q.22

Evaluate3x+5x3x2+x+1dx.

Ans

3x+5x3x2+x+1dx=3x+5x2x11x1dx=3x+5x21x1dx=3x+5x12x+1dxLet3x+5x12x+1=Ax1+Bx12+Cx+13x+5​ =Ax21+Bx+1+Cx12      iPutx=1ini8=2BB=4Putx=1ini2=4CC=1/2Putx=0ini5=A+4+1/2A=​ 1/23x+5x12x+1dx=1/2x1+4x12+1/2x+1dx                              =12logx14x1+12logx+1+C                              =4x1+12logx+1x1+C

Q.23

Evaluate1cosxacosxbdx.

Ans

1cosxacosxbdx=1sinabsinabcosxacosxbdx=1sinabsinxbxacosxacosxbdx=1sinabsinxbcosxacosxbsinxacosxacosxbdx=1sinabsinxbcosxacosxacosxbdx1sinabcosxbsinxacosxacosxbdx=1sinabtanxbdx1sinabtanxadx=1sinablogsecxb1sinablogsecxa+C=1sinablogsecxbsecxa+C

Q.24

Evaluatex+22x2+6x+5dx.

Ans

x+22x2+6x+5dx=144x+82x2+6x+5dx=144x+6+22x2+6x+5dx=144x+62x2+6x+5dx+1422x2+6x+5dx=141tdt+141x2+3x+5/2dxLet2x2+6x+5=tso​ that4x+6dx=​ dt=14logt+141x+3/229/4+10/4dx=14logt+141x+32212dx=14logt+1411/2tan1x+3212+C=14log2x2+6x+5+12tan12x+3+C

Q.25

Evaluate0π2sin2xtan1sinxdx.

Ans

LetI=0π2sin2xtan1sinxdx=0π22sinxcosxtan1sinxdxAlso,letsinx=tcosxdx=dtWhenx=0,t=0andwhenx=π2,t=1I=201ttan1tdt    .1Consider,ttan1tdt=tan1t.tdtddttan1ttdtdt                       =tan1t.t2211+t2.t22dt                       =t2.tan1t2121dt​ +1211+t2dt                       =t2.tan1t212t+12tan1tfrom1I=201ttan1tdt=2t2.tan1t212t+12tan1t=π41+π4=π21.

Q.26

Evaluate0π2logtanxdx.

Ans

LetI=0π2logtanxdx  .….1I=0π2logtanπ2xdxI=0π2logcotxdx.2Onadding1and22I=0π2logtanx+logcotxdx2I=0π2logtanx.cotx.dx2I=0π2log1.dx=0π20.dx2I=0I=0

Q.27

Evaluate01.5x2dx,wherexisgreatestintegerfunction.

Ans

Wehave,01.5x2dx=01x2dx+12x2dx+21.5x2dx             =010dx+121dx+21.52dx             =0+21+1.52             =21+322             =22

Q.28

Evaluatetan1dx.

Ans

Wehave,Evaluatetan1x.dx  Usingintegrationbypart=tan1xdxdxdtan1x=xtan1xx1+x2.dxPut1+x2=tOndifferentiating,2xdx=dtxdx=dt2=xtan1x12dtt=xtan1x12logt+c=xtan1x12log1+x2+c

Q.29

Evaluatesinx1+sin2xdx.

Ans

sinx1+sin2xdx=122sinx1+sin2xdx=12sinx+cosx+sinx​ cosxsinx​ +cosx2dx=12sinx+cosx+sinx​ cosxsinx+cosxdx=sinx+cosxsinx+cosxdx+sinxcosxsinx+cosxdx=dx+sinxcosxsinx+cosxdxPutsinx+cosx=tOndifferentiating,=sinxcosxdx=dt=xdtt=xlogt+c=xlogsinx+cosx+c

Q.30

Evaluate11+cotxdx.

Ans

11+cotxdx11+cosxsinx=sinxsinx+cosxdx=122sinxsinx+cosxdx=12sinx+cosx+sinx​ cosxsinx+cosxdx=sinx+cosxsinx+cosxdx+sinxcosxsinx+cosxdx=dx+sinxcosxsinx+cosxdxPutsinx+cosx=tOndifferentiating,=sinxcosxdx=dt=xdtt=xlogt+c=xlogsinx+cosx+c

Q.31

Evaluatesin1xsin1x+cos1xdx.

Ans

Wehave,sin1xsin1x+cos1xdxsin1xπ2dx​ sin1x​​​ ​+cos1x=π2=π2sin1x.dxUsingIntegrationbypart=  sin1xdxdxdsin1x=xsin1xxdx1x2Put1x2=t2Ondifferentiating2xdx=2tdtxdx=tdt=xsin1x+tdtt=xsin1x+dt=xsin1x+t+c=xsin1x+1x2+c

Q.32

Evaluateexx+​ 12xdx.

Ans

Wehave,exfx+fx=exfx+cHere,fx=xfx=12xexx+12xdx=exx+c

Q.33

Evaluate11+x4dx2.

Ans

dx21+x4=dx21+x22Putx2=tdt1+t2=tan1t+c             =tan1x2+c

Q.34

Evaluate0π2sin2xdx.

Ans

LetI=0π2sin2xdx...1I=0π2sin2π2xdxI=0π2cos2xdx.2Onadding1and2,2I=0π2sin2x+cos2xdx=0π21.dx2I=x0π2=π20I=π4

Q.35

Evaluate1ex+exdx.

Ans

1ex+exdxOnmultiplyingNrandDrbyex,=exe2x+1dx=exdx1+ex2Putex=tOndifferentiating,exdx=dt=dt1+t2=tan1​ t+c=tan1​ ex+c

Q.36

Provethatexfx+fx=exfx+c.

Ans

Wehave,exfx+fxdx=exfxdx+exfxdxUsingintegrationbypartinfirstterm=fxexdxexdxdfx=fxexexfxdx+c+exfxdx=exfx+cHenceproved

Q.37

Evaluatesin1xdx.

Ans

Wehave,sin1x.​ dxUsingIntegrationbypart=sin1xdxddxsin1xdxdx=xsin1xxdx1+22Put1x2=t2Ondifferentiating2xdx=2tdtxdx=tdt=xsin1x+tdtt=xsin1x+dt=xsin1x+t+c=xsin1x+1x2+c

Q.38 Find the anti-derivative of tanx.

Ans

Theantiderivativeof​ tanx=tanxdx                                         =sinxcosxdxPutcosx=tOndifferentiatingsinxdx=dt=dtt=logt+c=logcosx+c

Q.39

Evaluatedsinx.

Ans

Wehave,dsinxPutsinx=tdt=t​ +c       =sinx+c

Q.40

Evaluatelogxdx.

Ans

Wehave,logx.dxUsingIntegrationbypart=logx.dxdxdlogx=xlogxx.1x.dx=xlogxdx=xlogxx+c

Q.41

Evaluate11logxdx.

Ans

We have, 0∈ [-1,1]
Since logx is not defined in [-1,1],
log0 doesn’t exist.
Therefore, logx is non-integrable with limit -1 to 1.

Q.42

Evaluatesin2xdx.

Ans

Wehave,sin2xdx=121cos2xdx                             =12dxcos2xdx                             =12xsin2x2+c                             =x2sin2x4+c

Q.43

Evaluateex1+xe1ex+xedx.

Ans

Wehave,ex1+xe1ex+xedx.Putex+xe=tOndifferentiating,ex+exe1dx=dteex1+xe1dx=dtex1+xe1dx=dteNow,1edtt=1elogt+c                    =1elogex+xe+c

Q.44

Evaluate01.5xdx,wherexisgreatestintergerfunction.

Ans

Wehave,01.5xdx=01xdx+01.5xdx                          =010dx+01.51dx                         =0+x11.5                          =1.51                          =0.5

Q.45

Evaluatex21+x3dx.

Ans

x21+x3dxPut1+x3=tOndifferentiating,3x2dx=dt=13dtt=13logt+c=13log1+x3+c

Q.46

Evaluatesinx+cosx1+sin2xdx.

Ans

sinx+cosx1+sin2xdx=sinx+cosxsinx+cosx2dx=sinx+cosxsinx+cosxdx=dx=x+c

Q.47

Evaluatesecxdx.

Ans

secxdxOnmultiplyingNrandDr​ bysecx+tanx=secxsecx+tanxsecx+tanxdx=sec2x+secx.tanxdxtanx+secxPuttanx+secx=tOndifferentiating,sec2x+secx.tanxdx=dt=dtt=logt+c=logsecx+tanx+c

Q.48

Evaluateπ2π2sin7xdx.

Ans

Letfx=sin7xfx=sin7x              =sin7x              =fxfx=sin7xis​ anoddfunction.π2π2sin7x dx=0

Please register to view this section

FAQs (Frequently Asked Questions)

1. How can I score well using the Class 12 Mathematics chapter 7?

Practice is essential to attain high scores in Chapter 7 Mathematics. The Class 12 Mathematics chapter 7 notes help students to understand the topics and concepts and retain them for a longer time. Using these notes will be helpful for quick revision on the day of the examination. All formulas, derivations and concepts are very well explained in the Class 12 Mathematics notes chapter 7.

2. How can Extramarks help me in my Chapter 7 Mathematics exam preparation?

With the help of class 12 Mathematics Chapter 7 notes, Extramarks is focused on honing the foundation skills of all students. We provide the best study materials, NCERT books, CBSE Revision notes, practice tests, and much more to help students ace their exams. The Class 12 Mathematics Chapter 7 notes ensure that every student scores high marks. All academic notes are based on the CBSE books and cover all the concepts. The notes can be accessed from the Extramarks web portal and mobile application.