CBSE Class 12 Maths Revision Notes Chapter 2

Class 12 Mathematics Chapter 2 Notes

Mathematics is a subject that demands lots of practice. Students need to have an in-depth knowledge of all basic concepts to understand more complex topics of the subject. The Class 12 Mathematics Chapter 2 notes introduce various concepts of the inverse of trigonometric functions. This chapter is very important and has high weightage in the board examinations. These concepts are also to be used to solve MCQs asked in JEE Mains and other national-level competitive examinations. 

Extramarks provides stepwise and detailed Class 12 Mathematics Chapter 2 notes, keeping a note on its overall importance. It ensures sufficient practice through problem-solving and helps to clear doubts and queries. 

Students should stay tuned with Extramarks to update themselves with all the latest information regarding CBSE exams, syllabus, paper patterns, and more. 

Key Topics Covered In Class 12 Mathematics Chapter 2 Notes

The key topics covered in class 12 Mathematics chapter 2 notes include the following.

Inverse function:

Let x and y be two functions such that y = f(x) and x= g(y). Composition of function fog(y) = f(g(y)) and gof(y) = g(f(y))=x then f and y are invertible or inverse of each other, i.e., g = f-1. We can say that, if y=f(x) then x = f-1(y). 

Inverse trigonometric function: 

If y = f(x) = sin x then its inverse x = sin-1(y), where y ∈ [2 , 2 ] and x ∈ [-1,1]. This is applicable for all trigonometric functions. 

Domain, Range and Graphs of all Inverse trigonometric functions:

Functions Domain Range
x= sin (y) 

y = sin-1(x)

[-1, 1] [2 , 2
x= cos (y)

y = cos-1(x)

[-1, 1] [0, ]
x= tan (y)

y = tan-1(x)

[∞, -∞] or R  [2 , 2
x= cot (y)

y = cot-1(x)

[∞, -∞] or R [0, ]
x= sec (y)

y = sec-1(x)

R – [-1, 1] [0, ] – {2}
x= cosec (y)

y = cosec-1(x)

R – [-1, 1] [2 , 2 ] – {0}

Graphs of Inverse Trigonometric functions:

1.  y= sin-1(x)

graph of y= 〖sin〗^(-1) (x)

2. y= cos-1(x)

graph of y= 〖cos〗^(-1) (x)

  1. y = tan-1(x)

3. y = tan-1(x)

  1. y= cot-1(x)

4. y= cot-1(x)

  1. y = cosec-1(x)

y = cosec-1(x)

  1. y= sec-1(x)

y= sec-1(x)

NOTE: 

  1. sin-1(x) and tan-1(x) are increasing functions, whereas cos-1(x) and cot-1(x) are decreasing functions over their domain. 
  2. sin-1(x)  and (sin (x))-1 are different and should not be confused. 

Properties: 

Property 1: Relation between two trigonometric functions. 

  1. sin -1(1x)= cosec-1(x) values of x ∈(−∞,1] ∪ [1,∞)
  2. cos -1(1x)= sec-1(x) values of x ∈ (−∞,1] ∪ [1,∞)
  3. tan -1(1x)= cot-1(x) values of x > 0

                   = – + cot-1(x) values of x < 0

Property 2: Negative angle Inverse Trigonometric identities

  1. sin -1(x)= -sin-1(x) values of x ∈ [-1, 1]
  2. tan -1(x)= -tan-1(x) values of x ∈ R
  3. cosec -1(x)= -cosec-1(x) values of x ∈ (−∞,−1]∪[1,∞)
  4. cos -1(x)= -cos-1(x) values of x ∈ [-1, 1]
  5. sec -1(x)= -sec-1(x) values of x ∈ (−∞,−1]∪[1,∞)
  6. cot -1(x)= -cot-1(x) values of x ∈ R

Property 3:

  1. sin -1(x)+ cos -1(x)= 2 values of x ∈ [-1, 1]
  2. tan -1(x)+ cot -1(x)= 2 values of x ∈ R
  3. sec -1(x)+ cosec -1(x)= 2 values of x ∈ (−∞,−1]∪[1,∞)

Property 4

  1. tan -1(x) + tan -1(y)= tan -1x + y1-xy values of xy < 1
  2. tan -1(x)tan -1(y)= tan -1x – y1+xy values of xy > -1
  3. tan -1(x)tan -1(y)= + tan -1(x + y1-xy) values of xy > 1; x,y= 0

Property 5:

  1. 2tan -1(x)= sin -1(2x1+x2), x 1
  2. 2tan -1(x)= cos -1(1-x21+x2), x 0
  3. 2tan -1(x)= tan -1(2x1-x2), -1x 1

Property 6:

  1. sin(sin -1(x)) = x, 2 x2

                          = -x, 2 x32

  1. cos(cos -1(x)) = x, 0 x

                          = 2-x, x 2

  1. tan(tan -1(x)) = –-x, x [32 ,- 2

                           = x, x [2 , 2 ]

                           = x – , x [2 ,32 ]

                           = x – 2, x [32 ,52 ]

Additional Formulas: 

  1. sin -1(x) + sin -1(y) = sin -1(x1- y2 +y1- x2   )
  2. sin -1(x) sin -1(y) = sin -1(x1- y2 -y1- x2   )
  3. cos -1(x) + cos -1(y) = cos -1(xy –1- y2 1- x2   )
  4. cos -1(x) cos -1(y) = cos -1(xy +1- y2 1- x2   )
  5. tan -1(x) + tan -1(y) + tan -1(z)= tan -1x + y + z – xyz1 – xy – yz – xz , if x, y, z>0 & xy+ yz+ zx<1
  6. If tan -1(x) + tan -1(y) + tan -1(z)= , then x+ y+ z= xyz
  7. If tan -1(x) + tan -1(y) + tan -1(z)= 2, then xy+ yz+ z
  8. sin -1(x) + sin -1(y)+ sin -1(z)= 32, x= y= z= 1
  9. cos -1(x) + cos -1(y)+ cos -1(z)= 3, x= y= z= -1

Remember:

  • When approaching the equations, square them so that it becomes easier to solve. Sometimes the answers or roots of the equation will not satisfy the original equation.
  • Do not cancel common factors involving unknown angles on the left-hand side (LHS) and righthand side (RHS) of an equation because it may be the solution of the given equation.
  • The solution of any equation, including sec θ or tan θ, can never be in the form (2n + 1) π / 2.
  • The solution of any equation, including cosec θ or cot θ, can never be in the form θ = nπ. 

Class 12 Mathematics Chapter 2 Notes Exercises & Answer Solutions.

Chapter 2 of mathematics class 12 helps students to learn the inverse trigonometric functions, their range domain and graphs. It is an important chapter and holds relevance in the 12th board as well as in various entrance exams like JEE, State Engineering Entrance Exams, etc. Extramarks has prepared class 12 mathematics chapter 2 notes which include all Exercise and Answer Solutions. Students can refer to the solutions provided for exercise questions and seek help if they face any difficulties or doubts. The CBSE revision notes include detailed information about theorems, formulas, and derivations in a very descriptive way. 

The class 12 mathematics chapter 2 notes are prepared by experts with the objective to provide in-depth knowledge of all the concepts. Practising questions with the help of these solutions will also help to develop analytical and problem-solving skills. 

For better results in the examinations, students may refer to the Extramarks Class 12 Mathematics Chapter 2 notes along with MCQ questions of this chapter from the links below.

Extramarks, with the right guidance and support, empower and provides a holistic learning experience to learners. The class 12 mathematics notes chapter 2 guides students to give their best in preparing for the examinations. Experience the power of wholesome learning with Extramarks! 

NCERT Exemplar Class 12 Mathematics

Keeping the overall importance of the subject in our mind, Extramarks, an online learning platform, provides academic notes such as NCERT Exemplar, Class 12 Mathematics Chapter 2 notes, and more. The notes are prepared by teachers and experts in a descriptive manner to enable students to improve the learning process. With the help of the notes, students can clear their queries and develop in-depth knowledge of the chapter. The Class 12 Mathematics Chapter 2 notes have solutions to all answers present in the NCERT books. It allows a sufficient amount of practice and improves problem-solving skills. NCERT Exemplar Books for class 12 is one of the best resources for efficient exam preparation. 

Key Features of Class 12 Mathematics Chapter 2 Notes

The key features of Class 12 Mathematics Chapter 2 notes provided by Extramarks include

  • The notes are prepared after extensive research by the subject elites at Extramarks.
  • It is based on the latest CBSE syllabus and follows all the revised guidelines issued by the board.
  • The concepts included in the notes are explained lucidly in easy language. 
  • The class 12 chapter 2 mathematics notes offer students many CBSE extra questions so that they can get acquainted with the different types of questions that are asked in the examinations.
  • It reduces stress and boosts confidence during your exam preparation.
  • With the help of the notes, students learn about the important details of CBSE exams, such as exam paper patterns, marking schemes, weightage of each chapter, etc. 
  • These notes are a beneficial resource that will help students to know the chapter’s most important concepts and weightage to plan their studies.
  • Students learn to manage time well and develop analytical and problem-solving skills, thus reducing the chances of mistakes. 

To get the best learning experience through conceptual clarity, visit the Extramarks website. The academic material, such as the Class 12 Mathematics Chapter 2 notes, provides end-to-end learning solutions. Also, get access to various CBSE sample papers and CBSE previous year question papers on the Extramarks web portal.

Q.1

If sin135=x, find the value of cos x.

Ans

Here, sin135=xsinx=35Now, cos x = 1sin2x=1352=1625=45

Q.2

Solvetan12x+tan13x=π4

Ans

tan12x+tan13x=π4tan12x+3x12x×3x=π4tan1x+tan1y=tan1x+y1xytan15x16x2=π45x16x2=tanπ45x16x2=1or5x=16x26x2+5x1=0i.e. 6x1x+1=0Which gives, x = 16,x=1Since x = -1 does not satisfy the equation as the L.H.S. of the equationbecomes negative, x = 16 is the only solution of the given equation.

Q.3

Prove that tan11+x1x1+x+1x=π412cos1x

Ans

Here, L.H.S. = tam11+x1x1+x+1xLet x = cos2θθ=12cos1xThenL.H.S.= tan11+cos2θ1cos2θ1+cos2θ+1cos2θ=tan12cos2θ2sin2θ2cos2θ+2sin2θ=tan12cosθ2sinθ2cosθ+2sinθ=tan1cosθsinθcosθ+sinθ=tan11tanθ1+tanθ=tan1tanπ4tanθ1+tanπ4tanθ=tan1tan1π4θ=π4θ=π412cos1x=R.H.SProved

Q.4

Prove that cot11+sinx+1sinx1+sinx1sinx=x2,×0,π4.

Ans

L.H.S.=cot11+sinx+1sinx1+sinx1sinx=cot11+sinx+1sinx1+sinx1sinx×1+sinx+1+sinx1+sinx+1sinx=cot11+sinx+1sinx21+sinx1+sinx=cot11+sinx+1sinx+21sin2x2sinx=cot121+cosx2sinx=cot12cos2x22sinx2cosx2=cot1cotx2=x2=R.H.S

Q.5

Show that sin11213+cos145+tan16316=π

Ans

sin11213=x,cos145=ytan16316=zsinx=1213,cosy=45andtanz6316cosx=513, siny=34,tanx=125andtany34Now, tanx+y=tanx+tany1tan×tany=125+341125×34=6316tanx+y=tanztanx+y=tanπzx+y=πzx+y+z=π

Q.6

Solve the following equation:tan1x1x2+tan1x+1x+2=π4

Ans

tan1x1x2+tan1x+1x+2=π4tan1x1x2+x+1x+21x1x2×x+1x+2=π4x2+x2+x2x2x24x2+1=12x243=12x24=3x2=12x=±12

Q.7

Evaluatetan12sin12x1+x2+cos11y21+y2,x<1,y>0 and xy > 1

Ans

Let x = tan θθtan1xand=tan1y then,tan12sin12x1+x2+cos11y21+y2= tan12sin12tanθ1+tan2θ+cos11tan21+tan2=tan12sin1sin2θ+cos1cos2=tan122θ+2=tanθ+

Q.8

Show that sin135sin1817=cos18485

Ans

Let sin135 =x and sin1817=ysin135 =sinx and 817=sinyas cosx = 1sin2x=1925=45and cos y = 1sin2y=164289=1517Now, cosxy=cosxcosy+sinxsiny=45×1517+35×817cosxy=8485xy=cos18485

Q.9

Evaluate tan11+cos112+sin112

Ans

tan11+cos112+sin112tan1tanπ4+cos1cos π3+sin1sinπ6=π4+cos1cosπ π3+sin1sinπ6 we know range of tan1π2, π2,cos10,πandsin1π2, π2tan11+cos112+sin112 =π4+2π3π6=3π+8π2π12=9π12=3π4

Q.10

Write the function tan1cosxsinxcosx+sinxin the simplest form.

Ans

tan1cosxsinxcosx+sinx=tan1cosxcosxsinxcosxcosxcosx+sinxcosx=tan11tanx1+tanx=tan1tanπ4tanx1+tanπ4tanx=tan1tanπ4xtanAB= tanAtanB1+tanAtanB=π4x

Q.11

Express tan-1cos x1-sin x,π2< x<π2in the simplest form.

Ans

tan1cos x1sin x=tan1sinπ2x1cosπ2x=tan1sinπ2x21cosπ2x2=tan12sinπ2x42sin2π2x4=tan1cosπ2x4sinπ2x4=tan1cotπ2x4=tan1tanπ2π2x4=tan1tanπ4+π2=π4+x2

Q.12

Find the value of sin1sin2π3

Ans

The range of inverse function is π2,π2.Now, sin1sin2π3=sin1sinππ3=sin1sinπ3=π3

Q.13

Write tan11x21,x>1 in the simplest form.

Ans

Let x = cosec θ θ = cosec1xThen, tan11x21=tan11cosec21=tan11cotθ=tan1tanθ=θ=cosec1x

Q.14

Prove that tan1x+tan12x1x2=tan13xx313x2

Ans

Let x = tan θNow, L.H.S. = tan1x+tan12x1x2=tan1tanθ+tan12tanθ1tan2θ=θ+tan1tan2θ=θ+2θ=3θ.…..1R.H.S.= tan13tanθtan3θ13tan2θ= tan13tanθ=3θ.….2by 1and2L.H.S.=R.H.S. proved

Q.15

Show that: tan112+tan1211=tan134

Ans

L.H.S.= tan112+211112×211tan1x+tan1y=tan1x+y1xy=tan11520=tan134= R.H.S.

Q.16

Find the principal value ofisin-1-12iicot-1-13

Ans

isin112=ysiny=12siny=sinπ6siny=sinπ6ory=π6We know that the range of inverse sine function is π2,π2sin1π6=π6iiLet cot113=ycoty=13coty=13coty=cotππ3y=2π3We know that range of inverse contangent function 0,πcot113=2π3

Q.17

Is the following statement true ?cos1x=cosx1

Ans

No, cos1x¹cos x1=1cos x

Q.18

Find the principal value of cos132

Ans

Letcos132=ycosy=32Range of cos1is0,πcosπ6=32cos132=π6

Q.19

If sin1x=y, than what will be the range of y ?

Ans

principal value of sin1 lies between π2,π2π2π2yπ2

Q.20

Show that sin12x1x2=2sin1x

Ans

sin12x1x2=2sin1xlet x = sinθsin12x1x2=sin12sinθ1sin2θ=sin12sinθcosθ=sin1sin2θ=2θ=2sin1x

Q.21

Find the value of cos1cos13π6.

Ans

cos1cos13π6=13π6But 13π60,πcos13π6=cos2π+π6=cosπ6cos1cos13π6=π6

Q.22

Find the value of tan1211+tan1724.

Ans

tan1211+tan1724.=tan1211+7241211×724tan1x+tan1y=tan1x+y1xy=tan1125250=tan112

Q.23

Find the value of tan13a2xx3a33ax2.

Ans

Letx=a tanθThen tan13a2xx3a33ax2=tan13a2tanθa3tan3θa33a2tan2θ                          =tan13tanθtan3θ13tan2θ                          =tan1tan3θ                          =3θ=3tan1xa

Q.24

Write 2 tan1x in terms of sin1x, cos1x and tan1x.

Ans

2 tan1x= sin12x1+x2 =cos11x21+x2 = tan12x1x2

Q.25

Write the domain and range of tan-1x.

Ans

Domain of tan1x=RRange of ten1x=π2,π2

Q.26

Fill in the following blanks:

a)cos1x=.b)cos11x=.….

Ans

a)cos1x=πcos1xb)cos11x=sec1x

Q.27

Find the value of sin π3sin112.

Ans

sin π3sin112=sin π3+sin112=sin π3+π6=sinπ2=1.

Q.28

Evaluatetan1tan4π3.

Ans

The rage of inverse tangent function is π2,π2.Now, tan1tan4π3=tan1tanπ+π3=tan1π3=π3

Q.29

Solve sin 2cos1cot2tan1x=0.

Ans

Given equation is sin 2cos1cot2tan1x=0 2cos1cot2tan1x=nπ,where n is any integer cos1cot2tan1x=nπ/2 cos1cot2tan1x=0,π2,πsince cos1xliesin0,πcot2tan1x=cos0,cosπ2,cosπ=1,0,1cottan12x/1x2=1,0,11/tantan12x/1x2=1,0,11x2/2x=1,0,11x2/2x=1,1x2/2x=0 and 1x2/2x=1x=1±2,x=±1,x=1±2.

Q.30

Prove that sin11213+cos145=sinh16365.

Ans

sin11213=xandcos145=ycosx513andsiny=35Now, sinx+y=sinxcosy+cosxsiny=1213,45+513,35=6365x+y=sin16365so,sin11213+cos145=sin16365

Q.31

Prove that tan115+tan116 = tan11129

Ans

Prove that tan115+tan116 = tan11129L.H.S.= tan115+tan116=tan115+16115×16=tan16+5301= tan11129=R.H.S. Proved.

Q.32

Find the principal value of sin112.

Ans

Let sin112=θsinθ=12sinθ=sinπ6sinθ=sinπ6∵The range of sin1xis π2,π2θ=π6The principal value of sin112isπ6.

Q.33

Final the principal value of sin112.

Ans

Let sin112=θsinθ=12cosθ=cosπ4sinθ=sinπ4∵The range of sin1xis π2,π2θ=π4The principal value of sin112isπ4.

Q.34

Findthe principal value of cos112.

Ans

Let cos112=0cosθ=12cosθ=cosπ4cosθ=cosπ4∵The range of cos1xis 0,πcosθ=cos3π4θ=3π4The principal value of cos112is3π4.

Q.35

Evaluate the cot tan1a+cot1a.

Ans

We have,=cottan1a+cot1a=cotπ2∵tan1a+cot1a=π2=0

Q.36

Evaluate the sin sin-1x+cos-1x.

Ans

We have,=sinsin1x+cos1x=sinπ2∵sin1x+cos1x=π2=1

Q.37

Put in the simplest form: tan11cosθsinθ.

Ans

Wehave, tan11cos θsin θ=tan12 sin2 θ22 sinθ2cosθ2=tan1sin θ2cosθ2=tan1tanθ2= θ2

Q.38

Prove that the sin1x= cos11x2.

Ans

Let sin1x=θ.…..1sin θ=xsin2θ =x21cos2θ=x2cos2θ=1x2cos θ=1x2cos θ=1x2θ = cos11x2.….2From 1and 2 we get,sin1x= cos11x2

Q.39

Prove that cos1 x= πcos1x.

Ans

Let cos1x=θ .….1x = cos θx = cos θx = cos π θπθ = cos1x θ=π cos1x.2From 1and 2 we get, cos1x=πcos1x

Q.40

Evaluate the cos cosec1x+ sec1x.

Ans

We have,cos cosec1x+ sec1x=cos π2∵ cosec1x+sec1xπ2=0

Q.41

Evaluate the tan12+ tan13.

Ans

We have, tan12+tan13 =tan12+312×3 =tan1516 =tan155 =tan11 =tan11 =π4

Q.42

Evaluate the tan1211+ tan1724.

Ans

We have, tan1211+ tan1724=tan1211+7241211×724 =tan148+7711×2411411×24 =tan112526414 =tan1125250 =tan112

Q.43

Prove that sin1x=cosec11x.

Ans

Letsin1x = θ.…….1sin θ = x cosec θ=1xθ=cosec1=1x.……2From 1 and 2 we get,sin1x= cosec11x

Q.44

Put in the simplest form, tan11+x21x.

Ans

We have, tan11+x21xPutx = tanθ= tan11+tan2θ1tanθ= tan1sec2θ1tanθ= tan1secθ1tanθ= tan11cosθcosθsinθcosθ= tan11cosθsinθ= tan12sin2θ22sinθ2cosθ2= tan1sinθ2cosθ2= tan1tanθ2=θ2∵tanθ=xθ=tan1x=12tan1x

Q.45

Prove that sin1x+cos1x=π2.

Ans

We have to prove thatsin1x+cos1x=π2.Let sin1x=θ.…..1sinθ=xcosπ2θ=x∵sinθ=cosπ2θπ2θ=cos1xcos1x=π2θθ+cos1x=π2sin1x+cos1x=π2using1

Q.46

Show that tan1211+tan1724+tan113=π4.

Ans

We have,tan1211+tan1724+tan113=tan1211+7241211×724+tan113=tan148+7711×2411411×24+tan113=tan112526414+tan113=tan1125250+tan113=tan112+tan113=tan112+13112×13=tan15656=tan11=π4

Q.47

If two angles of a triangle are tan12andtan1 3,than find the third angle.

Ans

Let third angle of a triangle be θ, then we haveθ+tan1+tan13=π∵A+B+C=πθ+tan12+312×3=πθ+tan1516=πθ+tan155=πθ+tan11=πθ+3π4=π∵tan11=3π4θ=π3π4θ+π4Therefore, the third angle of a triangle is π4.

Q.48

Solve for x, sin11x2sin1x=π2.

Ans

We have,sin11x2sin1x=π2sin11x=π2+2sin1x1x=sinπ2+2sin1x1x=cos2sin1xcos11x=2sin1xsin111x2=sin12x1x211x2=2x1x2On squaring both sides, 11x2=4x21x211x2+2x=4x24x44x45x2+2x=0x4x35x+2=0x=0or4x35x+2=0 Put x = ... -1, 0, 1, 2, . we get no real vlue of xsatisfy above cubic equation in 1,1Hence x = 0 is only solution.

Q.49

Solve for x, tan12x+tan13x=π4.

Ans

We have, tan12x+tan12x=π4tan12x+3x12x×3x=π4tan15x16x2=π45x16x2=tanπ45x16x2=15x=16x26x2=5x1=06x1x+1=0x=rejected as does not satisfy equationx=16 is the only solution of the given equation.

Q.50

Put in the simplest form, tan1cos θ1 + sin θ.

Ans

We have, tan1cosθ1+ sinθ=tan1cos2θ2sin2θ2cosθ2sinθ22= tan1cosθ2+sinθ2cosθ2sinθ2cosθ2sinθ2=tan1cosθ2sinθ2cosθ2+sinθ2Divide N1 and D1 by cosθ2= tan11tanθ21+ tanθ2= tan1tanπ4tanθ21+tanπ4.tanθ2= tan1tanπ4θ2=π4θ2

Q.51

Show that tan115+ tan117+ tan113+ tan118=π4

Ans

We have,tan115+ tan117+ tan113+ tan118=tan115+17115×17+tan113+18113×18=tan17+5351135+tan18+3241124=tan112353435+tan111242324=tan11234+tan11123=tan1617+tan11123= tan1617+11231617×1123=tan1138+18717×233916617×23=tan1325325=tan11=π4=1

Q.52

Put in the simplest form, tan1cosx1sinx.

Ans

We have, tan1cosx1sinx=tan1cos2x2sin2x2cosx2sinx22tan1=cosx2+sinx2cosx2sinx2cosx2sinx2tan1=cosx2+sinx2cosx2sinx2Divide N1 and D1 by cosx2= tan11+ tanx21tanx2= tan1tanπ4+tanx21tanπ4.tanx2= tan1tanπ4+x2=π4+x2

Q.53

Show that tan1211 + tan1724+tan134=tan12.

Ans

LHS = tan1211 + tan1724+tan134=tan1211+7241211×724+tan134=tan148+7711×2411411×24+tan134=tan112526414+tan134=tan1125250+tan134=tan112+tan134=tan112+34112×34=tan12+34838=tan15458=tan154×85=tan12(RHS Proved)

Q.54

Evaluate cot tan113+tan115+tan117+tan118

Ans

We have,cot tan113+ tan115+ tan117+ tan118= cot tan115+ tan117+ tan113+ tan118=cottan115+17115×17+tan113+18113×18=cottan17+5351135+tan18+3241124=cottan112353435+tan111242324=cottan11234+tan11123=cottan1617+tan11123=cot+tan1138+18717×233916617×23=cot+tan1325325=cot+tan11=cotπ4=1

Q.55

If sin1x+sin1y+sin1z=π2, then find the value of x2+y2+z2+2xyz.

Ans

We have,sin1x+sin1y+sin1z=π2cos11x2+cos11y2=π2sin1zcos11x21y211x211y2=cos1z1x21y2x2y2=z1x21y2=xy+z1x21y2=xy+zSquaring both sidesxy+z2=1x21y2x2y2+z2+2xyz=1x2y2+x2y2x2+y2+z2+2xyz=1Hence, value of x2+y2+z2+2xyzis 1.

Please register to view this section

FAQs (Frequently Asked Questions)

1. Which chapter’s notes can I get for Class 12 mathematics on Extramarks?

Extramarks, an online learning platform, provides informative and detailed notes along with all topics and sub-topics of all the chapters for Mathematics Class 12. Students are advised to study with the help of these academic notes. 

Chapter 1: Relations and Functions

Chapter 2: Inverse Trigonometric Functions

Chapter 3: Matrices

Chapter 4: Determinants

Chapter 5: Continuity and Differentiability

Chapter 6: Applications of Derivatives

Chapter 7: Integrals

Chapter 8: Application of Integrals

Chapter 9: Differential Equations

Chapter 10: Vector Algebra 

Chapter 11: Three Dimensional Geometry

Chapter 12: Linear programming

Chapter 13: Probability

2. Will using the Class 12 Mathematics Chapter 2 notes help me in my exam preparation?

Yes, definitely. The chapter 2 mathematics class 12 notes include every minute detail that the students must know in order to attain high scores. It includes solutions to all-important questions along with certain key points, formulae, derivations and more that will enhance the preparation level. Some tips, tricks and short-cut methods will also help students to tackle difficult questions in no time.